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We consider a reaction diffusion system, far from equilibrium, which has multiple stationary
states (phases) for given ranges of external constraints. If two stable phases are put in contact, then
in general one phase annihilates the other and in that process there occurs a single front propagation
(soliton). We investigate the macroscopic dynamics of the front structure and velocity for two model
systems analytically and numerically, and for general reaction-diffusion systems by a suitable perturb-
ation method. The vanishing of the soliton velocity establishes the analogue of the Maxwell con-
struction used in equilibrium thermodynamics. The problem of nucleation of one phase imbedded
in another is studicd by a stochastic theory. We show that if the reaction dynamics is derived from a
generalized potential function then the macroscopic steady states are extrema of the probability
distribution. We use this result to obtain an expression for the critical radius of a nucleating phase
and confirm the prediction of the stochastic theory by numerical solution of the deterministic macro-
scopic kinetics for a model system.

1. INTRODUCTION

Chemical reaction mechanisms with macroscopic rate laws of sufficient non-
linearity in systems maintained far from equilibrium may have multiple stationary
stable states '"® for given external constraints. We refer to each such state as a
phase and transitions between phases are possible. The analogy of the theory of
phase transitions and critical phenomena to transitions between stable states and
critical (marginal stability) points has been discussed in some detail, both at the macro-
scopic and statistical mechanical level of analysis.”-® In this paper we investigate the
nucleation of one phase within another phase, as well as the conditions of coexistence
of two phases (the analogue of the Maxwell construction). These problems have been
considered by: Kobatake 7 who showed for a particular case the similanity of the
behaviour of the generalized entropy production ® in transitions between stable
branches of steady states, and the Gibbs free energy in equilibrium phase transitions
by Schlogl,® who took into account reaction and diffusion and treated coexistence of
phases and the analogue of the Maxwell construction for one variable systems with
the help of a mechanical analogy; and by Nicolis, Malek-Mansour, van Nypelseer
and Kitahara,'® who analyzed the onset of instability as a nucleation process, derived
a non-linear master equation for that purpose, and applied that result to some ex-
amples.

We approach these problems from two different points of view.  First, in section 2
we Investigate the macroscopic dynamics of two stable stationary states of semi-
infinite extent, at given external constraints, placed in contact with each other.
Except for one value of the constraints, one phase annihilates the other and in that
process there occurs a single-front propagating wave, a soliton. We investigate the
behaviour of the concentration profile and velocity of such a wave for two model
systems analytically and numerically and show that the values of the external con-
straints for zero soliton velocity establish the Maxwell construction.

241



242 NUCLEATION

Further we study these quantities for general reaction-diffusion systems by a
suitable perturbation method and find that the soliton velocity vanishes linearly 1n
the deviation of the external constraint from its value at the Maxwell construction.

Next, in section 3, we discuss some aspects of a stochastic theory of instability
phenomena on the basis of a Fokker-Planck equation assumed for a reaction-
diffusion system. That equation can be solved for the steady state probability distri- -
bution for which the reaction dynamics is obtainable from a generalized potential
function. In that case we show that the macroscopic steady states are extrema of the
probability distribution, maxima for stable steady states. We apply this theory to
analyze the behaviour of a system consisting initially of a nucleus of one phase embed-
ded in an infinite bulk of the other phase ; we do so in a manner similar to the conven-
tional treatment of nucleation in first order phase transitions.!!* 12 We thus obtain
an expression for the critical radius for such a nucleus above which the nucleus grows,
and below which it disappears in time. This prediction agrees with numerical
solutions of the deterministic diffusion-reaction equation for a simple model system.

2. MACROSCOPIC DYNAMICAL THEORY

We consider a diffusion-reaction system for which the macroscopic deterministic
equation of motion is
o

5, ) = DV, 4], 21

The symbols denote : {, a column vector of concentrations and possibly other state
variables such as temperature; r, spatial coordinates; 7, time; D, a matrix of
diffusion coefficients; F, the variations due to chemical reaction: and A, the set of
external constraints (boundary concentrations of species, light intensity in an illum-
inated system,® etc.). We assume that: 1. the diffusion matrix is constant and sym-
metric and the diffusion process is stable in that in the absence of reaction eqn (2.1)
with F = 0) the steady state solution is stable; 2. F is analytic in ¥ and A. We
consider systems for which there exist two stable stationary states (and one unstable
stationary state) in a given range of A. Thus if, in a one-dimensional system (co-
ordinate x) we prepare two systems under identical external constraints, one system in
one stable state (one phase) and the other system in the other stable state (the other
phase), then the boundary at x = 0 between the two systems will move in one direction
or another depending on A. There occurs a single front propagation,!? a soliton, in
which one phase annihilates the other. We shall find the condition for coexistence of
two such systems (phases) to be zero soliton velocity, or a standing front at a given &.
We therefore seek wave solutions of (2.1) which are most readily studied in a reference
frame moving with the front. We define the phase

