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The correspondence between the steady-state theory of current transfer and scattering theory in a
system of coupled tight-binding models of one-dimensional wires is explored. For weak interwire
coupling both calculations give nearly identical results, except at singular points associated with
band edges. The effect of decoherence in each of these models is studied using a generalization of
the Liouville–von Neuman equation suitable for steady-state situations. An example of a single
impurity model is studied in detail, leading to a lattice model of scattering off target that affects both
potential scattering and decoherence. For an impurity level lying inside the energy band, the
transmission coefficient diminishes with increasing dephasing rate, while the opposite holds for
impurity energy outside the band. The efficiency of current transfer in the coupled wire system
decreases with increasing dephasing. © 2010 American Institute of Physics.
�doi:10.1063/1.3466876�

I. INTRODUCTION

In a recent paper1 we have introduced current transfer as
a charge transfer transition characterized by relocation of
both charge and its momentum. In that work1 current transfer
was analyzed in the time domain and was proposed to be the
mechanism behind recent observations2 that indicate that
photoelectron transfer induced by circularly polarized light
through helical molecular bridges depends on the relative
handedness of the bridge helicity and on the optical circular
polarization. More recently3 we have analyzed current trans-
fer in steady-state situations, where the system response to an
imposed current in one of its segments is of interest. While
this problem is mathematically well defined and may corre-
spond, at least as an approximation, to situations of physical
interest, some of its characteristics may appear unphysical.
For example, the steady-state current consistent with a given
current imposed on part of a system is not subjected to any
conservation law and may attain values larger than the im-
posed current.3

A simple example is shown in Fig. 1, which depicts two
infinite tight binding wires D �“donor”� and A �“acceptor”�
characterized by lattice constant a, site energies �D ,�A, and
nearest-neighbor couplings �D ,�A, locally coupled to each
other by the interaction V that couples a finite number NDA of
close proximity sites on the two wires. Such models were
investigated previously in different contexts, see, e.g., Ref. 4.

The Hamiltonian is Ĥ= ĤD+ ĤA+ V̂DA, where �see Fig. 1�

ĤK = �
j�K

�K�j�	j� + �
j�K

�K�j�	j + 1�; K = D,A �1�

and

V̂DA = �
�jD,jA�

NDA

V�jD�	jA� + H.c., �2�

where �jD , jA� correspond to a bond �with NDA such bonds�
connecting sites jD and jA on the driver and acceptor wires,
respectively. A Bloch wave function of wavevector k that
carries particle current JD=−�2�D /��sin�ka� is imposed on
wire D,

�D�t� 
 e−i�E/��t �
jD=1

ND

ei�jD−1�ka�jD�; E = �D + 2�D cos�ka� ,

�3�

and the current on A consistent with this “boundary condi-
tion” is evaluated. To this end, the steady-state wave function
on wire A is written in the form

�A�t� = �
j�A

Cj�t��j� = e−i�E/��t�
j�A

C̄j�j� , �4�

where C̄j are time independent coefficients that satisfy

�E − � j�C̄j − �
k

VjkC̄k = 0, �5�

in which k goes over all sites coupled to j, with Vjk=�A

when k is on A, and Vjk=V when k is on D. Equation �5�
constitutes an infinite set of equations for the coefficients C̄j,

j�A that contain inhomogeneous terms with C̄k, k�D.
Since the latter are given �Eq. �3�� this provides an expres-
sion for the current between any two sites on wire A,

JA�j−1→j� =
2�A

�
Im�C̄j−1C̄j

�� , �6�

in terms of that imposed on wire D.3 The solution is facili-
tated by truncating the infinite set of Eq. �5� beyond the two
wire interaction region, using the known surface self energy
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of a one-dimensional nearest-neighbor tight-binding lattice.
This procedure3 is reproduced below.

The procedure described above is used to evaluate the
steady-state current on wire A induced by the imposed Bloch
wave function on D. In particular, the difference between the
currents going to the right and to the left of the interaction
region on A is a manifestation of a current transfer property:
a charge detector placed on A to the right of the interaction
region will be sensitive to the direction of the current on
D.1,3

The dynamics imposed by a given driving current on
wire D can be contrasted with the more familiar scattering
process described by Fig. 2. This process is characterized by
four channels: a, b, c, and d. It is driven by an incoming
wave in channel a, which induces four outgoing waves in
channels a–d �the outgoing wave in channel a is the reflected
wave�. Current conservation now strictly applies: the incom-
ing source flux should be equal to the sum of all outgoing
fluxes.

