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We present a very simple model for numerically describing the steady state dynamics of a system
interacting with continua of states representing a bath. Our model can be applied to equilibrium and
nonequilibrium problems. For a one-state system coupled to two free electron reservoirs, our results
match the Landauer formula for current traveling through a molecule. More significantly, we can

also predict the nonequilibrium steady

state population on a molecule between two

out-of-equilibrium contacts. While the method presented here is for one-electron Hamiltonians, we
outline how this model may be extended to include electron-electron interactions and correlations,
an approach which suggests a connection between the conduction problem and the electronic
structure problem. © 2009 American Institute of Physics. [DOI: 10.1063/1.3109898]

I. INTRODUCTION: STEADY STATE FORMALISMS,
SCATTERING, AND TRANSPORT

There is a long history of using scattering theory as a
steady state tool for doing quantum-mechanical calculations
to capture the transport of charge from one side of a system
to another. In basic three dimensional, time-independent
scattering theory, one describes a single incoming electron
impinging on an atomic target, and then scattering off toward
inﬁnity.1 In one dimension, the Wentzel-Kramers-Brillouin
(WKB) approximation is often used to describe the transmis-
sion and reflection of one electron incoming from the left
which will ultimately scatter forward or backward.” In many
physical applications, such scattering pictures have been suc-
cessfully applied to model charge movement.

Over the past 20 years, Nitzan and others®* showed that
the time-independent scattering formalism can be general-
ized to a broad class of steady state nonequilibrium situa-
tions. In this framework, incoming waves become source or
driving terms, while transmitted and reflected waves become
drain terms. The drain term is usually cast in the form of a
self-energy 3(E) that depends on the energy of an individual
electron. The time-independent Schrodinger equation (HW
=EW¥) which is used for time-independent scattering theory
becomes a steady state equation. Using steady state equa-
tions, Nitzan and others showed that one can describe a va-
riety of different nonequilibrium phenomena including en-
ergy transfer and charge transfer, especially within the
context of a one-electron Hamiltonian.

When the physical model allows electrons to interact,
however, and electrons exchange spin and energy with their
environment, the steady state formulation becomes much
more difficult to implement. One problem is that, when the
incoming electron does not have a well-defined energy, there
is no way to cleanly construct a sink (2(E)), and one must
use absorbing boundary conditions, which both destroy the
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electron and distort the solution. For problems such as mo-
lecular conduction,s’6 where there are different Fermi levels
on both sides of the molecule, it is unclear how to impose
boundary conditions on one electron if it is interacting with
others. Ideally, we would prefer boundary conditions that are
consistent with many electrons all together, rather than those
that require us to know the individual energy of each elec-
tron. One appealing approach toward that goal is the stochas-
tic surrogate Hamiltonian model of Katz et al.) whereby one
describes a bath of particles in layers of complexity, yielding
a computational feasible method for describing relaxation for
a system of many particles all together. There may well be an
efficient algorithm combining the approach in Ref. 7 with the
algorithm we present below.

In this paper, we will suggest a new steady state formal-
ism that (i) treats many electrons at the same time, and that
(ii) allows our system’s boundaries to act as both sinks and
sources at the same time and for all electrons. Our formalism
will be based on the reduced density matrix of the system
rather than the amplitudes of any wave function, and is
summed up in Egs. (9) and (26) below. We call these funda-
mental equations steady state reduced density matrix (SS-
RDM) equations. Although our present models for transport
are limited to mean-field Hamiltonians, an obvious extension
of our model toward understanding the role of electron-
electron correlation in transport is discussed in Sec. V and is
currently being investigated. Equation (54) shows that SS-
RDM equations for the two-particle RDM (2-RDM) are ex-
actly the anti-Hermitian contracted Schrodinger equation
(ACSE), which has been investigated by Mazziotti® " and
Valdemoro ef al.,” plus damping terms that enforce open-
boundary conditions and allow for nonequilibrium solutions.

The astute reader will notice that a model of transport
similar to ours has been published recently and indepen-
dently by Todorov and co-workers, ' who investigated the
time evolution of the one-electron reduced density matrix
subject to a mean-field tight-binding Hamiltonian. Although
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Todorov and co-workers were focused more on the transient
behavior of currents in capacitors, they came to similar con-
clusions regarding the usefulness of the damping parameter
v introduced in Eq. (9) in steady state. The results in this
paper extend the work of those authors by further exploring
the applicable conditions on 7, introducing bath reservoirs
instead of tight-binding models, investigating the locality of
correlations within those bath reservoirs, and suggesting ex-
tensions to account for electron-electron correlation in terms
of the 2-RDM.

Il. EQUILIBRIUM: A SINGLE STATE COUPLED TO A
RESERVOIR

A. Theory

We first consider the simplest example in many-body
physics: a single state coupled to a particle reservoir. The
Hamiltonian is standard:

H:H0+H1,

Ho=€,ss + 2, ebjby, (1)
k

Hl = E Vk(S%bk'Fb]tS).
k

Here b, destroys state k in the bath or reservoir and we use
units in which 7i=1. We want to consider the case where
there are an infinite number of single particle bath states (or
k-states) spread continuously over an interval [€pin» €maxl»
thus representing a metallic solid. In our numerical imple-
mentation, however, we discretize the continuum and include
in our calculations only a finite number of k-states, spaced
apart in energy by Ae€,. By including the appropriate broad-
ening into our formalism (which requires the inclusion of
imaginary terms), this finite number of k-states can, in fact,
represent a continuum of states as has been shown many
times before (e.g., see Ref. 18, and references therein).