¢ = x—ut, (2.2)

where the soliton velocity v is a function of .. With (2.2) the partial differential eqn
(2.1) is converted into an ordinary differential equation

d? dy

D ——+v—+F[y, ] =0, 2.3
which is a nonlinear eigenvalue equation for ¢ at a given . Coexistence occurs when
v=0atk = hy. The value of Xy is obtained from eqn (2.4) which may be inter-
preted as an eigenvalue equation for Ay,
d?y
D —&g;+f'[%, A = 0. (2.4)
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We first consider a soluble model system and then present an analysis for more
general {D, F} systems.
The model system consists of a single species with third-order kinetics which obey
the equation
oy 0%y

A =D axl — gy —a)y — b)(yr —¢). (2.5)

Homogeneous steady states occur at Y* = g, b, ¢, where these parameters are arbitrary
functions of A. We take b > ¢ > a, g > 0, and thus only states a and b are stable to
small homogeneous perturbations. If we define a new variable u such that

Y —a
u= ,
b—a
then we obtain
du d%u 5 (c—a)
T - _ Y, 2.6
B D e g{b—a) u(u 1)(u+(b-—c)) (2.6)

This is identical in form to a model considered by Montroll.'? In terms of our
notation his solutions for soliton fronts are

W(d) = a+(b—a)(1+exp(+ )" 2.7
where
(AY 2.8
p= (-2—5) (b-a). (2.8)
The front velocity is given by
v = (gD} a+b—2c). (2.9)
Coexistence occurs at v = 0, i.e.,
c = Ha+b) at A = Ay, (2.10)

which is obvious from the symmetry of the trilinear kinetics for which the two stable
states @ and b are located symmetrically about the unstable state c.
It is interesting to take a particular case and analyze it fusther. Let

F=—qy?-2¢+1/4). (2.11)

Then v = (3¢gD)*[3(1 — 1/ —1] and B = (¢/2D)}[1 +(1 —1/A)%], from (2.8,9). The
uniform steady states and the soliton velocity are shown in fig. 1(a) and (b). Co-
existence is found at 4,, = 9/8. With this we obtain the structure of the coexistence
region to be

wcoe:.lx) = %(l +exp(i ﬁMx))_la (212)

where fyy = 4(8q/D)*; the structure is shown in fig. 2.

We note from fig. 1{6) that the velocity passes through the origin at Ay with a
finite but non-zero slope |(dv/dA),,,| # co. This general property provides a useful
aid in determining Ay experimentally.

Next we consider the general system (2.1) by analyzing the solutions of the front
eqn (2.3) in the vicinity of 4y, To do so we introduce a parameter 4 to be defined at a
later stage in the development, which measures the deviation of the system from
coexistence conditions. In general, 4 is a function of 4,

o]

A=Y 14 (2.13)

n=0
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Fig. 1.—Steady states and soliton velocity versus the parameter A for the model system egn (2.11).

and we expect that 4 approaches zero proportional to the factor (1 —A,,) raised to
some positive power. Furthermore  and v depend on 4,

Y = 20 Wa(h)A" (2.14)
p = Fi | v, A", (2.15)

Such expansions have been employed elsewhere for the study of chemical waves.!
On substitution of the expansions (2.13-15) into (2.3) we recover to zero’th order in A4,
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Fic. 2.—Structure of the coexistence region versus distance, eqn (2.12), for the model system eqgn
2.11), :
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eqn (2.4), with the boundary conditions of the system being one stable stationary state
at x-= — oo, and the other stationary stable state at x = +co. We also have by
definition in this order v, = v(dy) = 0.

