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’ INTRODUCTION

The limited supply of today’s main energy sources, such as oil
and coal, will force us to rely increasingly on renewable energy
sources. Besides wind and water power, energy conversion based
on photovoltaic (PV) devices has received much attention as
such a source. Promising systems for next generation devices are
organic photovoltaic solar cells (OPV) because of their potential
for low-cost processing. Of particular interest are polymer-based
heterojunctions consisting of a blend of electron-donor (D) and
electron-acceptor (A) material. (For reviews, see refs 1 and 2 and
references therein.) A prominent acceptor material is the buck-
minsterfullerene (C60).

3�6 The quest to improve the energy con-
version efficiency of such systems is the focus of intensive current
research.

To evaluate and subsequently improve the efficiency of OPV
cells, it is crucial to understand the underlying energy conversion
processes and how material properties affect their overall per-
formance. Widely accepted is the multistep generation process
that starts with photon absorption by the donor (often a polymer)
yielding an exciton (bounded electron�hole pair). The generated
exciton diffuses to the D�A interface, where it dissociates into free
charge carriers, which are later transported to the electrodes. The
D�A interface should be constructed to favor energetically fast
and efficient electron transfer leading to exciton dissociation.

The dynamics of electron transfer at the D�A interface is of
crucial importance for the performance of heterojunction solar
cells, as measured by their efficiency. In considering this issue,
onemay address the thermodynamic efficiency η*7,8 by consider-
ing the solar cell as a heat engine operating between a hot and a
cold reservoir with temperaturesTS (“sun temperature”, represent-
ing the incident radiation) and T (temperature of the chemical
environment), respectively. Alternatively, the conversion efficiency
η9 associated with the maximum power point in the current�
voltage (J�U) characteristic is of interest as a realistic performance

measure. Establishing the relationship between system proper-
ties that affect exciton dissociation at the D�A interface and the
cell efficiency is a major goal of the ongoing research. Within this
effort, it is useful to consider simple model systems for which one
can obtain explicit relationships between system structure and
characteristic parameters and its performance measures. In this
Article, we describe and analyze such a model system.

Our model consists of coupled donor and acceptor molecules,
each described as a two-level (highest occupied molecular level,
HOMO, and lowest unoccupied molecular level, LUMO) sys-
tem, situated between two electrodes. As such, it is an extension
of a simpler model recently analyzed in a similar context by
Rutten et al.7 but with an important additional feature � the
existence of an heterojunction characterized by energetic para-
meters � Coulomb interaction and donor�acceptor LUMO�
LUMO gap, which were identified as important driving factors in
the operation of such systems. The system dynamics associated
with this model is described by a kinetics scheme derived using a
lattice gas approach,10�12 similar in spirit to previous work13�17

that uses a master equation approach to analyze cell dynamics.
We show that an effective mechanism for both exciton pair

formation and dissociation can be captured by a minimal model
of this type, which can be used as a framework for discussing the
current� and power�voltage curves and the cell efficiency. In
particular, the model leads directly to the predictions of an
optimal interface energy gap Δε (usually associated with the
energy difference between the lowest unoccupied molecular
levels (LUMOs) of the D and A molecules) for these efficiency
measures. This can be compared with the performance of an ideal
device, in which nonradiative losses are absent. In this ideal case,
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ABSTRACT: Organic heterojunction solar cells are analyzed
within a minimal model that includes the essential physical
features of such systems. The dynamical properties of this
model, calculated using a master equation approach, account
for the qualitative behavior of such systems. The model yields
explicit results for current�voltage behavior as well as perfor-
mance characteristics expressed in terms of the thermodynamic
efficiency as well as the power conversion efficiency at max-
imum power, making it possible to evaluate the optimal setup
for this device model.
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the thermodynamic efficiency is found to decrease monotonously,
whereas the power conversion efficiency still goes through a maxi-
mum, with increasing Δε.