While Fig. 2 represents a familiar scattering problem, the
process described by Fig. 1 is less obvious from the physical
point of view. Indeed, the boundary condition that restricts
the wave function in the D wire to be a Bloch state of given
energy and wavevector can be realized only approximately
as a strong driving-weak scattering limit. Still, it is a math-
ematically well defined problem, simpler than the corre-
sponding scattering problem, which provides a reasonable
approximation in many situations. In the present paper we
compare the two problems and the processes they describe.
The solution of the current transfer problem exemplified by
Fig. 1 was presented in Ref. 3. In Sec. II we describe a
procedure for solving the corresponding scattering problem
using a similar steady-state approach, and compare the two
processes, focusing on several prototypical models. Section
III describes an approximate solution to the scattering prob-
lem in the presence of dephasing, again comparing simple
model results with the exact solutions of corresponding cur-
rent transfer problems. Section IV concludes.

II. THE SCATTERING FORMALISM IN COUPLED WIRE
SYSTEMS

The method of solution of this scattering problem may
be illustrated by the simpler scattering problem of Fig. 3.
Consider the steady state driven by the incoming Bloch wave
of energy E. This wave scatters from the impurity center at
site 3, generating the transmitted and reflected waves JT and
JR, respectively. We take all site energies to be �, except the
energy impurity site �3, and the �assumed real� nearest-
neighbor coupling is denoted �. At steady state, the coeffi-
cient of the wave function in the site representation

��t� = e−i�E/��t� j
C̄j�j� �7�

�as in Sec. I, the coefficients C̄j are time independent� satis-
fies equations analogous to Eq. �5�,

�E − ��C̄2 − ��C̄1 + C̄3� = 0, �8a�

�E − �3�C̄3 − ��C̄2 + C̄4� = 0, �8b�

�E − � − ��E��C̄4 − �C̄3 = 0. �8c�

In fact, we can truncate this set of equation already at site 3,

�E − ��C̄2 − ��C̄1 + C̄3� = 0, �9a�

�E − �3 − ��E��C̄3 − �C̄2 = 0. �9b�

Indeed, solving Eq. �8c� for C̄4,

C̄4 = −
�C̄3

� − E + ��E�
, �10�

inserting the solution to Eq. �8b� and comparing the resulting
equation to Eq. �9b� yields

��E� =
�E − �� − ��E − ��2 − 4�2

2
� ��E� − �1/2�i	�E� ,

�11�

with � real and 	 real and positive. Note that 	�E�=0 unless
E is within the energy band defined in Eq. �3�, i.e., �−2���

E
�+2���. Stability considerations dictate the choice of
the minus sign in front of the square root.

Another consistency check is to note that Eq. �10�
implies that the steady-state current from site 3 to 4
�cf. Eq. �6�� is

FIG. 1. The current transfer problem in a tight-binding wire system. Wires
D and A are coupled to each other at NDA positions. Wire D is restricted to
hold a constant Bloch wave of energy E that carries a current JD. The
objective is to calculate the current induced on wire A.

FIG. 2. The scattering problem equivalent to the current transfer problem of
Fig. 1. An incident Bloch particle in channel a scatters from an “impurity
center” �encircled� into four outgoing waves in channels a–d, including the
reflected wave in channel a. The impurity center comprises NDA pairs of
sites that link between the wires. Here NDA=2.

FIG. 3. A simple model demonstrating the scattering calculation described
in the text.
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J3→4 =
2�

�
Im�C̄4

�C̄3� = −
2

�
�C̄4�2Im���E�� =

	�E�
�

�C̄4�2,

�12�

i.e., the flux to the right out of site 4. Equation �9� can be
solved to yield

C̄2 = K2�E�C̄1; C̄3 = K3�E�C̄1, �13�

K2�E� =
�

E − � −
�2

E − �3 − ��E�

, �14a�

K3�E� =
�

E − �3 − ��E�
K2�E� . �14b�

Up to this point, the solution representing the coefficients in

Eq. �7� in terms of the “driving” term C̄1 is analogous to that
of the current transfer problem. However, now we seek a
solution which to the left of the scattering region is repre-
sented by a linear combination of incoming and reflected
waves of energy E, and on the right of that region, by a

transmitted wave. Setting the origin on site 1 and writing C̄1

as a sum of incoming and reflected amplitudes,

C̄1 = A + B , �15�

it follows that

C̄2 = Aeika + Be−ika, �16�

where �cf. Eq. �3��

ka = � arccos
E − �

2�
� . �17�

Equations �15� and �16� imply that the net current on the left
side of the scattering center is

J1→2 =
2�

�
Im�C̄2

�C̄1� = −
2�

�
��A�2 − �B�2�sin�ka�

= Jin − JR, �18�

where Jin and JR are the incident and reflected currents, re-
spectively. �Note that if our tight binding model is a finite
difference representation to a free particle motion, then �

0.� Also, as required by continuity, it is easy to show �see
Appendix A� that

J2→3 =
2�

�
Im�C̄3

�C̄2� = J1→2 �19�

and

J3→right =
	�E�

�
�C̄3�2 = J1→2, �20�

where 	�E�=−2 Im���E��. Equation �20� represents the
transmitted current. To find the incident and reflected cur-
rents we use Eqs. �15� and �16� in Eq. �14a� in order to
express the reflected amplitude in terms of the incident am-
plitude

B = −
K2 − eika

K2 − e−ikaA . �21�

Similarly, the transmitted amplitude is obtained in the form

C̄3 = K3C̄1 = K3
2i sin�ka�
K2 − e−ika A . �22�

The incident, transmitted, and reflected currents are now
given by

Jin =
	�E�

�
�A�2; JT =

	�E�
�

�C3�2; JR =
	�E�

�
�B�2. �23�

Consistency with Eq. �18� is implied by3

	�E� = 2�� sin�ka��; � sin�ka� 
 0. �24�

Finally, the transmission and reflection coefficients T�E� and
R�E� are given by

T�E� = � C̄3

A
�2

= �2K3 sin�ka�
K2 − e−ika �2

, �25�

R�E� = �B

A
�2

= � K2 − eika

K2 − e−ika�2

, �26�

and can be shown to satisfy the conservation condition
T�E�+R�E�=1.

The above example makes it clear how the solution to
the scattering problem is obtained as an extension of the
procedure for solving the current transfer problem. In both
we look for a solution to the Schrödinger equation in the
form �7�, under some given “boundary conditions.” In the
current transfer problem, e.g., Fig. 1, the wave function on
the upper �driver� wire is known, and in particular the driv-
ing wave function on sites 3 and 4 is given in the form

��t� = e−iEt/��¯C̄3�3� + C̄4�4�¯� , �27�

with C̄4= C̄3eika. The other �known� coefficients on the upper
wire are irrelevant for this example where only sites 3 and 4
on the driving wire D are connected to the driven wire A.
Given these coupling and driving model, the coefficients �Cj�
of the A wire can be computed as described in Sec. I and Ref.
3, yielding the induced left and right currents on this wire by
using Eq. �6�. In the corresponding scattering problem, with
incoming channel on the left side of the scattering center on
the D wire, the driving character is assigned to site 1, i.e., a
steady-state solution to the time dependent Schrödinger
equation for both wires is sought, subjected to the condition

��t�= ¯+C̄1e−iEt/��1�+¯. This solution relates all the coef-

ficients Cj = C̄je
−iEt/� in Eq. �4� to the driving amplitude C̄1,

and directly yields the transmitted currents in all channels,

e.g., JD,right= �	D /���C̄5�2, in terms of �C̄1�2. Expressing these
results in terms of the more relevant incident intensity is
achieved using the procedure demonstrated in Eqs.
�15�–�23�.

Numerical results based on this procedure are presented
below. Obviously, the calculated currents should not depend
on the choice of truncation point beyond which the infinite
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wire is represented by the self energy �11�. In executing these
calculations we have routinely used this fact as a test of
integrity of our numerical codes.