To first order in the parameter 4 we find

dy, [OF
— =p, —24] = 2.1
LY, = v, dé +(5/1)0/11 (2.16)
with the operator ¥ defined by
2
=D WJrQ (2.17a)
Q= (0F/0y)o (2.176)

and the subscript 0 following differentiation implies evaluation in lowest order. We
note that differentiation of (2.4) with respect to ¢ yields

Y — =10. 2.18
a0 (2.18)
We assume that dy/d¢ is the only eigenfunction of £ with zero eigenvalue.
£-1(dyr/d¢) does not exist and hence the solution of (2.8) for v, cannot be found for
arbitrary (v,, 4;). The problem is overcome by a proper choice of these coeflicients.
We then define a vector @ such that

£+0 =0, (2.19)
where #+ is the adjoint operator of . If we define an inner product
s =3 | dp 4B, (2.20)

where the sum on i runs over all species, then from (2.17, 20) £ is given by
2

Pt = D*E%)—z +Q*. (2.21)

(By assumption we have D* = D, Onsager’s relations).

We can be assured of the solubility of the first order eqn (2.16) if we can choose v,
and A, such that the r.h.s. of (2.16) is orthogonal to the zero eigenvalue function
dio/d¢. Thus we obtain by use of the adjoint eigenfunction to dio/d¢, that is ©, see
(2.19), that

v,(O(dyo/dd)) + A,(OWOF[0A)0) = 0. (2.22)

The coefficient of v, may be chosen to be unity by proper normalization of ®. Hence
if the coefficient of A, is finite, then this relation can be satisfied for finite v, 4,.
Finally (9F/04), approaches constant values as {¢|—c0. A necessary condition for

solubility is J‘ d¢|®(¢p)| < o« in order to find A,, v, # 0. For systems where

Q+ = Q, & is self adjoint and therefore ® = dio/d¢$. Since dy,/d¢ is localized to
the region of the soliton front, it satisfies the necessary condition of solubility.
However we have not investigated this condition for systems with Q+ # Q.

It is sufficient to all orders to choose 4,5, = 0; thus with the convenient choice
A; = 1 we have

A= A—Ay (2.23)
To first order the perturbation solution is
S9—9
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d d oF
V(@Proay = 'J’M(‘f’)“-?_1{((1—;)5'—(!%"*'(5)“}(1—%1)'* e (2.24)
Visan & — [(OI(OF[01)W)/(®NdYo/ddN](A-Ap) + - - - (2.25)

For the one variable system (2.5-12) we have verified these relations using the equation
O = dy/dg.
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Fi. 3.—Steady state concentration and soliton velocity versus S° for the model system described in
Appendix A. For curve (a) the diffusion coefficients Ds, Dp are both ! and for curve () Dg = 1 and

Dp = 0.05,
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FiG. 4.—Soliton structure against distance at different times for the mode! system, Appendix A. The
diffusion coeflicients are Dg= 1, Dp = 0.05. The external concentration S° = 5.
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Finally we note that the structure and velocity of the soliton depends in general
not only on the reaction term F but also on the diffusion matrix D. If D is equal and
diagonal then it may always be eliminated from the equation for the soliton front by a
suitable scaling of the length, ¢—(,/D)¢’. However for more complex diffusion
matrices this simple scaling no longer holds. In Appendix A we consider a two
species system with rate mechanism

S°=285>P=P° (2.26)
where S°, P° are maintained constant, and the activity of the enzyme & depends on P,
In fig. 3 we show the steady state concentration P* as a function of S° and the
results of the numerical integration of the partial differential equations yielding the
variation of the soliton velocity against the concentration of S° for various choices of
diffusion coefficients of S and P. For this system the value of S° at coexistence (Ay
of the general theory) does not appear to depend on the choice of diffusion coefficients
to within the accuracy of the numerical computations ; the results of the stochastic
theory, section 3, indicate no dependence on that choice for systems for which the
kinetics is derivable from a generalized potential function.
In fig. 4 we show the soliton stucture for the same system (Appendix A) for the
choice of diffusion coefficients Dg = 1, Dp = 0.05, and S° = 5.