Consider first the case of equilibrium, where we are in-
terested in the population density on the system (s's) given
that the bath has Fermi energy up. Although this problem
can be solved in many ways, ~ including brute force (i.e.,
numerical diagonalization), this problem illustrates well our
new numerical approach.

To begin with, we define the one-particle RDM (1-
RDM) as

Puv = (i), 2)

where a is an annihilation operator representing either the
bath (b) or the system (s). In this basis, we have

_<pss psb>_<<s*s> <s*bk>) )
= pos o) \(bls) (bibp))

Note, that this definition of the 1-RDM is not universal.
For a single electron in a pure state |¥), it is common to
define the one-particle (full) density matrix as

P = (U W)W lo) = (Vaja,| V) = (aja,). (4)
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These two different definitions can lead to confusion
when doing time dynamics, in particular, concerning the sign
of the Liouville equation:

d common .
P =T i(Hp = pH) ., ()
d T T
d_puv =i(H p—pH"),, (6)
t
=1(HP - pH)uv’ (7)

where we assume in Eq. (7) that the Hamiltonian H is real.
We use the definition of the 1-RDM in Eq. (2) rather than Eq.
(4) because it matches the definitions used in Ref. 20.

Now, in standard system-bath problems, the bath is taken
to be strictly at equilibrium even during system relaxation.
Physically, this reflects the fact that the bath is infinite and its
state is not affected by processes in the system. This would
imply that, for bath states labeled k and k', we have the
following condition:

should 1

Pk = P{kr = S fl€) = Gy (8)

1+ eBlam”

In our numerical work, however, finite bath models are
used. This makes it necessary to replace a requirement of
strict equilibrium by the introduction of a relaxation term,
similar to the addition of absorbing boundary conditions in
numerical simulation. In the Appendix, we show that this
bath relaxation is crucial in order to describe system broad-
ening. The relaxation term is added to the bath-bath part of
the Liouville equation. For a steady state solution, the entire
Liouville expression is set to zero:

p _ l{ (Hss Hyh )(pss Psp ) _ (pxs Psp ) (Hss Hyh )}
Hye Hyp/ \pps P Pos Pop/ \Hps Hpy,

B {(0 0)_(0 0)}—0 o)
7 0 py 0 szb o

Henceforward, Eq. (9) will be referred to as a SS-RDM
equation.

For v infinitesimal, Eq. (9) tries to satisfy two conditions
which cannot be both be satisfied simultaneously (as the
reader can easily verify):

(1) Steady state quantum dynamics ([H,p]=0).
(2) The bath should look like a Fermi metal p,,=p},.

In other words, Eq. (9) describes a steady state system where
the bath is relaxed toward thermal equilibrium where Fermi
statistics are obeyed. We will find empirically that Eq. (9)
has a unique solution for the model Hamiltonian H in Eq.
(1). Moreover, like numerical scattering calculations, the re-
sults obtained from Eq. (9) do not depend strongly on the
damping parameter y for 7y chosen appropriately (as dis-
cussed below).

Equation (9) can be solved by propagating p forward in
time with a simple differential equation propagator (like
Runge—Kutta). For large enough v, convergence is quick, but
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FIG. 1. (Color) Convergence of population with density
of states. Here we choose the system energy to be
€,=1, the Fermi energy of the bath to be uz=0.5, and
the band edges of the continuum (in energy) to be
[—10,10]. The energies of the single particle bath states
have been spaced equally between the band edges of
the continuum. Other parameters are the temperature
(T=0.1) and the damping parameter y in Eq. (9)
(y=1x107*). The coupling of the system to the bath is
fixed by I'=277V2=1. The direct diagonalization curve
assumes the entire system is finite and points on this
curve are obtained by diagonalizing the real, symmetric
Hamiltonian in Eq. (1), filling up all eigenstates of H

according to a Fermi distribution with a given Fermi
level, and transforming all population information back

to the original basis of separate, orthogonal, bath and
systems states.
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for small gamma, convergence is slow. A second approach
which converges more quickly and gives us physical insight
works by defining projection operators:

P_(f 0) 10
_(o o) .
0= o 1) (11)

P projects onto the state and Q projects onto the bath. In this
language, the SS-RDM equation reads

p=i(Hp—pH) — y0pQ + y0p" 0 =0. (12)

Equation (12) can be solved by rearranging the equation
as

(iH = y2Q)p - p(iH + y/2Q) + yI2PpQ
+¥12QpP + yQp' Q=0 (13)

and then iterating

R(p) = gPpQ + ngP +y0p"0, (14)

(iH - y12Q)p - p(iH + y/20) =~ R(p). (15)

If we regard R(p) as a constant matrix in Eq. (15), then
Eq. (15) is a Sylvester equation21 and can be solved by stan-
dard techniques (e.g., in MATLAB). In particular, they can be
solved rapidly by defining new operators H*, H~ and their
diagonal representations (), A:

H*=iH+vy20=U"'QU, (16)

H =iH-y20=X"'AX. (17)

Even though the operators H*, H™ are not Hermitian, and
thus a complete set of eigenstates is not guaranteed, they are
complex symmetric and not too far from Hermitian (for y
not too large). We therefore assume that they can be diago-
nalized, albeit in a nonorthogonal basis. This is equivalent to
assuming the existence of a complete set of biorthogonal left
and right eigenvectors for H* and H™.