Figures 4–7 compare the results obtained for the current
transfer and the scattering calculations using models �Figs. 1
and 2, respectively� characterized by similar parameters.
Figure 4�a� shows the current asymmetry factor,5

A1 =
JA

+ − JA
−

JA
+ + JA

− �28�

�where JA
+ and JA

− are the steady currents in the A wire in the
direction of the driving current and in opposite direction,
respectively�, displayed as a function of the number of links,
NDA, between the two wires. Figures 4�b� and 4�c� show A1

as a function of the interwire coupling V for NDA=2 and
NDA=3, respectively. Also shown in these figures is the re-
flection coefficient �black full line� computed for the scatter-
ing problem. �By definition, there is no reflection in the cur-
rent transfer problem.� Obviously, as V increases and
reflection becomes more important in the scattering process,
the agreement between the two models deteriorates, and this
happens earlier for the larger contact region NDA=3, as ex-
pected.

Figure 6 shows the dependence of A1 on the relative
band alignments of the two wires, varied by moving the band
centers �A and �D relative to each other �see Fig. 5�. For the
chosen parameters both figures show excellent agreement be-
tween the two calculations, which deviate from each other
only near the band edge, as seen in Fig. 7. The band edge
singularity that characterized the current-transfer calculation3

is absent in the scattering calculation as required by the cur-
rent conserving nature of the latter.

FIG. 4. �a� The current asymmetry factor A1 displayed against the number
of links, NDA, connecting the D and A wires in the DA system �Fig. 2�. Full
line �black�—calculation based on the scattering model �Fig. 2�. Dashed line
�red�—calculation based on the current transfer model of Fig. 1. �b� A1

plotted against the interwire coupling V, calculated for the current transfer
�blue dashed line� and scattering �red dashed dot line� models using NDA

=2. The full black line is the reflection coefficient. �c� Same as �b� for
NDA=3. Parameters are �D=�A=0, �D=�A=0.1 eV, and �in panel �a�� V
=0.01 eV. The injection energy is E=−0.15 eV.

FIG. 5. The energy bands of the D and A wires are represented by the
horizontal red �dashed� lines. �The zero order site energies �D and �A cor-
respond to the midband energies.� For �=0.1 the bandwidth is 0.4. For �A

=0.05 an injection energy of �0.15 on the D wire corresponds to the band
edge on the A wire. �This correspondence is represented by the vertical
black �dashed� line�. Energy units here and below can be arbitrary, but
reflect reasonable molecular parameters when taken as eV.

FIG. 6. Current asymmetry factor A1 displayed as a function of the center
�A of the A-wire band �see Fig. 5� for �D=0 using �D=�A=0.1 eV,
V=0.01 eV, and NDA=5. The injection energy is E=−0.15 eV, implying
that current can be transmitted to the A wire for �A in the range of −0.35

�A
0.05 �eV�. Full line �black�—calculation based on the scattering
model �Fig. 2�. Dashed line �red�—calculation based on the current transfer
model of Fig. 1.
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In Ref. 3 we have argued that current transfer is a coher-
ent phenomenon, resulting from interference between several
transport paths, and have studied the effect of dephasing on
this process. Next we turn to a similar examination for the
equivalent scattering process.

III. SCATTERING IN THE PRESENCE OF DEPHASING

As discussed in Ref. 3, the symmetry breaking in the
flux induced in wire A is a manifestation of interference be-
tween transport paths. It is therefore sensitive to the way by
which the wires link to each other and to the position depen-
dent phase of the carrier wave function, in particular at the
link positions. The transfer of directionality is therefore sen-
sitive to dephasing. In Ref. 3 we have examined this issue in
the framework of the current transfer problem exemplified in
Fig. 1. Here we provide an approximate solution to this prob-
lem for the steady-state scattering problem exemplified by
Fig. 2. To this end we recast our steady-state approach in the
Liouville equation framework, following the procedures of
Refs. 6 and 3.

While the methodology is general, it is convenient to
describe our approach to this problem in terms of the simpler
scattering model of Fig. 3, which describes the scattering of
a Bloch wave on a one-dimensional tight-binding lattice
from a single impurity site. In the absence of dephasing, the
equation of motion for the density matrix elements in the
local �site� representation 
ij�t�=Ci�t�Cj

��t� can be obtained
in a straightforward way from those for the corresponding
coefficients

�Ċj = − i� jCj − i�
k

VjkCj �29�

using 
̇ jk=CjĊk
�+ ĊjCk

�. Here we use the specific site desig-
nations for the on-site energies and intersite interactions �i

and Vij, that for a uniform lattice were denoted above � and
�, respectively. The effect of dephasing is included in these
equations of motion by adding damping terms to the evolu-
tion of nondiagonal elements of the density matrix, i.e.,


̇ij → 
̇ij − 1
2 ��i + � j��1 − �ij�
ij . �30�

The corresponding steady-state equations 
̇ jk=0 are similar
to those used in Refs. 6 and 3.

