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The achievement of local cooling is a prominent goal in the design of functional transport nanojunctions.
One generic mechanism for local cooling is driving a system through a local uphill potential step. In this
paper we examine the manifestation of this mechanism in the context of the Kramers barrier crossing
problem. For a particle crossing a barrier, the local effective temperature and the local energy exchange
with the thermal environment are calculated, and the coefficient of performance of the ensuing cooling
process is evaluated.
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1. Introduction

Studies of electronic transport in nanojunctions often involve
issues of device stability and integrity, implying the need to con-
sider heating and heat conduction in such systems [1]. In addition
to technological implications, these considerations raise funda-
mental questions concerning heat generation and dissipation in
driven nanosystems [2,3]. While energy is globally released in such
driven processes, local cooling may be achieved in parts of the sys-
tem, as was recently discussed [4–7] and possibly observed [8]. The
underlying mechanisms for such cooling phenomena may be
broadly divided into three classes. In one, energy dependent carrier
fluxes distort the thermal distribution in the emitting electrode,
potentially reducing its temperature if transport is biased towards
higher energy carriers [9,10]. Thermoelectric cooling [11] belongs
to this class as do some normal metal–insulator–superconductor
junctions where cooling is effected by the favorable energy selec-
tion caused by the anisotropic density of states of the junction
[12–14]. Another mechanism invokes charging induced capacitive
forces to damp energy out of a bridge oscillating between two
(source and drain) electrodes and controlled by an electrostatic po-
tential imposed by a third (gate) electrode [15–18]. In the third
mechanism, the system is driven through a local uphill potential
and transport in this locality is facilitated by extracting heat from
environmental modes. Laser cooling is a prominent example for
this class of processes [19–21], where the system is driven by light
absorption and the uphill step is tailored by tuning the light fre-
quency a little below resonance absorption. Analogous processes
in conduction junctions use light-assisted transport in a similar
manner [22,23]. However, because in such systems driving is pro-
vided by the voltage bias, electromagnetic modulation constitutes
ll rights reserved.
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just a control tool and cooling may in principle be achieved with-
out it if the intrinsic level structure of the bridging system provides
the needed uphill step [4].

This paper deals with the last mechanism, where local cooling is
achieved by pushing a system through a local uphill step. Standard
manifestations of this scheme, e.g. laser cooling by sub-resonance
excitation, involve systems with discrete spectra coupled to the
driving field and to their thermal environment. Here, we analyze
this phenomenon within the simplest classical model of this type,
based on the Kramers barrier crossing process [24,25]. In Section 2,
we recall the Kramers model for the barrier controlled dynamics of
a particle transversing a barrier. We focus on the neighborhood of
the barrier top since this is where non-equilibrium effects, which
may lead to local cooling, dominate. The local effective tempera-
ture and heat exchange with the environment are evaluated in Sec-
tion 3. In Section 4, we calculate the efficiency of this cooling
process as the ratio between the rate of heat absorption from the
environment in the cooling part of the process and the rate of en-
ergy input needed to keep the non-equilibrium steady state. Sec-
tion 5 concludes.

2. Steady state barrier crossing

The Kramers barrier crossing problem [24,25] considers the
time evolution of a single particle distribution function Pðx;v ; tÞ,
governed by the (Markovian) Fokker–Planck equation
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where c is the friction coefficient, T is the temperature and kB is the
Boltzmann constant. V(x) is the barrier potential, which near the top
may be represented by the inverted parabola,

VðxÞ � �1
2

mx2
Bx2 ð2Þ
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Fig. 1. Effective temperature as a function of position in the steady state of the
barrier crossing dynamics defined by Eqs. (1)–(5), with k ¼ 1. Results are displayed
for several values of the dimensionless friction �c � c=2xB . Teff/T = 1 is marked by a
thin dotted line.