400

Using Egs. (16) and (17), Eq. (15) becomes
AXpU™) = (XpU™HQ =-XR(p)U™". (18)

If we now change basis, Egs. (14) and (15) become very
simple to solve

Ap-pQ=-R(p), (19)
~ ’)/~~~ ’)/~~~ ~~F~
R(p) = EPPQ + EQPP +y0p 0, (20)

where we define

p=XpU™', p'=Xxp"U", (21)

P=XPU™', Q0=XQU™". (22)

Solving Egs. (19) and (20) iteratively and self-
consistently is very quick since A and () are diagonal opera-
tors.

B. Numerical results

In our theoretical development of equilibrium, detailed
above in the SS-RDM equation, one must choose both (i) a
discrete number of states to describe the bath or continuum
reservoir (Np,p), and (ii) a value for the damping parameter
v. We must now show that these numbers can be chosen so
that our model has physical meaning.

We first consider the density of states used to model the
bath. In Fig. 1, we show that the population on the system is
affected only marginally by increasing the number of bath
states in Eq. (9). We compare our SS-RDM results with the
result obtained by direct diagonalization of the Hamiltonian
H in Eq. (1) for a finite system (without any broadening or
complex energies). It should be noted that allowing an in-
crease in the density of bath states (77) must be done while
also keeping '=277V? a constant in accordance with the
Golden rule. From the data in Fig. 1, we may conclude that,
above a certain threshold number of states, we are modeling
a picture of a continuous bath.
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FIG. 2. (Color) Population of the system (s's) plotted
as a function of y. Here we choose the system energy
€,=1, the Fermi energy of the bath to be u;=0.5, and
b the temperature to be 7=0.1. The number of states is
Npan=200, and all states are spaced evenly between the
band edges of the continuum (chosen as [—10,10]). The
4 coupling of the system to the bath is fixed by
I'=27pV?=1. The direct diagonalization curve as-
sumes the entire system is finite and points on this
curve are obtained by diagonalizing the real, symmetric
Hamiltonian in Eq. (1), filling up all eigenstates of H
according to a Fermi distribution with a given Fermi
level, and transforming all population information back

to the original basis of separate, orthogonal, bath and
systems states.
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Next, we turn to . The exact answer to the problem of
one state coupled to a discrete set of bath states requires
v=0, so that [p,H]=0. In general, we should expect that, in
order to capture the correct physical description of a finite
system interacting with a continuum, a good choice of y
should depend on the energy spacing between states in the
bath: Ae,=(bandwidth/N,,y). According to standard meth-
odologies for discretizing a metal into a finite number of
states, introducing an imaginary energy [i.e., self-energy
3(E)=Ey+iE,] in the Hamiltonian reflects a broadening of
energy levels, and a metal should be correctly described
when E; =~ Ag,.> Although, as written in Eq. (9), the param-
eter 7y is not a self-energy, we will interpret vy as broadening
of bath states. The interesting result in Fig. 2 is that the
system population (s's) is very insensitive to y over a wide
range of 7y values, provided that I'=v, Aeg,. This can be
explained in two ways.

First, from a physical perspective, provided I'=vy, we
know that the rate at which an electron moves to and from
the system is faster than the rate at which the bath (as a
whole) relaxes toward a Fermi distribution with a fixed
Fermi level. Suppose that at time t=—o, there is no system-
bath coupling, the system is unoccupied, and the bath is
equilibrated. Now, we switch on the system-bath coupling at
t=0. For the case of equilibrium, if an electron moves from
the bath to the system at time ¢t=#/T", it will return to the
bath at time r=2%/T", well before any appreciable bath relax-
ation. Because the population of the system is determined
from this electron transfer back and forth, we conclude that
the result must be determined almost entirely by the Fermi
level of the bath and depend only minimally on bath relax-
ation. Second, from a computational perspective, if we con-
sider propagating the density matrix p forward in time with
y=0, we will never reach steady state, but rather we will find
Poincaré recurrences with period Ae€;' on top of the relax-
ation rate I".? By introducing a small y>0, we can eliminate
these recurrences and drive the system to the correct steady
state. The result for system population will be nearly inde-
pendent of .

Note that the limit y—o0, y>1" is an incorrect choice

for y. In such a case, the SS-RDM equation does not allow
for bath relaxation, but rather enforces equilibrium condi-
tions on the bath [Eq. (8)], and, as shown in the Appendix,
this restriction does not describe the broadening of the sys-
tem state.

For nonequilibrium problems, there are more than two
competing rates, for example, charge injection from one bath
versus charge ejection into another bath versus energetic re-
laxation of the bath, and this can lead to nonzero current
density. For nonequilibrium problems, we expect (and find)
that not all dynamical observables will be independent of 7y
as y—0. Nevertheless, the insensitivity of the population
(s's) to vy for equilibrium problems (in Fig. 2) strongly sug-
gests that Eq. (9) is correctly capturing the physical picture
of a molecule interacting with a continuous bath.

lll. NONEQUILIBRIUM: A SINGLE STATE COUPLED
TO TWO RESERVOIRS

A. Theory

At first glance, Eq. (9) would appear a very inefficient
approach toward solving many-body problems, especially
problems where finite systems interact with a continuous
bath. After all, Eq. (9) treats bath degrees of freedom ex-
plicitly, and thus, one is forced to manipulate and diagonalize
large operators with both bath and system degrees of free-
dom. For the equilibrium problem, standard Green’s func-
tions techniques avoid treating bath degrees of freedom al-
most entirely by defining self-energies. Moreover, the most
elementary approach—constructing and diagonalizing the
Hamiltonian to find the population of the system—is faster
than solving Eq. (9). Solving Eq. (9) appears to be the most
tedious and least efficient approach.