Focusing on the scattering model of Fig. 3, we start by
recasting the infinite set of Eq. �29� to describe a steady state
driven by an oscillating amplitude at site 1, using the known
self energy of a particle moving on a one-dimensional tight
binding lattice to represent the dynamics on the finite region

of interest. The steady-state equations for the amplitudes C̄j

=Cj exp�iEt /�� then become3

C̄1 = const,

�E − �2�C̄2 − V21C̄1 − V23C̄3 = 0,

�31�
�E − �3�C̄3 − V32C̄2 − V34C̄4 = 0,

�E − �4�C̄4 − V43C̄3 − �4�E�C̄4 = 0,

where

�4�E� =
E − � − ��E − ��2 − 4�2

2
� ��E� −

i

2
	�E� �32�

�� and 	 real� is the self energy of site 4 associated with the
infinite lattice to its right. The form �32� implicitly assumes
that the infinite chain to the right of site 4 is uniform, with
equal site energies �=�4 ,�5 , . . . and nearest-neighbor cou-
plings �=V45=V56=¯.

The corresponding steady-state equations for 
 should
represent all steady-state elements 
 jk in terms of the driving
site population 
11. In what follows we consider the situation
where dephasing originates from dynamical processes on the
scattering site 3 only, and take � j =�� j3. It is convenient to
write the resulting equations in two groups. Those represent-
ing 
 j1 and 
1j in terms of 
11 are given by

��E − �2� − V23 0

− V32 �E − �3 + 1
2 i�� − V34

0 − V43 �E − �̃4 + �i/2�	4�
��
21


31


41
�

= �V21
11

0

0
� �33�

�and 
1j =
 j1
� �, where �̃4=�4+�4�E�, and those expressing 
 jk

�j and k�1� in terms of 
 j1 ,
1j take the form

FIG. 7. The right-going transmitted current in the A-wire displayed against
the A band center �A near the transmission threshold �A=0.05 eV. Note the
singularity at �A=0.05 eV in the transmitted current calculated from the
current transfer model of Fig. 1 that should be contrasted with the regular
behavior of the scattering model of Fig. 2. Parameters and line designations
are as in Fig. 6.
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�
�22 V23 0 − V23 0 0 0 0 0

V32 �32 + 1
2 i� V34 0 − V23 0 0 0 0

0 V43 �42 0 0 − V23 0 0 0

− V32 0 0 �23 + 1
2 i� V23 0 − V34 0 0

0 − V32 0 V23 �33 V34 0 − V34 0

0 0 − V32 0 V43 �43 + 1
2 i� 0 0 − V34

0 0 0 − V43 0 0 �24 V23 0

0 0 0 0 − V43 0 V32 �34 + 1
2 i� V34

0 0 0 0 0 − V43 0 V43 �44

��

22


23


24


32


33


34


42


43


44

� = V21�

12 − 
21


13


14

− 
31

0

0

− 
41

0

0

� , �34�

where �ij =�i
�−� j, �4� �̃4− �i /2�	4, so that �44= i	4�E�. Note

that while Eq. �34� is derived from the standard Liouville
equation, Eq. �33� is a modified form that expresses the driv-
ing condition.