’MODEL AND COMPUTATIONAL DETAILS

Model. The PV cell model considered here is a 1D lattice gas
with two “effective” sites l = D, A. One site represents the donor
(D, e.g., polymer-based material) and the second acts as acceptor
(A, e.g., fullerene-based material). Each of the sites is represented
as a two-state system with energy levels (εD1,εD2) and (εA1,εA2)
corresponding to the (HOMO, LUMO) levels of the donor and
acceptor species, respectively. In what follows, we use the
notation ΔEl = εl2 � εl1 (l = D, A) for the energy differences
that represent the donor and acceptor band gaps and refer to
Δε = εD2 � εA2 as the interface or donor�acceptor LUMO�
LUMO gap. The microstates of the system can be specified by
the set of occupation numbers n = (nD1,nD2,nA1,nA2), where
nlj = 0 or 1 (l =D,A; j = 1,2) if the corresponding level is vacant or
occupied by an electron.
To assign further realistic contents to this model, we introduce

the restrictions nD1nD2 = 0 and nA1 = 1. The first of these
restrictions implies that the donor can be in the ground or excited
state, or, following charge separation, in positively ionized state
but excludes its doubly occupied (negatively charged) state. The
excited donor state (nD1,nD2) = (0,1) represents the exciton formed
as result of light absorption. The second condition implies that the
acceptor can be in either its ground (nA1,nA2) = (1,0) or its negative
ion (nA1,nA2) = (1,1) states. Therefore, the system is characterized
by six states with respect to the occupations (nD1,nD2,nA1,nA2), that
we denote by the integers 0, ..., 5 as shown in Table 1.
In the expressions for the states energies, VC > 0 is the

Coulombic repulsion between two electrons on the acceptor,
whereas VC

0 > 0 is the Coulombic energy cost to move an elec-
tron away from the hole remaining on the donor. In general, we
expect that VC > VC0. The sum VC + VC0 can be thought of as the
exciton binding energy in this model: It is the total Coulomb
energy cost for dissociating the exciton on the donor by moving
an electron to the acceptor. It is convenient to redefine ε~A2 =
εA2 +VC so that the energies εj (j = 0, ..., 5) are determined by the
five energy parameters εD1, εD2, εA1, ε~A2, and VC0.
At the left (donor, say) and right (acceptor) ends of the

system, the device is connected with two electrodes represented

by free-electron reservoirs at chemical potentials μK (K = L, R).
This is a highly simplified picture that disregards electron trans-
port within the donor and acceptor phases. We have opted to
make this simplification to focus on the important step of inter-
facial exciton dissociation, but future more realistic treatments
should take these components of the overall dynamics into con-
sideration. As sketched in Figure 1, we use the common picture
by which the left reservoir is assumed to exchange electrons only
with the HOMO level of the donor, whereas the right lead
exchange electrons with the upper level of the acceptor. Direct
electronic interaction between system and reservoirs is not expli-
citly taken into account, but it is implicit both in the states of
molecular species adjacent to metal electrodes and in the kinetic
charge transfer rates.
Next, we construct the kinetic scheme for the time evolution of

the average occupations Pj (j = 0, ..., 5) associated with this level
structure. (See Figure 2.) In writing these equations, wemake the
simplifying assumption that electron exchange between mole-
cules andmetals involve onlymetal electrons at the electrochemical
potentials μL and μR of the left and right leads (corresponding to
a bias potentialU = (μR� μL)/|e| where e is the electron charge).
We also disregard possible environmental relaxation dynamics
due to polarization effects associated with the formation of
transient charged molecular species. Generalizing this dynamical
picture to take such processes into account (e.g., by considering
time-dependent site energies18) is another important subject
for future work. The kinetics process in our scheme then corres-
ponds to the following processes:
(a) Electron transfer between levels D1 and the left electrode

and between A2 and the right electrode, with rates deter-
mined by the correspondingmolecular energies, molecules-
leads coupling, electrochemical potentials in the leads,
and the environmental temperature, T.

(b) Electron transfer between donor and acceptor, deter-
mined by the coupling between them, the corresponding
state energies, and the temperature, T.

Table 1. System States and Their Occupations with Corre-
sponding Energies

state

occupation

(nD1,nD2,nA1,nA2) energy

0 (0,0,1,0) ε0 ¼ εA1

1 (1,0,1,0) ε1 ¼ εD1 þ εA1

2 (0,1,1,0) ε2 ¼ εD2 þ εA1

3 (0,0,1,1) ε3 ¼ εA1 þ εA2 þ VC þ VC
0

¼ εA1 þ ε~A2 þ VC
0

4 (1,0,1,1) ε4 ¼ εD1 þ εA1 þ εA2 þ VC

¼ εD1 þ εA1 þ ε~A2

5 (0,1,1,1) ε5 ¼ εD2 þ εA1 þ εA2 þ VC

¼ εD2 þ εA1 þ ε~A2

Figure 1. Minimal model of an organic heterojunction PV cell. The
system consists of one donor (e.g., a suitable polymer) and one acceptor,
for example, fullerene sites, each characterized by their HOMO and
LUMO levels.
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(c) Light-induced electron excitation (rate ks) and relaxation
(rate~ks) between donor levels D1 and D2. These rates are
modeled as thermal rates determined by the correspond-
ing state energies and radiative coupling, and the “sun
temperature” Ts.