That being said, however, the strength of Eq. (9) is that it
is easily generalized to nonequilibrium steady state prob-
lems. As an example, we now solve the problem of a single
level coupled to two reservoirs (left and right), which can be
out of equilibrium: uk# ui. The Hamiltonian we consider is
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H=Hy+ H,,
HO = GSSTS + E Gkb};bk'i' E GkCZCk, (23)

kel keR

H, = > Vil(sThy + b}is) + > Wilse, + c}ts).
keL keR

We use b, to represent the bath on the left, and ¢, the bath on
the right. This Hamiltonian ignores both spin degeneracy and
coupling to vibronic motion, even though both are crucial
components of molecular conduction experiments. Nuclear
motion is especially important near resonance. For simplicity
and pedagogical purposes, however, we study the Hamil-
tonian in Eq. (23), and we will compare the SS-RDM result
for current through the system to the exact (Landauer) result.

For this model problem of two baths not at equilibrium,
we first define two equilibrium distribution functions for the
baths, one for the left and one for the right:

F.L

= 5 ’ = €.), 24
Pk kk 1+e,3(fk—MLr) file) (24)
Pir = S = fr(&). (25)

1 + eﬂ(fk_ﬂf")
Then, in analogy to Eq. (9), the steady state density ma-

trix is the solution to

H s H sb H sc Pss  Psb  Psc
N\ Hos Hpy O || pos Poo Poc
H cs 0 H cc Pes Pcb Pec

Pss Psb Psc \[Hss Hgp Hy

| Pos Poo Poc || Hos Hp, O

Pes Peb Pec) \Hes 0 H,

0O 0 O 0 0 O
N[O Por Pre 0 pp O [[=0.  (26)

0 Py P/ \O O pf

Like Eq. (9), Eq. (26) will also be referred to as an SS-RDM
equation. An element of the density matrix (e.g., p,,=(s's)) is
an average over nonequilibrium steady state ensembles. The
strength of Eq. (26) is that, by setting the entire expression
on the left to zero, the equation describes steady state non-
equilibrium phenomena without explicitly doing time dy-
namics.

Now, for the nonequilibrium case where ,ufﬁt ,u’}, we
have p}, # p’. in Eq. (26), and there will be a nonzero cur-
rent. The steady state current can be calculated as

== (S win) @7)
:%i 2 Vk(<b2s> - <S+bk>) (28)
keL
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__ %z V, Im((b7s)). (29)

kel

B. Numerical results

Just as before, in order to justify the validity of Eq. (26),
we must investigate the dependence of the solution on the
parameter . As discussed above in the equilibrium case and
in the Appendix, in order to describe broadening correctly,
we should never choose y>T". This choice applies both to
equilibrium and nonequilibrium boundary conditions. In the
opposite limit (i.e., y—0), whereas all physical properties at
equilibrium are not sensitive to the choice of y, some physi-
cal properties for nonequilibrium conditions are extremely
sensitive to . In particular, while the nonequilibrium steady
state population of the system is rather insensitive to the size
of v, the current [Eq. (29)] is incredibly sensitive to 7y, and
for y<Ag, we find I« y.

The behavior of the current for y— 0 can be explained in
two ways. Empirically, when we investigate the solution to
Eq. (26), we find that unless y=Ag;, we cannot enforce
nonequilibrium conditions. Instead, we find, for y<Ag,, as-
suming that both baths are equally coupled to the system
(V=W) and have the same density of states, the solution to
Eq. (26) (which we denote p,;) empirically has the incorrect
trace over the bath states

E <bek> = 2 <C};Ck> = Nbathz 0(,“«;‘/ - €)(wrong!),

kel keR kel
(30)
L R
+
:U’;‘V= % (31)

Here, 6 is the Heavyside function. For vy close to zero, py,
bares some resemblance to the equilibrium problem where
the two baths have one averaged Fermi energy (uj),
whereas we seek the solution to the nonequilibrium problem
where there are two different Fermi energies.

Physically, the need to choose y> ¢, can be argued as
follows: We interpret vy as a rate for bath relaxation and I as
the rate of movement to and from the system. Because
system relaxation involves I'/Ag, bath states, the rate at
which population changes in a single bath level is
I'/(I'/ Ae;)=A€;. Thus, choosing y> Ag; allows us to main-
tain local equilibrium in each bath. Conversely, if we choose
v<<Ag, then the bath does not relax fast enough to maintain
local equilibrium and the current will distort the population
levels in each bath. As a result, the baths will be equilibrated
together and the solution p,, will have the wrong behavior in
each bath, namely, the behavior found empirically in Eq.
(30). This explains why the current I; —0 as y—0.

We now show numerically that when we choose y over a
limited range such that I'>y=Ag,, all physical properties
are mostly independent of . As a side note, this justifies our
use of a single damping parameter to damp all bath reser-
voirs. Although, in principle, we could use different damping
parameters for the left bath (7y;;), the right bath (ygg), and
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FIG. 3. (Color) The current [Eq. (29)]
as a function of the energy of the level
system s. Here we choose the Fermi
energies of the baths to be ,u,)Lr=O.5,
,u,’;: —0.5 and the coupling of
the system to the bath is fixed by
I‘=I'f=279V?=1 (and V=W). The
number of states is Ny, =100 and all
states are evenly spaced between the
band edges of the continuum (chosen
as [—5,5]). The temperature is 7=0.1.
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€
s

the left-right mixed bath density matrix (y;z), we may safely
ignore this degree of freedom so long as all results are
roughly independent of the choice of 7y.