3. STOCHASTIC THEORY

Our treatment is based on a model in which to the set of reaction diffusion rate
equations we add a stochastic source term to account for fluctuations in the system.
The set of concentrations at each spatial point becomes then our set of stochastic
variables. It is convenient to make this set discrete by dividing the system into cells
of homogeneous composition. We thus consider the system of volume V to be
partitioned into N cells each of volume # = V/N. The macroscopic reaction kinetics

is again given by
dy
—_— == 3-1
(dt)“ FL¥). (3D

with a similar equation for y, in the nth cell. The rate of change of numbers of
particles of any species, x, = ¥, due to diffusion is

(da.f_) =D Y (Y- V) (32)

where the sum extends over the 2d nearest neighbour cells (d is the dimensionality of
the svstem). The factor of i#'-%¢ comes from multiplying by the surface area
pl-1/4 of the cell and dividing by the characteristic length (5'/%) of a cell such that

(Yr,+:—V,)/0"/® is an approximation to the concentration gradient. Now we write a
Langevin equation for this system as

dy.,

il 5F[¢n]+l7"_2”r"oz(‘llnn'—\l’n)‘l‘(ZKf?)* (3.3a)
or

d 2K\}

_d% = F[‘I’n]*—l}_z!doz (¢n+|_‘|’n)+(?) (33b)

For simplicity we take the stochastic term to be Gaussian and thus to satisfy the usual
relations {(/,()> = 0 and {fo,(t Vfm()) = 0apd,md(t—1t") («, B denote different chemical
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components). Eqn (3.3b) 1s equivalent to the following Fokker-Planck equation for
the probability density of finding the concentration distribution y,, P[\¥], in the system

oP[¥] d K 3*p
ol —g ;{M(M“[\P]P)__ﬁ m} (34)
where M, (‘W] (with components M,,[¥]) is given by
M[¥] = Fli 145724 D Y. (=¥l (3.5)

and where ¥ denotes the “ supervector™ ¢y, (n=1...N) (=, (n=1...N,
« goes over the different chemical species)). In (3.4) K was taken for simplicity as a
scalar matrix, K = KI, where I is the unit matrix. The integration of this many-
variable Fokker-Planck equation for steady state conditions, (6P/df) = 0, is possible
provided the reaction kinetics are such that the curl of ‘M is zero,!¢

oM., OM,,
5% a"bu

This condition should be modified if D is not a symmetric matrix or if K is not a
scalar matrix. If (3.6) holds then we obtain

P¥] = Cexp(— U[¥Y]) (3.7
where C is a normalization constant. For simplicity we assume now that we have a

one-component system, for which (3.6) always holds. The results for a more general
case with a symmetric diffusion matrix are given in Appendix C. We write U[}/] as

uly] = —%[5 Z{G[w,]—(ﬁ‘“)g ) (w,.-w.m)’}], 3.8)

n i=1

(3.6)

which in the continuum limit

(5 L fdd", W= s )M ?%(.L) )

n !

becomes
L) = - [erfotvon-tvvenr} (39)
The function G[i(r)] is defined by
ot = | ay #15) (3.10)

which in case of many chemical species should be understood as a line integral in
space. Condition (3.6) ensures that this line integral is well defined and does not
depend on the integration path. It is interesting to note that (3.9) has the same form
as the free energy in the Landau-Ginzburg theory !'! (there G(y) is usually taken as a
quartic form). Also critical phenomena have been discussed with Hamiltonians of
that form.!’

Having arrived at an expression for the steady state probability distribution P[]
we show next that extrema in that distribution are given by the steady states of the
deterministic equation. Differentiation of (3.7) yields

oU
5P = —Pwéw (G.11)



A. NITZAN, P. ORTOLEVA AND J. ROSS 249

or

OP = —PE Idr{F[l,b]égD — DV « Vor} (3.12)
which on partial integration becomes

oP = —I;(— jdr{F[w] + DV3y1oy. (3.13)

For P to be an extremum for the arbitrary variation & we must have the integrand
vanish ; that is the macroscopic condition for steady states. It can be further shown
that stable steady states correspond to maxima of the probability distributions (see
Appendix B). The system may be in a single stable stationary state (although there
exist other such states at the same external constraints) and in that case the system is
homogeneous, i.e., F[y] = 0. However, two (or more) stable stationary states may
coexist and the distribution of concentrations is the solution of DV +F[yj =0
for given boundary conditions. Note that this is exactly the equation for the zero
velocity soliton structure (eqn (2.3) with v = 0).