2 P.R. Schiff, A. Nitzan / Chemical Physics xxx (2010) xxx–xxx
We consider a non-equilibrium steady state characterized by a ther-
mal flux across the barrier, driven by a chemical potential bias be-
tween the left and right sides, quantified by the boundary
conditions imposed on the distribution P(x, v, t):

Pðx; m; t; kÞ !x!�1
kPeqðx; yÞ; Pðx; m; t; kÞ !x!1 ð1� kÞPeqðx; mÞ ð3Þ

where 0 6 k 6 1 and

Peqðx;vÞ � PB expð�b½ð1=2Þmv2 þ VðxÞ�Þ; b ¼ ðkBTÞ�1 ð4Þ

where PB is the equilibrium probability density for v = 0 at the bar-
rier top. This normalization parameter will not affect our results. An
explicit expression for the steady state distribution is given by

Pssðx;v ; kÞ ¼ kPL!R
SS ðx;vÞ þ ð1� kÞPR!L

SS ðx;vÞ; ð5Þ

where PL?R(x, v) and PR?L(x, v) are steady state solutions of Eq. (1)
that satisfy the boundary condition (3) with k ¼ 0 and k ¼ 1, respec-
tively. These solutions were found by Kramers [24]:
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Note that fL?R(x, v) ? 1 and 0 when x ? �1 and 1, respectively,
and that fL?R(x, v) + fR?L(x, v) = 1. The latter identity implies that
Pssðx; v; k ¼ 1=2Þ ¼ Peqðx;vÞ.

3. Non-equilibrium barrier dynamics

An important case of the Kramers theory of barrier crossing is
the high barrier limit where the reaction, i.e. barrier crossing, is
slow relative to the rate of thermal relaxation in the well. In this
limit, the barrier crossing rate is determined by the steady state
flux associated with the distribution (5) [24], where, for example,
k ¼ 1 if the reactant is represented by the population left of the
barrier. It is in this barrier region where the system is out of ther-
mal equilibrium and exchanges net heat with its environment. In
what follows we limit ourselves to this limit of the theory, assum-
ing that all deviations from thermal equilibrium occur in the bar-
rier region that can be described by Eq. (2). It is well known, see,
e.g., Section IVc of Ref. [25], deviation from this limit occur at
low friction where dynamics in the well (indeed in regions where
the potential deviates from Eq. (2)) becomes important, however
focusing on this limit makes it possible to demonstrate our point
in the simplest way.

For simplicity of presentation, we suppress in what follows the
explicit dependence on the parameter k, which of course remains
implied. The non-equilibrium character of the distribution Pss(x, v)
near the barrier can be characterized by the local effective temper-
ature, Teff(x), defined by the local kinetic energy,

Teff ðxÞ ¼
mhv2ðxÞi

kB
ð9Þ

where

hv2ðxÞi ¼
R

dv v2Pssðx; vÞR
dv Pssðx; vÞ

ð10Þ
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Fig. 1 shows, for the case k ¼ 1, the ratio Teff ð�xÞ=T as a function of
the dimensionless position �x � xðmx2

B=kBTÞ1=2 for different value
of the dimensionless friction �c ¼ c=2xB. As expected, the Teff(x) is
smaller than the ambient temperature at the climbing-up section
(later referred to as the cold section) of the flux trajectory, �x < 0,
and is larger than ambient for �x > 0. Deviation from equilibrium
is larger for smaller c and vanishes in the source region x ? �1.

The fact that in the cold section of the flux trajectory the system
is colder than its thermal environment implies that in that region
the system absorbs heat this environment. The local rate at which
this cooling takes place, can be calculated from Eq. (1) with the
steady state distribution Pss. To this end consider the rate at which
the average system energy density (energy per unit length) qE(x)
changes at position x

dqEðx; tÞ
dt

� �
¼ d

dt

Z 1

�1
dv Eðx; vÞPðx;v ; tÞ

¼
Z 1

�1
dv Eðx; vÞ dPðx; v; tÞ

dt

� �
ð11Þ

where

Eðx;vÞ ¼ 1
2

mv2 þ VðxÞ ð12Þ

At steady state, dqE(x, t)/dt vanishes. However from Eqs. (1), (11),
and (15), it can be written as a sum of non-zero deterministic and
dissipative contributions that mutually cancel. In particular, the dis-
sipative term, i.e. the contribution to dqE(x, t)/dt due to energy ex-
change with the thermal environment is given at steady state by