We begin with the coherent (Landauer) current flowing
between the left and right bath reservoirs. The exact expres-
sion for the current (as calculated by steady state quantum
mechanics® or nonequilibrium Green’s functions™** (NEGFs)
is

o f de T eTR(e)
et = o g (e € — A(€)2 + (I'(€)2)?
X(fr(€) = fr(€), (32)
where we define
Vi L L )
——=3Me)=A"(e) - -T(e), (33)
kel €~ €& +1Y 2
2 .
— M sk = AR - LT e), (34)
keR €~ €T 1Y 2
APe) = Al(e) + AR(e), (35)
I'°(e) =T (e) + TR(e). (36)

A simple approximation for the current replaces A(e) by
A(e,) and I'(e) by I'(e,) in the equation above:

I = f de FL( fs)FR( &)
approx — ¢ 27h (6 — €~ Alot( es))z + (FTOt( E?)/z)z

X(fr(€) - fr(€)). (37)

The expressions for the exact and approximate currents
in Egs. (32) and (37), and the corresponding self-energies in
Egs. (33) and (34), can be evaluated by discretization on an
energetic grid. For added accuracy, we have chosen this dis-
cretization grid to be three times denser than our grid for the
bath states. The value of v, in Egs. (33) and (34) is fixed as
0.1, our common choice of y in Eq. (26).

In Fig. 3, we plot the current [Eq. (29)] coming from the
model Hamiltonian [Eq. (23)] as a function of €,, which ef-
fectively is a gate voltage, as well as the exact and approxi-
mate currents [Egs. (32) and (37)]. We calculate the current
for two different values of y (0.1 and 0.3) in the range
'Y, T'R= y= A€, demonstrating that the results are nearly
independent of y. Moreover, one sees that the current from
Eq. (29) is very close to the exact result, closer even than the
approximate solution [Eq. (37)]. This should convince the
reader that, by introducing imaginary terms to the Liouville
equation, we are sampling a continuum of states rather than a
discrete number.

In Fig. 4, we plot the current as a function of source—
drain voltage: Vsd=,u,fp—uf-. Again, one sees agreement be-
tween the SS-RDM result and the exact result.

While many standard physical approaches can solve for
the current between baths in the Landauer regime, one
strength of Eq. (26) is that one may calculate both nonequi-
librium currents and populations simultaneously for the
Hamiltonian in Eq. (23). Standard steady state quantum
mechanical® approaches can calculate current in terms of
transmission but cannot capture steady state population. Ad-
mittedly, for molecular conduction experiments, the Hamil-
tonian in Eq. (23) may be too simple because the energy of
the system (e,) can depend implicitly on the Fermi levels in
the baths. Nevertheless, our intuition is that any computa-
tional approach which aims to eventually tackle the problem
of electron-electron correlation in molecular conduction
must be able to solve for steady state populations in addition
to the bulk current. This necessity mirrors the conclusion in
quantum chemistry that, in order to obtain an accurate post
Hartree—Fock correction to account for electron-electron cor-
relation, one requires first a mean-field method with a decent
energy and wave function (the latter being more difficult to
obtain).

In Fig. 5, we show that, when Eq. (26) is solved numeri-
cally, the resulting nonequilibrium population of the system
site (s's) is nearly independent of y. Furthermore, when we
compare our numerical results to the exact result as calcu-
lated by NEGF,
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0.35 T
0.3- —+-88-RDM: y=0.1
——SS-RDM:y=0.3
0.25- —e—Exact Landauer Current
—e— Approximate Landauer current

i FIG. 4. (Color) The current [Eq. (29)]
as a function of source—drain voltage.
. Here we fix the energy of the level
system €,=1 and the Fermi energy of
. the right-hand bath ,u@: 0, while vary-
ing the Fermi energy of the left-hand
E bath uk. The number of states is
Npan=100 and all states are evenly
4 spaced between the band edges of the
continuum (chosen as [—5.5]). The
_ coupling of the system to the bath is
fixed by I'’=I'*=27%V?=1 and the
4 temperature is 7=0.1.

o= [ 45
NPT ) 27 (e— - A(€)2 + (T (e)/2)>

we find that the SS-RDM solution approximates the NEGF
answer very accurately.

fleTH(e) + fr(€)T(e)

(38)

IV. DISCUSSION

Even though we cannot solve Egs. (9) and (26) com-
pletely analytically, we believe the SS-RDM equations them-
selves capture the essential physics for understanding steady
state nonequilibrium current flow, provided that we ignore
electron-electron correlation. Moreover, because the equa-
tions themselves do not distinguish between fermions and
bosons, they should be applicable toward understanding heat
flow between two baths of bosons which are at different
temperatures and thus out of equilibrium. We will now char-
acterize the solution (py,) of the SS-RDM equations in
greater detail.

A. Energy conservation

Using the system-system component of the SS-RDM
equations

0= %(Sm = >V Im(bls) + >, W, Im{c}s) (39)

kel keR

and Eq. (29) as an expression for current, it is easy to show
that charge is conserved during steady state by the SS-RDM
equation: I; +1z=0.