Equations �33� and �34� can be solved to yield all density
matrix elements in terms of 
11,


ij = Kij
11, �35�

where the �in general complex� numbers Kij are obtained
from the inverse matrices, and where the diagonal terms Kjj

are real. In analogy to Eqs. �15� and �16�, what we need is to
express the density matrix elements in terms of the incident
amplitude A �or intensity �A�2�. Equations �15� and �16� have,
however, to be modified because the reflected amplitude now
assumes a random phase component because of the imposed
dephasing on site 3. This is expressed by taking

C̄1 = A + Bei�, �36a�

C̄2 = Aeika + Be−ika+i� �36b�

�A can be taken real without loss of generality�, so that 
11

= �A�2+ �B�2+A	�Bei�+B�e−i���; the average being over the
random phase �. Denoting

X � 	e�i�� , �37�

we get


11 = �A�2 + �B�2 + 2AX Re�B� , �38�

where X= 	e+i��= 	e−i��. Similarly,


12 = ��A�2 + �B�2�cos�ka� + 2AX�Re�B�cos�ka�

+ Im�B�sin�ka�� − i��A�2 − �B�2�sin�ka� �39�

and


22 = �A�2 + �B�2 + 2AX�Re�B�cos�2ka� + Im�B�sin�2ka�� .

�40�

Using �cf. Eq. �35�� 
12= �Re�K12�+ i Im�K12��
11 and 
22

=K22
11, Eqs. �38�–�40� constitute a set of four equations
�including the real and imaginary parts of Eq. �39�� that con-
nect between the variables A, Re�B�, Im�B�, X, and 
11, and
can be used to express the last four in terms of A. Together
with Eq. �35� this makes it possible to express all density

matrix elements in terms of A—see Appendix B for more
details. The transmission and reflection coefficients T�E� and
R�E�, respectively, are then given by

T�E� =

44

A2 ; R�E� =
�B�2

A2 . �41�

For the scattering problem depicted in Fig. 2, the treatment is
similar. The incident Bloch wave of energy E in the D wire is
characterized by an amplitude A at the “driving site” 1. The
scattering center now comprises sites 3 and 4 on the D wire
and sites 7 and 8 on the A wire. Scattering from this center
leads to outgoing �transmitted and reflected� waves on the D
and A wires, with the reflected wave on site 1 again denoted
Bei� with a random phase � associated with dephasing inter-
actions in the scattering region. The equation analogous to
Eq. �33� again connects all 
 j1 elements to 
11 while that
analogous to Eq. �34� connects all 
 jk ; �j ,k�1� to 
 jk; �j or
k=1�. The latter equation incorporates the self energies
�A�E� and �D�E� at the end sites on the A and D wires, e.g.,
sites 5, 6, and 9 in Fig. 2, to account for the effect of the rest
of the infinite chains on the dynamics of the subsystem under
consideration. As above, we assume that dynamics leading to
dephasing, Eq. �30�, takes place only in the scattering region,
i.e., � j =��0 only for j=3,4 ,7 ,8. The steady-state equa-
tions analogous to Eqs. �33� and �34� again yield Eq. �35� for
all density matrix elements, and a procedure identical to that
outlined above yields 
11 �hence, all density matrix ele-
ments�, Re�B�, Im�B�, and X= 	e�i�� in terms of the incident
amplitude A. The incident current is

JD
in =

2��D sin�ka��
�

�A�2 =
	D�E�

�
�A�2, �42�

and the outgoing currents in the four channels �a, b, c, and d
in Fig. 2� are given by

JD
left =

2��D sin�ka��
�

�B�2 =
	D�E�

�
�B�2, �43�

JD
right =

2�D

�
Im�C̄5

�C̄4� =
	D�E�

�

55, �44�
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JA
left =

2�A

�
Im�C̄7

�C̄8� =
	A�E�

�

66, �45�

JA
right =

2�A

�
Im�C̄9

�C̄8� =
	A�E�

�

99. �46�

These fluxes satisfy the conservation condition,

JD
in = JD

left + JD
right + JA

left + JA
right, �47�

and can be used to obtain the current asymmetry factors A1,
Eq. �28�, or

A1 =
JA

+ − JA
−

JD
in , �48�

where, again, + denotes the direction of the incident �driv-
ing� current.

Figures 8–12 depict some results that show the effect of
dephasing. Unless otherwise stated we set, in these calcula-
tions, the on-site energies � to zero, and take a nearest-
neighbor coupling �=0.1 eV. The dephasing rate is varied
in the range of 0¯0.5 eV and the injected energy is taken
within the energy band, −0.20 eV�E�0.20 eV.