(d) Radiationless (thermal) electron transitions between level
D1 and D2 with rates knr (excitation) and ~knr (relaxation),
determined as in (c) except that relevant coupling is vib-
ronic in origin and the temperature involved is the envi-
ronmental temperature T.

Explicitly, the transition rates kj0j = kj0rj from state j to j0 are
given by

k01 ¼ k34 � ~kL ¼ νL~f ðxLÞ ð1Þ

k10 ¼ k43 � kL ¼ νLf ðxLÞ ð2Þ

k12 ¼ k45 � ~kS þ ~knr
¼ νSð1 þ nSðxSÞÞ þ νnrð1 þ nnrðxnrÞÞ ð3Þ

k21 ¼ k54 � kS þ knr ¼ νSnSðxSÞ þ νnrnnrðxnrÞ ð4Þ

k32 � ~kDA ¼ νDA~f ðxDAÞ ð5Þ

k23 � kDA ¼ νDA f ðxDAÞ ð6Þ

k03 ¼ k14 ¼ k25 � ~kR ¼ νR~f ðxRÞ ð7Þ

k30 ¼ k41 ¼ k52 � kR ¼ νR f ðxRÞ ð8Þ
In these equations f(x) = 1/[exp(x) + 1] and ~f (x)� 1�f(x),
xL = (εD1 � μL)/kBT, xR = (ε~A2 � μR)/kBT, and xDA =
(εD2 � ε~A2 � VC0)/kBT. The rate coefficients ν are determined
by the corresponding couplings. Following ref 7, the transition
rates between the HOMO and LUMO in the donor phase are
assigned by using the boson population factors ns = 1/[exp(xs)� 1]
and nnr = 1/[exp(xnr)� 1] with scaled energies xS = ΔED/kBTS

and xnr =ΔED/kBT.~kL� k01 = k34 is the rate to move an electron

from level D1 to the left electrode,~kR� k03 = k14 = k25 is similarly
the rate from A2 to the right electrode. kL � k10 = k43 and kR �
k30 = k41 = k52 are the corresponding reverse rates. The transition
rate from D2 to A2 is given by ~kDA � k32, whereas the opposite
rate is kDA� k23. Also, we denote by kS and knr the radiative and
thermal excitation rates in the donor and by ~ks and ~knr the
corresponding relaxation rates, so kS + knr � k21 = k54 and ~ks +
~knr � k12 =k45.
Computational Details. The master equation with the rates

eqs 1�8 that describe the time evolution of the probabilities Pj =
P(nD1,nD2,nA1,nA2) (j = 0, ..., 5) to be in the six possible states
thus reads

dP0ðtÞ
dt

¼ k01P1ðtÞ þ k03P3ðtÞ � ðk10 þ k30ÞP0ðtÞ ð9Þ

dP1ðtÞ
dt

¼ k10P0ðtÞ þ k14P4ðtÞ þ k12P2ðtÞ
� ðk01 þ k41 þ k21ÞP1ðtÞ ð10Þ

dP2ðtÞ
dt

¼ k21P1ðtÞ þ k23P3ðtÞ þ k25P5ðtÞ
� ðk12 þ k32 þ k52ÞP2ðtÞ ð11Þ

dP3ðtÞ
dt

¼ k30P0ðtÞ þ k32P2ðtÞ þ k34P4ðtÞ
� ðk03 þ k23 þ k43ÞP3ðtÞ ð12Þ

dP4ðtÞ
dt

¼ k43P3ðtÞ þ k41P1ðtÞ þ k45P5ðtÞ
� ðk34 þ k14 þ k54ÞP4ðtÞ ð13Þ

and normalization implies that

P5ðtÞ ¼ 1� ∑
4

j¼ 0
PjðtÞ ð14Þ

In terms of these probabilities electron currents can be expressed
as

JLðtÞ ¼ kLðP0 þ P3Þ � ~kLðP1 þ P4Þ ð15Þ

JRðtÞ ¼ ~kRðP3 þ P4 þ P5Þ � kRðP0 þ P1 þ P2Þ ð16Þ

JSðtÞ ¼ kSðP1 þ P4Þ � ~kSðP2 þ P5Þ ð17Þ

JnrðtÞ ¼ knrðP1 þ P4Þ � ~knrðP2 þ P5Þ ð18Þ

JDAðtÞ ¼ ~kDAP2 � kDAP3 ð19Þ
JL (JR) is the current entering (leaving) the molecular system
from (to) the electrodes, JS and Jnr are, respectively, the light-
induced and nonradiative transition currents between the HOMO
and the LUMO in the donor phase, and JDA is the average current
between the donor and acceptor species. Below we will focus on
the steady-state magnitude, JL = JR = JDA = JS + Jnr = J, of these
currents.
The time evolution and steady-state currents associated with

this kinetic model can be evaluated exactly; however, such exact
solution becomes costly for a larger, more realistic system that
takes into account also transport within the donor and acceptor