Similarly, we can also show that energy is conserved. To
do so, we repeat the analysis leading to Eq. (29) for charge
current, only now we differentiate the energy stored in the
left-hand reservoir (rather than the number of particles):

d
S=- E(,;L ek<b;bk>) (40)
=—2> Ve Im((Dys)). (41)

keL

There is an analogous expression for the flux of energy
into the right-hand bath:

Jg ==2 2 Wka Im((c;s}) .
keR

(42)

1 T

Q9.0 ---8S-RDM:y=0.1
| V000 O SS-RDM: y= 0.3
0.9 Qo
Q‘Q x NEGF Exact Answer|
0.81 ‘Q\Q i
0.7 Q\ 7 FIG. 5. (Color) The population of the system site {s"s)
@ plotted as a function of the energy of the level system s
0.61 ‘Q ) (i.e., gate voltage). Here we choose the Fermi energies
A ' of the baths to be uk=0.5, uf=-0.5, the coupling of
+<\//> 0.51 ® 7 the system to the bath is fixed by [‘=I'*=279V?=1,
® and the temperature is 7=0.1. The number of states is
047 \6 h Npan=100 and all states are evenly spaced between the
. band edges of the continuum (chosen as [—35, 5]). The
031 @ ] exact NEGF answer for the population is given in Eq.
e (38).
0.2r (<N 7
0.1 S B
A0 *8_6_ I
©® 064y
1 1 1 1 1 1 1
-4 -3 -2 -1 8O 1 2 3 4
S
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—--TI=05

FIG. 6. (Color) Analysis of the bath relaxation accord-
ing to the SS-RDM equation. Here, we plot the average
value of the bath-bath correlations in the same bath as a
function of the energy difference for different I" values.
See Eq. (48). We choose the system energy to be
€,=1 and the Fermi energies of the baths to be
#h=0.5, uR=-0.5. The number of states is Ny,,=100
and all states are evenly spaced between the band edges
of the continuum (chosen as [—5,5]). The temperature
is 7=0.1 and y=0.1. Note that the intermediate decay
of the bath-bath correlations depends strongly on I'.

To show that Jf +JE=0, consider the system-bath com-
ponent in Eq. (26) written out explicitly for the right-hand
bath as

= el = el — € + WAsTs)

- 2 Wilcley = 2 Vilelby.

keR kel

(43)
If we multiply both sides by W, and sum over r, we find

0= 3 Wicis)e,—e)+ 3 Wis's)

reR reR
- 2 WWlclep - 2 ViWLclby. (44)
k,reR keL,reR

Taking the imaginary part of Eq. (44), we see that the
second and third terms vanish (because they are strictly real),
leaving us with

JE=—2Im<esE Wicls)+ 2 ka,<chk>) (45)

reR kelL,reR

=IR65—21m( > vkw,<cjbk>). (46)

keL,reR

Similarly, the expression for Jf is

Szl -2 Im( D VkW,<ch,>) . (47)

keL,reR

Because I, +Iz=0 and {(c!by+bjc,) is real, it follows that
JE+TE=0.

B. Bath relaxation

In standard treatments of steady state charge transport,
the baths or reservoirs are assumed to be infinite and always
in equilibrium. According to the SS-RDM equations, how-
ever, we choose a finite, discrete basis for our baths and then
we force these baths to relax. In so doing, the one-electron
density matrix for the bath-bath correlations is not the Fermi
distribution, e.g., (bjby)# plit= 6 (1/1+eP@#P) and
(biciy#0. This has immediate physical implications, as
shown for energy transfer in Egs. (46) and (47) and for
charge transfer in the Appendix. Bath relaxation is the crucial
ingredient that allows the SS-RDM equation to correctly de-
scribe broadening of the system state.

In Figs. 6-9, we analyze the bath-bath correlations that
arise according to the SS-RDM equation. For different val-
ues of I" and vy, we calculate the average magnitude of the
correlations that arise between different states in the same
bath:

0.01 T
—--I'=0.5
0.009 —TI=1
—TI=2
& 0.008" eT—3
< _0.007f ]
+o_~(
% 0.006( B FIG. 7. (Color) Analysis of the bath relaxation accord-
. ing to the SS-RDM equation. Here, we plot the average
<" 0.005 value of the bath-bath correlations in opposite baths as
&3‘“ a function of the energy difference for different I" val-
5 ues. See Eq. (49). All parameters are the same as for
S .
IS Fig. 6.
o
>
<
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0.01 :
——y=0.1
0.009F ——y=0.2
. —-v=03
. 0.008- 1 FIG. 8. (Color) Analysis of the bath relaxation accord-
ox( 0.007- i ing to the SS-RDM equation. Here, we plot the average
*3" value of the bath-bath correlations in the same bath as a
7 0.006 function of the energy difference for different y values.
. See Eq. (48). We choose the system energy to be
o< 0.005 e,=1 and the Fermi energies of the baths to be
f:\:/f‘— 0.004 1h=0.5, uB=-0.5. The number of states is Ny,=100
z and all states are evenly spaced between the band edges
g 0.003 of the continuum (chosen as [—5, 5]). The temperature
e is 7=0.1 and I'=1. Note that the decay of the bath-bath
< 0.002 e correlations (e.g., (bzlhkz)) depends strongly on 7y for
0.001- T - €, very close to €.
1 1 1 1 1 1
2 -15 -1 -05 . 0, 0.5 15 2
k k
1 2
> | <b£1 bk2>| > K Cil Ck2>| strongly on 7, even if .the bath-bath off-diagonal correlations
kpkyel kpkyeR (for states very close in energy) do depend strongly on 7.
&, —€k,=Ae & —ep,=Ae Regarding the decay of the bath-bath correlations for
Agame(A€) = S o0 > states far apart in energy, there are very strong implications
kel Ky €R caused by the observation that
fkl_szzAf ekl—ekZ:Ae
and for different states in different baths: <b,t1 by)=~0, when | &, - 6k2| >T. (50)
+ ¥ . . +
> |<bklckz>| + > |<Cklbk2>| Be.ca.use of this decay,. one n.eed not include all <bk.1bk2>
kjeLkyeR kjeRkyeL (and similar) terms as variables in the SS-RDM equations.
A, (Ae)= €~k =A€ €, ~ k=€ Thus, Eq. (50) should allow for large computational savings,
PP DO R either for large band calculations (with many states) or for
kjeLkyeR kjeRkyel calculations that include electron-electron correlation, as dis-
€, €k, =A€ €, ~€k,=A€ cussed below. Equation (50) is a statement of locality in