Figure 8 shows the transmission coefficient plotted
against the incident energy E for the impurity scattering
problem of Fig. 3 under different dephasing conditions. The
impurity site, when present, is assigned site energy �3

=0.1 eV. We find that when ��3�
0.2 eV �i.e., in the band�
transmission decreases when dephasing increases, following
the same qualitative behavior as with increasing the impurity
energy. However, for the impurity energy level lying outside
the energy band, T�E� increases with increase in the dephas-
ing rate. The relationship T�E�+R�E�=1 is satisfied through-
out. The same trends are seen also in Fig. 9, which shows the
transmission coefficient �for �=0, �=0.1 eV� as a function
of the dephasing rate �.

Absorbing boundary conditions imposed by a suitable
choice of imaginary potential are often employed to facilitate
numerical calculations of scattering processes. Often a con-
stant, energy independent complex potential function is used.
The self energy used in the present calculation plays the role
of an energy dependent complex potential. The results of Fig.
10 show that a proper accounting for the energy dependence
of the self energy may be important: the dependence of the
calculated transmission coefficient on � shows strong depen-
dence on � and an improper choice may lead to qualitatively
wrong results.

Next consider the scattering problem portrayed in Fig. 2.
In what follows we use �D=�A=0.10 eV for the intrawire
nearest-neighbor coupling, while the interwire coupling be-
tween sites �3, 7� and �4, 8� is taken V=0.01 eV. For these
model parameters and for an injection energy E=−0.12 eV,
Fig. 11 shows the current asymmetry factor A1 �Eq. �28��
displayed as a function of the dephasing rate �. Figure 12
shows similar results for the asymmetry factor A1 defined by

FIG. 8. Transmission T�E� coefficient as a function of electron energy E in
the energy band of −0.20 eV�E�0.20 eV for different values of dephas-
ing on site 3. For �3=�=0 T�E�=1 �when E is in the band�. Other cases
shown are ��3 ,��= �0,0.01�, �0.1, 0�, �0.1, 0.01�, �0.1, 0.05� shown by full
�black�, dashed �blue�, dotted �red�, and dashed-dotted �dark green� lines,
respectively. The inset shows the cases �0.25, 0�, �0.25, 0.05� in full �purple�
and dashed-dotted �dark blue� lines.

FIG. 9. Variation of transmission coefficient T�E� with the dephasing rate �
for different values of the incident energy E �0, �0.12 eV� within the energy
band and for different impurity energy levels ��3=0.10 eV, 0.25 eV� that
lie within or outside the band.

FIG. 10. Transmission coefficient T�E� plotted against the dephasing rate �
with self energy calculated as ��E� and ��E�� /2� at electron energy
E=−0.12 eV, intersite coupling �=0.1 eV, and impurity energy of 0.10 eV.
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Eq. �48�. Interestingly, these results depend only weakly on
the imposed absorbing boundary conditions expressed by the
choice of the self energy parameter �. As already noticed for
the current transfer model,3 the asymmetry decreases with �
but a marked effect persists for fairly large dephasing rates.

IV. CONCLUDING REMARKS

We have compared results for transport in coupled wire
systems obtained from two models that differ in boundary
conditions. In the current transfer model,3 relevant to driven
systems,1 the driving �donor� wire is assumed to carry a
given current �characterized by a Bloch wave function for
noninteracting carriers�, and the current induced in the other

�acceptor� wire is evaluated. The second model constitutes
the standard scattering problem. Both models were studied in
the presence of dephasing imposed in the interaction regions.
We find that for weak interwire interactions the current trans-
fer model can provide a good approximation for the full
scattering problem, except near singular points associated
with the band edges. In both calculations, transfer of direc-
tionality information between wires results from interference
between different transfer pathways. Dephasing in the inter-
action region reduces the efficiency of this process; however,
this current transfer phenomenon is found to persist even
under fairly strong dephasing.

It is interesting to note the way by which standard scat-
tering is affected by dephasing on the target, as revealed by
the present calculation. Standard scattering theory at the sim-
plest potential scattering level can be described by an ampli-
tude formalism, i.e., the Schrödinger equation. Scattering
theory in Liouville space can describe the effect of dephasing
on the target, which acts as a scattering center even in the
absence of potential scattering �see dashed line �red� in Fig.
8�. Such generalized scattering theory is common in describ-
ing optical scattering problems,7 but is not usually used in
particle scattering, where, in the context of junction trans-
port, alternative frameworks such as the Büttiker probe
model8 are used. The present formalism provides a rigorous
alternative that can reveal interesting physics. For example,
we have found that for an impurity energy level lying inside
the energy band ��−2����E��+2����, the transmission
coefficient diminishes with increasing dephasing rate, while
the effect is reversed for an impurity energy level outside the
band.