Figure 2. Six accessible microstates of the model system considered.
The probability to find the system in state j (j = 0, ..., 5) is denoted Pj.
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phases. We therefore advance also an approximate mean-field
treatment and show that it can provide a good approximation to
the exact analysis and can be used for realistic multilevel systems
at a relatively low computational cost.
To this end, we introduce the averaged site occupations

pD1(t) � ÆnD1æ = P1(t) + P4(t), pD2(t) � ÆnD2æ = P2(t) +
P5(t), and pA2(t) � ÆnA2æ = P3(t) + P4(t) + P5(t). (See also the
illustration in Figure 2.) Therefore, the currents eqs 15�19 can
be rewritten as follows

JLðtÞ ¼ kLð~pD1 � pD2Þ � ~kLpD1 ð20Þ

JRðtÞ ¼ ~kRpA2 � kR~pA2 ð21Þ

JSðtÞ ¼ kSpD1 � ~kSpD2 ð22Þ

JnrðtÞ ¼ knrpD1 � ~knrpD2 ð23Þ
where ~p = 1� p. The treatment of the average current JDA(t) be-
tween the donor and acceptor species is more difficult. In terms
of occupation number, JDA(t) is

JDAðtÞ ¼ ~kDAÆnD2ð1� nA2Þæ� kDAÆð1� nD1 � nD2ÞnA2æ
ð24Þ

Neglecting fluctuations, that is, ÆnD1nA2æ ≈ ÆnD1æÆnA2æ = pD1pA2
and ÆnD2nA2æ ≈ ÆnD2æÆnA2æ = pD2pA2, leads to the mean-field
expression of the current

JMF
DA ðtÞ ¼ ~kDApD2~pA2 � kDAð~pD1 � pD2ÞpA2 ð25Þ

As a consequence, we arrive at the following mean-field rate
equations for the averaged site occupations

dpD1
dt

¼ JLðtÞ � JSðtÞ � JnrðtÞ ð26Þ

dpD2
dt

¼ JSðtÞ þ JnrðtÞ � JMF
DA ðtÞ ð27Þ

dpA2
dt

¼ JMF
DA ðtÞ � JRðtÞ ð28Þ

The full kinetics in this approximation is obtained by solving
eqs 26�28 together with eqs 20, 23, and 25 self-consistently.
Note that the number of coupled equations solved in this scheme
grows linearly with the number of N of single electron states,
whereas in the exact approach this number is essentially the
number of molecular states ∼2N.
To illustrate the nature of the kinetics that results from these

rate processes, we choose a set of physically reasonable para-
meters. In the calculation discussed below, the following choice
was used: μL = 0.0 eV, μR = μL + |e|U, εD1 = �0.1 eV, εD2 =
1.4 eV, εA2 = 0.9 eV, VC = 0.25 eV, and VC

0 = 0.15 eV. Therefore,
ΔED = εD2� εD1 = 1.5 eV19 and VC + VC 0= 0.4 eV.20,21 For the
temperatures we take T = 300 K and Ts = 6000 K. The kinetic
rates are set to νL = νR = νS = νnr = 0.01νDA and νDA = 1012 s�1,
describing a system with efficient and fast donor-to-acceptor
electron transfer (which can occur on the picosecond time scale22)
and moderate radiationless losses, as would be used in such
applications. Finally, note that in the particular example employed
here we have considered a situation where the imposed potential
bias falls between the acceptor species and the right electrode. It

should be emphasized that although the results shown in Figures 3
and 4 are based on these choices, the qualitative behavior discussed
below holds for a wide range of these parameters.