We plot the function Ag,,.(A€) in Figs. 6 and 8 and A

in Figs. 7 and 9.

opp

From Figs. 6-9, the clear conclusion is that, in the SS-
RDM analysis, the bath-bath correlation functions (e.g.,
(biby)) decay first according to the size of y and next ac-
cording to the size of I'. There are two time scales of interest
here. One important conclusion of our research, however, is
that, provided I'>vy>Ag, the current does not depend

energy space, asserting that bath states of very different en-
ergies are correlated together very weakly. Thus, Eq. (50)
appears to be the steady state equivalent of local correlation
theory from quantum chemistry,nﬁ25 where one asserts that
localized orbitals that are far away from each other in real
space are uncorrelated. Local correlation theory has trans-
formed the exponentially scaling problem of electron corre-
lation into a linear-scaling problc:zm,24’26’27 and we are hope-
ful that Eq. (50) will have similarly significant implications
for the steady state problem.

0.01 -
—~—y=0.1
0.009- —o—y=0.2
f —-—y=0.3
= 0.008] A |
XN [

< . 0.007
5%
i
+ 0.006 FIG. 9. (Color) Analysis of the bath relaxation accord-
. ing to the SS-RDM equation. Here, we plot the average
o< 0-005 value of the bath-bath correlations in opposite baths as
t‘\?x 0.004 a function of the energy difference for different y val-
5 ues. See Eq. (49). All parameters are the same as for
$ 0003 Fig. 8.
[
< 0.002

0.001f ]

1 1 1 1 1 1 1
-2 -1.5 -1 -0.5 e 0 & 0.5 1 1.5 2
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V. FUTURE DIRECTIONS: ELECTRON-ELECTRON
CORRELATION AND THE ANTI-HERMITIAN
CONTRACTED SCHRODINGER EQUATION

We now briefly discuss how we might construct SS-
RDM equations when there is a two-electron potential en-
ergy term in the Hamiltonian (e.g., a Coulomb operator).

Future work on steady state dynamics through the SS-
RDM equation will no doubt seek to incorporate the effects
of electron-electron correlation, which has been a difficult
problem to solve thus far.*>° To do SO, We are now inves-
tigating whether or not we can refashion Egs. (9) and (26) so
that we use the two-particle reduced density matrix (D) in-
stead of the one-particle reduced density matrix (p):

Puv = <a1iav>’ (5 ])

— AT, T
D,y =(ayazasa,). (52)

In such an application, we will no longer damp the bath-
bath piece of the one-particle density matrix, as in Eq. (9):

0 S,, if r,s e bath,
710, otherwise,
puv = l(Hp - pH)uv - 72 Quers(prs - Pi) =0. (53)

r,s

Instead, we will damp the bath-bath-bath-bath piece of
the two-particle density matrix D:

qurs = i([H,a;a;asar]) —y > 0peQ 4101 Qs
e.f.g.h

X (Deg = P+ Penkl) = O- (54)

Here, we use Wick’s theorem to simplify the bath-bath-bath-
bath piece of the 2-RDM for a Fermi metal.

From the perspective of quantum chemistry, Eq. (54) is
the ACSE equation, [H,D]=0, plus damping terms that en-
force open boundary conditions appropriate for molecular
conduction and nonequilibrium transport. Because we will
focus on nonequilibrium problems, we will call this equation
a SS-RDM equation [like Egs. (9) and (26)].

Although Eq. (54) scales formally as the number of bath
states to the sixth power, we hope to employ local correlation
theory as detailed in Sec. IV B to solve the SS-RDM equa-
tion in a faster amount of time. The biggest difficulty, how-
ever, in solving Eq. (54) is that the 3-RDM appears in
[H,D], and in order to close Eq. (54), the 3-RDM must be
reconstructed in terms of the 2-RDM and 1-RDM, as dis-
cussed in Refs. 20, 40, and 41. Luckily, such reconstruction
of the 3-RDM has already been explored for the ACSE. For
the case of an isolated molecule, D denotes the electronic
2-RDM and solutions to the ACSE represent stationary states
of the electronic Hamiltonian. Recent work has solved the
ACSE for the electronic ground-states of a variety of isolated
molecules with very good accuracy.s_15 Although Rosina’s
theorem™ guarantees the uniqueness of the exact 3-RDM
reconstruction only for the ground state of an isolated mol-
ecule, our hope is that an approximate reconstruction will
work for the conduction problem, thus allowing for a mean-
ingful solution of Eq. (54). Because of the large damping

J. Chem. Phys. 130, 144105 (2009)

terms in Eq. (54), we may need to modify the Mazziotti
algorithm for solving the ACSE (where these terms are ab-
sent).