dqEðx; tÞ
dt

� �ðssÞ
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� @
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For our model, this rate can be evaluated analytically (see Appendix):

dqEðx; tÞ
dt

� �ðssÞ
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¼ �2ð2k� 1ÞcjCj 2a

1þ a

� �3=2

PBkBTx ð14Þ

It is useful to re-express this rate in terms the rate of energy change
per particle at x
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Fig. 2. Energy exchange per particle at steady state, ðd�eð�x;�tÞ=d�tÞdissip , displayed vs. �x
in the cold section of the flux trajectory, �x < 0, for k ¼ 1 and for different values of
the friction �c. Here �x � xmx2

B=kBTÞ1=2
; �e ¼ e=ðkBTÞ and �t ¼ xBt.

Fig. 3. Same as Fig. 2. ðdð�ex;�tÞ=d�tdissip is plotted against �x for different values of the
driving parameter k. �c ¼ c=ð2xBÞ ¼ 0:1.

Fig. 4. A schematic view of the Kramers heat pump.
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Figs. 2 and 3 show this rate of energy exchange with the thermal
environment per particle, ðd�eðx; tÞ=dtÞdissip; �e ¼ e=ðkBTÞ, at steady
state, as a function of position in the cold region, x < 0, the friction,
c, and the driving parameter k. de(x, t)/dt > 0 implies that the system
absorbs heat from the environment in section of its crossing path.
This remains true for 1=2 < k 6 1, i.e. when the net flux across the
barrier is from left to right.

The fact that the energy change rate per particle, ðd�eðx; tÞ=dtÞdissip

goes through a maximum as a function of x in the uphill section of
the crossing path mimics the minimum in the effective local tem-
perature seen in Fig. 1. These extrema reflect the fact that, on one
hand, the system approaches thermal equilibrium, i.e. vanishing
net energy exchange with the environment, when x ? �1, and
on the other the motion loses its uphill character as x ? 0.

In spite of this behavior of the energy exchange rate per particle,
the rate of change in energy density (Eq. (14)) is linear in x, chang-
ing sign as expected at x ¼ 0. This results from the exponential in-
crease in the particle density as we go deeper into the wells, and
constitutes an artifact of the bottomless parabolic barrier. This
makes it necessary to introduce a cutoff energy in the model used
in the next section to calculate the coefficient of performance of
this setup, when used as a cooling machine.
4. Coefficient of performance

The analysis of Section 3 is based on Eq. (1) which is a phenom-
enological stochastic equation describing the time evolution of a
Please cite this article in press as: P.R. Schiff, A. Nitzan, Chem. Phys. (2010), do
system coupled to a single heat bath. To view the system as a cool-
ing engine one has to assume that it is possible to couple one heat
bath locally to the system for x < 0 and another for x < 0, so that a
driven barrier crossing process pumps heat from one bath to the
other. The following analysis is based on this assumption. It should
be emphasized that we did not derive Eq. (1) for such a model, and
an attempt to do this will likely results in interface terms that are
disregarded here. The following should be therefore considered as
a heuristic consideration that serves to demonstrate the principle
of heat pumping by a driven process with an uphill segment, rather
than an exact model of such a machine.

The coefficient of performance (COP) of a heat pump is the ratio
between the heat exchange with the reservoir of interest and the
work input into the pump. It is sufficient to consider the range
1=2 < k 6 1 where the net particle flux across the barrier is from
left to right. In what follows we assume that each side of the sys-
tem is in its own thermal equilibrium for E < �EB, i.e.

x < xL ¼ �xR ¼ �2EB=mx2
B ð17Þ

(see Fig. 4). EB is taken to be large enough relative to kBT, so that the
results of the previous sections (rigorously obtained for equilibrium
boundary conditions at ±1) hold. The left and right thermal equilib-
ria are characterized by the same temperature, T, but different
chemical potentials. The difference

lL � lR � DlLR ¼ kBT ln
k

1� k

� �
ð18Þ

provides the driving force for the ensuing flux across the barrier. We
further assume that useful heat absorption takes place throughout
the region xL < x < 0 so that the rate of heat absorption is (using
Eqs. (14) and (17))