The stochastic theory for the probability distribution of a system in a steady state
may be applied to the problem of nucleation. Consider a spherical nucleus of radius
R of one stable stationary state, labelled phase B, immersed in an infinite bulk of
another stable stationary state, labelled phase A, both under the same external
constraints. Thus we have F[y,] = Flys] = 0 for the individual, homogeneous
phase. For phase B immersed in A, however, we may inquire about the expected
stability of the spherical nucleus, that is the nucleus is expected to evolve in the direc-
tion of increasing the probability of the overall structure (nucleus-+bulk). The
logarithm of the ratio of the probability distribution for B phase immersed in A phase,
Py, to that of pure A phase, P, is

Pga pk 24 2R4"1D 5
Kln " { R O (B) ~ 6= =g~ b=y } (3.14)
where [ is the width of the interface region, and where we have approximated the
gradient by (Ys—¥4)/. Ineqn (3.14) we have used the following expression for the
surface area S and the volume Vof a d-dimensional sphere (I" is the I-function)

S — _27{‘”2* d—1
r(df2)
yo B e
dr(d/2)

The derivative (with respect to R) of the r.h.s. of (3.14), set equal to zero, gives the
radius of the sphere of phase B for which the l.h.s. of (3.14) is a minimum, that is
(for a given I

_ l_)(lps - \”A)z(d - 1)
I(G[¥s] - GT¥AD)

If G[¥s] > Gl¥,), then there exists a distribution (characterized by R.) of maximum
“ free energy = (minimum probability) such that for R > R_ the nucleus will grow
(as this is the direction of increasing the probability) and for R < R. it will disappear
in time. If G[ys] < Gly,] then no positive R, exists. Finally, if G[ys] = Glia] then
R, = o, and phases A and B coexist with a planar (zero curvature) surface of contact.
This condition is clearly the analogue of the Maxwell construction in equilibrium

R, (3.15)
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phase transitions. Furthermore, we expect that this condition is equivalent to the one
of zero soliton velocity and have confirmed the expectation for the example given by
(2.5).

In a many component curl-free system with a symmetric non-scalar diffusion
matrix, the result (see eqn (C.1), Appendix C) shows that the Maxwell construction is
again given by the condition G[ys] = G[Y.l.

We stress that the arguments presented here are based on probabilistic consider-
ations, especially on the postulate that a system will evolve in the direction of increasing
the probability. The result (3.15) is similar in many respects to that for the radius of
critical nucleus in equilibrium first order phase transitions.!*- ' The contribution
of the diffusion process to the * free energy ”* U, eqn (3.9), takes here the place of the
surface tension in the equilibrium nucleation treatment. The appearance of the
parameter / in eqn (3.15) takes into account the non-zero thickness of the interphase
layer. It should be remembered that /is not an independent parameter but is deter-
mined by the external parameters. Also, the simplifying assumption of linear varia-
tion of the concentration ¥ across the interphase layer limits the applicability of the
result (3.15).

We compare the results of the stochastic theory to the solution of the deterministic
dynamical equations. To this end we numerically integrated the one variable partial
differential equation

oY

-5; = szl,!l—|1/3+bl,{l+f (316)

in which the cubic polynomial F(y) = —y*+by +c plays the role of a chemical
source term. Forb > 0 and |¢| < (2b/3)X/b/3) this equation has two stable and one

1.6 t=0 a1

t=0 |
0.0 4.5 9.0 0.0 4.5 9.0

r r

Fic. 5.—Evolution of a nucleus as a function of radial coordinate for various times, as obtained from
numerical solution of eqn (3.16) with b = 3, ¢ = 1.5 and D = 1. Figures at left and right are for
initial radius smaller and larger than R, respectively.
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unstable homogeneous steady states. Denoting the two stable homogeneous steady
states by . (phase A) and ¥ (phase B) we put our initial condition to be a sphere of
radius R centred around the origin and consisting of phase B, imbedded in a spherical
region of phase A which in the computation process has to be taken finite but with
radius R, much larger than R. Since the initial condition is spherically symmetric
and the coefficients of (3.16) are constants, it is sufficient to consider the radial
coordinate only. The boundary conditions are taken as 8y/0r = 0 at r = 0 and at
the larger bounding sphere.

Fig. 5 shows the time and space dependent solution to eqn (3.16) in three dimen-
sions for the choice of coefficients D = 1, b = 3, ¢ = 1.5 and for two different choices
of the initial radius R: R < R, and R > R.. The nucleus shrinks and disappears
for R < R_ and grows in time for R > R.. It js interesting to note that the growth
process (for R > R,) accelerates for small R but the velocity approaches a constant for
larger radii as the front becomes more planar. We calculate the velocity of a planar
front (from eqn (2.9) using the steady state solutions ¢, = —1.38, ¥, = 1.94 (stable)
and y, = —0.558 (unstable)) to be 1.2, while from fig. 5b, the velocity for the largest
radius obtained is 1.0.