Finally, it is interesting to speculate that, in the limit
v—0, Eq. (54) describes a closed system and becomes ex-
actly the ASCE with infinitesimal constraints. Although so-
lutions to the ACSE do not require these constraints, these
constraints might help to find excited state solutions. Usually,
the ACSE is applied to electronic ground state problems.42

VI. CONCLUSIONS

This paper has presented a very elementary theory of
how one may describe out-of-equilibrium current flow in
terms of the one-particle reduced density matrix. Solving Eq.
(26) recovers the correct population on the system site as
well as the correct Landauer current for a one-state model
system. Moreover, the SS-RDM formalism presented here
can be extended to a system with arbitrarily many states
interacting via a mean-field potential. Ongoing research will
explore whether analogous equations [e.g., Eq. (54)] can cor-
rectly account for electron-electron correlation in molecular
conduction within a reasonable amount of computational
time.
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APPENDIX: APPROXIMATE ANALYTICAL SOLUTION
OF THE SS-RDM EQUATION IGNORING BATH
RELAXATION

In order to gain intuition for the approach outlined
above, we will solve Eq. (26) approximately using the
Hamiltonian in Eq. (23). In so doing, we will show that one
can derive very approximate (and very incorrect) expressions
for the current and steady state population on the system
when one makes the assumption that bath states are uncorre-
lated with each other. In other words, the conclusion of our
analytical treatment is that, if we solve the SS-RDM equa-
tions for finite baths, the bath-bath correlations are crucial in
order to recover the correct current and steady state popula-
tion. This emphasizes the importance of Figs. 6 and 7, where
we plot the decay of bath-bath correlations as a function of
the difference in energy between bath states.

We will write b and ¢ to denote a singe-particle bath
state on the left and right, respectively. Using the Hamil-
tonian in Eq. (23) and our notation from above, we can also
write H,,=V,, H,.=W,., H,=¢€,, Hy, =, €,, etc. Consider
the equations associated with py=0, py=0, and p,.=0.
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pss =0= 2 (bephx - pthhx)
b

+ 2 (Hscpm - psch) = O’ (A ])
psb =0= (Hss - be)psb - Hsb(pss - pbb)
+ E Hypop+ 20 Hypppry= (A2)
b'#b
Pse=0= (Hys - Hcc)psc - Hsc(pss - pcc)
(A3)

+ 2 Hybpbc + 2 Hsc/pc'c =0.
b ¢’ #c

We now assume that, to a first approximation, the two
baths dephase very quickly relative to any time scale of the
system. Thus, in Egs. (A2) and (A3), we set

pbc=pcb=pb’b=pc"c=0 (A4)

for b' # b, and ¢’ # c. Effectively, Eq. (A4) implies we are
ignoring bath relaxation. We can then solve for p,, and p,.:

V, ( ss )
o=~ (A5)
€—€,+1i0
_ Vc(pss — pcc)

) A6
€— €. +10 (A6)

where we have added a complex infinitesimal 6 in the de-
nominator to avoid the pole when €, or €. is equal to €.

Plugging Eqgs. (A5) and (A6) into Eq. (A1) written in the
form

Im(E HbsPsb) + Im(E Hcspsc) = 0’
b c

(A7)

we find:
|Vb| (Dys = Pip) |W| (Pss = Pec) _
(% €—€+i8 ) (; —€.+id >_0'
(A8B)

We now apply Egs. (33) and (34), assuming that pyp, p,.
are slowly varying functions of ¢,, €. respectively, so that

|Vb|2pbb L 1L
A ( 3)_ F (6) pbb(es) (A9)
5 € — €+ i5
AL
H# (AR( &) - —FR(63)>PCC(ES)~ (A10)
_ €—€.+i0
Then, if we denote py(e)=p" p.(&)=pF,

I'“=T*(g,), and T*=T*(¢,), Eq. (A8) becomes

Ff(pss - pf) + Ff(pss - pf) = 0’ (Al 1)
PR bkl (A12)
55 1-‘€+ Flf .

Plugging back into Eq. (A5), we find

J. Chem. Phys. 130, 144105 (2009)

(Ffpf +T5p; ) )
rterk

€—€,+1i0

Psp="Vy (A13)

According to Eq. (29) and the approximations in Egs.
(A9) and (A10), we can express the bulk current as

2e
= zz Im prsb (A14)
b
e FLFR
=iTTs FR( ¢ = py) (A15)

Finally, if we assume that pf’R =f1.r(€) and we use the
Lorentzian identity:

l_lij (A16)
y o), (e=x)?+y>
we find [setting y=(T"“+T%)/2]
P f”d rerk
L=5 % B € ) FL FR 2
(G_Es) +
2

Equations (A12) and (A17) are inaccurate expressions
for they do not account for the broadening of the system state
when coupled to the bath. In particular, Eq. (A17) is a poor
approximation to the Landauer current [either Eq. (32) and
(37)]. As we have shown numerically above, one can arrive
at the exact steady-state population and Landauer current if
one does not assume that the baths dephase instantaneously
[Eq. (A4)], but rather relax toward equilibrium with a rate
determined by the vy parameter, y= A¢;. This emphasizes the
importance of bath relaxation and the bath-bath correlation
functions plotted in Figs. 6 and 7 in the discussion section.
Unfortunately, we do not know how to solve the SS-RDM
equations exactly without invoking the dephasing approxi-
mations in Eq. (A4).
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