As discussed in Ref. 3, while more rigorous approaches
�e.g., the Redfield equation9� are available, our model intro-
duces dephasing phenomenologically within an elastic scat-
tering calculation. In particular, we have introduced damping
of nondiagonal density matrix elements in the “site basis”
and not in the eigenstates basis, which does not correspond
to pure dephasing and would lead to a small inelastic scat-
tering component ��E
�� in the outgoing flux. This should
not constitute a severe problem at dephasing rates �arising
from electron-thermal phonon interactions� normally ob-
served, but may lead to increasing errors for large dephasing
rates.
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FIG. 11. Current asymmetry factor A1 as a function of dephasing � �dashed
line, black� for the coupled DA system �Fig. 2� calculated at an electron
energy E=−0.12 eV with �D=�A=0, V=0.01 eV, �D=�A=0.10 eV, ND

=NA=6 �in the presence of �, the calculated scattering states are not exact
and the result slightly depend on these parameters�, and NDA=2. Also shown
are results for the self energy calculated as ��E+� /2� �dotted line, red� and
��E−� /2� �dashed-dotted line, blue�.

FIG. 12. Same as Fig. 11, now showing the current asymmetry factor A1.
Line designations and parameters are the same as in Fig. 11.
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APPENDIX A: PROOFS OF EQUATIONS „19… AND „20…

Using Eqs. �13� and �6� we find

J1→2 =
2�

�
�C̄1�2Im�K2

�� ,

�A1�

J2→3 =
2�

�
�C̄1�2Im�K3

�K2� .

Flux is conserved provided that

Im�K2
�� = Im�K3

�K2� . �A2�

To show this note that Eqs. �13� and �14� imply

K2 =
1

�
�E − �3 − ��K3, �A3�

i.e.,

Im�K3
�K2� =

�K3�2

�
Im�E − �3 − �� =

�K3�2

2�
	 . �A4�

Equation �A2� therefore holds if

Im�K2
��

�K3�2
= Im

K2
�

�K3�2
= Im

1

K3

K2

K3
��

=
	

2�
. �A5�

Indeed, from Eqs. �A3� and �13� we get

1

K3

K2

K3
��

=
�E − �3 − ��2

�2

1

K2
, �A6�

while Eq. �13� itself implies

1

K2
=

1

�

E − E1 −

�2

E − �3 − �
� ⇒ Im

1

K2
=

�	

2�E − �3 − ��2
.

�A7�

Using Eqs. �A6� and �A7� it is easy to show that Eq. �A5�
holds.

APPENDIX B: THE DENSITY MATRIX
FOR THE SCATTERING PROBLEM

Here we provide the explicit results for 
11, Re�B�,
Im�B�, and X in terms of the incident amplitude A. Using
�from Eq. �35�� Re�
12�=Re�K12�
11, Im�
12�=Im�K12�
11,
and 
22=K22
11, as well as Eqs. �38�–�40�, we obtain

�B�2 = 
 2A Im�K12�
sin�ka� − Im�K12�

�X Re�B�

+ 
 sin�ka� + Im�K12�
sin�ka� − Im�K12�

��A�2, �B1�

X Re�B� =
�R4 − R1X Im�B��

R5
, �B2�

X Im�B� =
�R3R5 − R4R6�
�R2R5 − R1R6�

, �B3�

where

R1 = 2A sin�ka� ,

R2 = 2A sin�2ka� ,

R3 = − �1 − K22��1 +
sin�ka� + Im�K12�
sin�ka� − Im�K12�

��A�2,

R4 = − �cos�ka� − Re�K12���1 +
sin�ka� + Im�K12�
sin�ka� − Im�K12�

��A�2,

R5 = 2�cos�ka� − Re�K12���1 +
Im�K12�

sin�ka� − Im�K12�
�A ,

R6 = 2��1 − K22�
Im�K12�

sin�ka� − Im�K12�

+ �cos�2ka� − K22��A .
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