_Q ¼
Z 0

xL

dx
@qEðxÞ
@t

� �ss
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¼ 2ð2k� 1ÞcjCj 2a
1þ a
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kBTEB

mx2
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ð19Þ

Keeping in mind that this machine is driven by the chemical poten-
tial difference between the two sides, the minimum work per unit
time, _W , needed to maintain the steady state cooler operation is

_W ¼ DlLRð2k� 1ÞJðk ¼ 1Þ ð20Þ

where Jðk ¼ 1Þ is the steady state flux across the barrier associated
with the distribution PL!R

ss ðx;vÞ, Eq. (6). With our choice of normal-
ization it is given by

Jðk ¼ 1Þ ¼
Z 1

�1
dv v PL!R

ss ðx; vÞ ¼
kBT
m

a
aþ 1

� �1=2

PB ð21Þ

Eqs. (19)–(21) finally give the coefficient of performance in the form
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¼ 2
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B
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Fig. 5. The COP, g, Eq. (22), shown as a function of the driving parameter k
ð0:5 6 k 6 lÞ, for different values of the friction �c.
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Fig. 5 The following points are noteworthy: First, the COP vanishes
for extreme driving, k ¼ 0:1, becomes larger for a system closer to
equilibrium. and diverges as k! 0:5. This behavior results from
the k dependence of the chemical potential difference, Eq.(18),
and is compatible with the standard definition of the COP of a cool-
ing machine operating between to heat reservoirs (g = Q/W = Tcold/
(Thot � Tcold) for a cooling machine that operates at Carnot efficiency
[26]). Secondly, g increases with increasing friction �c. This may ap-
pear surprising, since cooling is associated with the non-equilib-
rium distribution of the crossing particles near the barrier top,
and it is for small c that this non-equilibrium distribution is most
pronounced. Obviously, g ? 0 when c ? 0 because heat exchange
with the thermal environment vanishes in this limit. It is easy to
show that g becomes independent of c as c ?1.

Finally, the linear dependence of the COP on the barrier height
EB results from the particular structure of our parabolic barrier and
the cutoff used, and should not be regarded as a generic property of
this type of processes. On the other hand, it may be expected that g
will usually increase with the barrier height, since the latter deter-
mines the amount of energy needed for the uphill step that may be
drawn from the thermal environment.

5. Summary and conclusion

Driven processes in which an intermediate uphill step is locally
coupled to an external heat source can be used to cool this source. In
this paper we have analyzed a simple example, a one dimensional
classical barrier crossing process, and evaluated its properties as a
cooling machine. Although our analysis has used a parabolic barrier,
a rather artificial model for the large barrier limit considered, the
phenomenon discussed is general and such analysis should be use-
ful in exploring generic properties of this type of process.
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Appendix A. Evaluation of Eq. (13)

To evaluate the integral in (13) start with the case k ¼ 1 so that
(cf. Eq. (6)) Pss(x, v) = Pss(x, v)L?R = 2Peq(x, v)fL?R(x, v). For this case

Bðx; vÞ � vPss þ ðkBT=mÞ@Pss=@v

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2akBT
pm

r
Peqðx; vÞe�ð1=2ÞamðvþCxÞ2=ðkBTÞ

The needed integral can be evaluated by parts
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� �ðssÞ

dissip
¼ c

Z 1

�1
dv Eðx; vÞ @

@v Bðx;vÞ ¼ �mc
Z 1

�1
dv vBðx;vÞ

followed by a straightforward evaluation of the Gaussian integral to
yield the k ¼ 1 limit of Eq. (14). In the general case

dqEðx; tÞ
dt
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¼ k
dqEðx; t; k ¼ 1Þ

dt

� �ðssÞ
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þ ð1� kÞ dqEðx; t; k ¼ 0Þ
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� �ðssÞ
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and using

dqEðx; t; k ¼ 1Þ
dt

� �ðssÞ

dissip

¼ dqEð�x; t; k ¼ 0Þ
dt

� �ðssÞ

dissip

Leads to Eq. (14).
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