’RESULTS AND DISCUSSIONS

Figure 3 shows results for the stationary donor f acceptor
current obtained from both the exact solution from eqs 9�19
and the mean-field approximation, eqs 20�28. Figure 3a com-
pares the results of the mean-field approach to their exact
counterpart, showing that the former provides a good approx-
imation to the exact behavior. Figure 3b compares the perfor-
mance of a junction characterized by the prescribed parameters
to the corresponding ideal junction in which nonradiative losses
are absent (νnr = 0). In both cases, the current is constant until
the electrochemical potential on the right electrode comes within
∼kBT of the acceptor level A2 and decreases sharply after it
exceeds this level. Consequently, the generated power, P(U) =
UJ(U), goes through a sharp maximum, Pmax = UmaxJ(Umax), in
that voltage region.

Next, consider the efficiency. The maximal power conversion
efficiency is defined by

η ¼ Pmax
PS

¼ Umax JðUmaxÞ
PS

ð29Þ

where PS is the incident radiant power, a constant independent
of the process undergone by the system. The thermodynamic
efficiency at maximum power is given by

η� � Pmax
_Q S

¼ Umax JðUmaxÞ
ΔED JSðUmaxÞ ¼ Umax

ΔED
1 þ JnrðUmaxÞ

JSðUmaxÞ
� �

ð30Þ

Figure 3. Current (J, left vertical axis) and power (P = UJ, right vertical
axis) in the PV cell, plotted against the voltage bias U (see text for
parameters). Plot (a) compares results from the exact calculation to
those obtained from mean-field approximation. Plot (b) compares the
same exact results (νnr = 0.01νDA) as those obtained for the ideal cell for
which νnr = 0. We assume that νDA = 1012 s�1.
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where _Q S is the net energy absorbed per unit time from the
radiation field, that is, heat absorbed from the hot reservoir, _Q S =
ΔEDJS. We note in passing that all processes undergone by our
system are accompanied by well-defined energy changes: The
heat fluxes associated with the electron exchange processes
between system and leads, are, in the present model _Q L =
(εD1 � μL)JL , _QR = (μR � εA2)JR, and _Q nr = ΔEDJnr is the net
heat generation per unit time related to nonradiative relaxation
processes, and _QDA = �ΔεJDA is the heat flux associated with
the electron transfer at the D�A interface. Energy conservation
implies that the overall cell power is the sum of these fluxes, that
is, P = _QL + _QR + _Q S + _Q nr + _QDA � (μR � μL)J = UJ.

Of central importance is the dependence of the efficiency
on the interface LUMO�LUMO energy gap Δε. One may
intuitively expect to find that an optimal value of this parameter
exists: A finite Δε is needed to drive the charge separation
process, but a larger Δε implies that more energy may be lost to
unproductive processes. Equations 29 and 30 quantify this
phenomenon, which is illustrated in Figure 4. Figure 4a shows
the power conversion efficiency calculated for the chosen para-
meter set using eq 29. For comparison, the corresponding result
for the ideal cell (νnr = 0) is also shown. Both are seen to go
through a maximum as functions of the interfacial LU-
MO�LUMO gap Δε. The thermodynamic efficiency, eq 30,
displayed against Δε in Figure 4b shows a similar pronounced
maximum; however, the ideal thermodynamic efficiency is a
monotonously decreasing function ofΔε. Note that the ideal cell
efficiency is an upper bound to the actual efficiency; however, for
this finite power operation, it is below the Carnot efficiency, ηC =
1 � T/TS = 0.95.

Finally, consider again the performance of the mean-field ap-
proximation relative to the exact solution. As seen from Figures 3
and 4, the mean-field treatment provides a good approximation
that closely follows the behavior of exact solutions. The influence
of correlations is particularly seen in Figure 4b, where we find
small but noticeable differences between the mean-field and the
exact curves for Δε beyond the maximum at ∼0.4 eV.

’CONCLUSIONS

In summary, the effort to increase and optimize the efficiency
of heterojunction OPVs necessarily involves many structural and
energetics system parameters. The above considerations focus on
what is arguably the most important generic issue � the optimi-
zation of the interfacial LUMO�LUMO gap that compensates
between the need to overcome the exciton binding energy and
the required minimization of losses. For the present simplified
model and our choice of parameters, we find the most efficient
setup for interface gap energies somewhat above 0.4 eV.
More important is the fact that the present model, with future
generalizations that should include transport in the donor and
acceptor phases and polaronic relaxation following redistribution
of charge densities, provides a framework for analyzing such
efficiency measures. The mean-field approach introduced here
provides a reliable approximation that can be used for fast
evaluation of more complex model systems and will be useful
in extending these studies to realistic OPV cell models. A more
ambitious task would be to generalize the concept advanced in
the Article to the quantum regime. Consideration of quantum
effects and coherence (see, for example, ref 23) may prove useful
in the discussion of fundamental limits to photovoltaic efficiency.
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