TABLE 1.—CRITICAL RADIUS FOR NUCLEATION FOR THE S$YSTEM GIVEN BY EQN (3.16)
R calculated from eqn (3.15)

R from numerical computations with I = 2
¢ 2 dimensions 3 dimensions 2 dimensions 3 dimensions

0.50 26< R, <32 3.4

0.75 3.5< R, < 5.5 4.6
1.00 1.5 < R, < L.75 2.7 < R, < 3.7 1.7 3.4
1.25 21 < R, <23 2.6
1.50 085 < R, < 1.0 1.65 < R, < 1.95 1.05 2.1
1.75 08 < R. < 10 135 < R, < 1.5 6.9 1,75
1.875 12< R, <14 1.6
20 R.< 0.5 R, < 08 0.7 1.35

In table 1 we present the results of numerical computation of R,, as well as results
based oneqn (3.15), for b = 3and for different values of ¢ in two and three dimensions.
The calculations based on eqn (3.15) were done with 7 = 2 which is an estimate based
on the numerical results such as given by fig. 5b. The agreement between the values
of R, as obtained from (3.15) and from numerical integration of (3.16) is fairly good
for all the values of the parameter ¢ that were tried, excluding the bifurcation value
¢ = 2. (Our failure to provide a more accurate numerical answer for R, near the
bifurcation point is caused by the slow time evolution of the system near that point,
which makes the numerical integration very expensive.) This agreement is remark-
able as the two ways of obtaining R, are different; one is based on solutions of the
time-dependent deterministic equation, and the other on the steady state probability
distribution.

To conclude this section we should note that even though the dynamics of nucleus
growth as given by eqn (3.16) or fig. 5 give important information on the rate of
nucleation of one phase within another, the rate of this process depends also on the
rate of formation of nuclei by spontaneous fluctuations which is not discussed in the
present work.

We thank John M. Deutch for helpful discussions. This work was supported in
part by the National Science Foundation and Project SQUID, Office of Naval
Rescarch.



APPENDIX A

For the reaction mechanism (2.26) the reaction-diffusion equations are

as *S ..
== DE?-J—(S -8)-&(P)S (A.1)
oP 2
7 = D a.?+(p —P)+&(P)S (A.2)

with all rate coefficients taken to be unity. The assumed form for the dependence of
& on P is

P2
14+ P+ P?

for which chemical examples are available.!® The steady state solutions of (A.1, 2)
are

E(P) = (A.3)

P* =0; HS°—1)+3(S°-1)*-8}}, (A.4)
which are shown in fig. 3a.

APPENDIX B

Here we show for the probability distribution given by eqn (3.7) and (3.9), that
stationary points which correspond to stable macroscopic steady states are local
maxima of the distribution, or minima of the potential U[¥] given by (see eqn (C.1))

U] = —1/K | dr{GIY(r)]— 1D : (b(r))?}. (B.1)
Let the steady state variable Y*(r) satisfy the equation
Fly*(N]+DV*(r) = 0, (B.2)

and let P(r) = Y*(r)+6y(r). We assume that y*(r) corresponds to a stable steady
state of the system. The first order (in 8Y) term of U then vanishes and the second
order term is given by

52U = -4 [droy{@+DV2}éy (B.3)
where @ = (0F/0y)y. We have used the identity
jdrvwv v= —{ arwv2v+ {wnvy do (B.4)

and the fact that y*(r) and {(r) must satisfy the same boundary conditions and there-
fore (8y); = 0. In egn (B.4), ¥ is the boundary of the system, do is an element of
this boundary and n is a unit vector perpendicular to the boundary. Since we assume
that y*(r) is a stable steady state, the operator £+ DV? must be negative definite and
therefore 52U in eqn (B.3) is positive. This establishes the fact that U[{] is a mini-
mum (and P[] is a maximum) for ¥ = {*.

APPENDIX C

Here we write the modified relations of section 3 for a many variable system and for
a general symmetric diffusion matrix. The potential Uf{] (eqn (3.9)) is given by

U] = —1/K [ dr{GI¥(n]—4D : (V(r))*} (€.n
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where
oy, 0
D: (W) = £0, T 3" Vv, (C2)
or, or,
The expression for the critical radius Rc is now replaced by
R . (‘]’B_\pe\) ’ D * (\l’B_"[,A)(d_ 1)‘ (CS)

o {G(Ys) — G(¥a))
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