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ABSTRACT

We implement a method to study transport in a basis of many-body molecular states using the nonequilibrium Hubbard Green’s function
technique. A well-studied system, a junction consisting of benzene-dithiol on gold, is the focus of our consideration. Electronic structure
calculations are carried out at the Hartree—Fock (HF), density functional theory (DFT), and coupled-cluster singles and doubles (CCSD) levels,
and multiple molecular states are included in the transport calculation. The conductance calculation yields new information about the transport

mechanism in BDT junctions.

Recent achievements in experimental techniques at the
nanoscale have caused a surge in research on transport
through molecular junctions. While the theoretical treatment
of nonequilibrium systems at the level of simple models has
become quite sophisticated, ab initio computations of realistic
systems mostly rely on a mean-field treatment. In particular,
within these schemes, the current is usually given by a
Landauer-like! expression in terms of a matrix Green’s
function (GF) in a basis of (effective) orbitals that emerges
from a density functional theory (DFT)? or semiempirical
treatment.>*

The orbital-based approach becomes inadequate, however,
for resonant electron transport in molecular systems. Indeed,
oxidation/reduction of a molecule leads to fundamental
changes in its electronic structure.’ Thus, the correct treat-
ment of the system in the resonant regime requires a
description in molecular states rather than effective single-
particle orbitals. First-principles simulations, such as DFT-
nonequilibrium GF (DFT-NEGF) treatments utilizing Kohn—
Sham (KS) orbitals and Koopmans’ theorem to define
excitation and effective charging energies, naturally fail at
higher biases where electronic excitations and charging
occur.®’ There have been some attempts to improve the DFT-
NEGF approach through a variety of methods including
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better exchange-correlation functionals (with proper deriva-
tive discontinuity)®® and self-interaction correction.'® While
these methods can certainly improve the accuracy of the zero-
bias conductance (which in molecular systems is usually off-
resonant (note, here we discuss situations above the Kondo
temperature)), different exchange-correlation potentials can
still lead to drastically different conductance values in DFT
treatments.!! This is at least in part due to the fact that KS
orbitals are relied upon, rather than the total energy (and
electron density). Recent developments in GW techniques'?
are promising for improving the quality of orbital-based first-
principles simulations.

An alternative approach to resonant and near-resonant
transport, especially important in molecular junctions, relies
on using molecular many-body states as the basis for the
conductance calculations. In this way, all on-the-molecule
correlations can be treated within sophisticated quantum
chemistry methods and incorporated into the description of
transport. The necessity for such a development has been
realized in the community, and most schemes motivated in
this way are based on either a scattering approach to
transport'*~!® or quantum master equations (MEs).'*?’ The
first neglect Fermi seas in the contacts and their influence
on the system, while the latter neglect correlations between
different many-body states and are generally applicable only
in the limit of extremely weak molecule-contact coupling,
when the characteristic relaxation time is much shorter than
the time between electron transitions. Finally, a recently



proposed NEGF approach based on many-body states?! uses
the Keldysh equation without justification.

Here, we present a different approach to computational
molecular electronics. The consideration is based on the
Hubbard GF method developed by Sandalov and co-workers
for description of equilibrium mixed-valence compounds,*
and applied later to elastic**?** and inelastic transport> within
simple model calculations. This work is the first step toward
the implementation of the method for realistic first-principles
type calculations. The method utilizes N-electron many-body
molecular states as the basis for transport calculations, with
functional derivatives in auxiliary fields playing the role of
perturbation expansion in the standard nonequilibrium dia-
grammatic technique (for a detailed description, see refs
23—25). These many-body states can be calculated at any
desired level of electronic structure theory for the equilibrium
isolated molecule, and electronic excited states and different
charge states can be treated naturally. This provides us with
the ability to systematically improve the treatment of
molecular states and examine the effect on the calculated
conductance. Additionally, correlations between different
interstate transitions (induced by coupling to contacts) are
included in the final result within a perturbative self-
consistent procedure. The method is able to predict the
impact of particular electronic transitions between many-
body states on the transport. The generalized ME approach?
is obtained as a limiting case, when both space and time
correlations are disregarded.?

In the following, we focus on a classic transport system,
benzene-1,4-dithiol (BDT) between gold electrodes, which
was extensively studied experimentally with both mechani-
cally controlled break-junctions (MCBJs)?*?7 and scanning
tunneling microscope break junctions (STMBIJs).??° We
perform electronic structure calculations at the Hartree—Fock
(HF), DFT, and coupled-cluster singles and doubles (CCSD)
levels. The calculation of self-energy terms is implemented
with a Newns—Anderson tight-binding model.*® Our results
show that high-level electronic structure treatment is neces-
sary to properly treat the internal structure of the molecular
wire. We are able to reproduce the features that have been
experimentally reported in finite-bias conductance measure-
ments.

First, we briefly outline the state-based approach to
electronic transport, which has been developed more fully
elsewhere.?>”? We begin with the usual Hamiltonian for a
molecular junction,

A= ) gée,+0,+0, (1)
ke {L,R}

where ¢}/¢; are the creation/annihilation operators for elec-
trons in the contacts. The first term describes the left and
right contacts, the second term is the isolated molecule
Hamiltonian, and the last term allows transport via coupling
between the contacts and molecule subsystems.

We use many-body states, IN,i) (N represents the charge
state of the molecule and i the different electronic excitation
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states in the charge block), as a basis and introduce the
Hubbard X operators

)A((N,i;N',i’) = IN, XN, i'l )

to describe transitions between these states. In the basis of
molecular states of the isolated molecule, the molecular
Hamiltonian takes the form

HM = ZENJX(NJ;N,I') 3)
IN.i)

where Ey; are the molecule’s energy eigenvalues. The
transfer Hamiltonian can then be written

A=Y YV &R, + he (4)
ke {LR} 1/

where .7/ = (N,i;N + 1,j) represents a transition from IN +
1,/)—IN,i) (electron loss accompanied by change in electronic
excitation index) and

Vo= X VNl IN + 1)) (5)
meM

where the sum is over single electron basis i, d,, is the
annihilation operator in the state, and M indicates the
molecular subspace of the system. Below, we utilize m as
an index for atomic orbitals. Equation 4 is the usual transfer
Hamiltonian expressed in the molecular many-body basis.
The coupling matrix element in eq 5 is a sum over the usual
single-electron transitions weighted by the effective overlap
between different many-body states.

The current through the junctions is given as usual®® by
the Meir—Wingreen expression.®! The only difference is that
in our case the trace goes over ./, the single-electron
transitions between many-body states of the molecule. The
steady-state current is

Al dE < > > <
L= % . %Tr[EL’R(E) G (E) — Z[4(E) GX(E)] (6)

where the self-energies, 2, are defined on the Keldysh
contour as

T = Z VZ 78T Vi (7
ke L,R

where g, is the GF for free carriers in the contacts.

The next step is calculation of the molecular GFs. The
absence of Wick’s theorem for the Hubbard operators makes
the diagrammatic technique inapplicable. An alternative is
the use of the functional derivatives in auxiliary fields
approach,* which results in a hierarchy of approximations
for the Hubbard GF in terms of the order of functional
derivative taken. In what follows, we use the first loop
approximation (for details, see, e.g., ref 25).
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Having established the current expression and method for
calculation of Hubbard GFs, we need the energy eigenstates
and the self-energies. For the eigenstates, we focus on the
energy levels in the isolated BDT molecule (no gold). To
explore the impact of electronic structure theory accuracy
on conduction results, we use a variety of methods. The
neutral and anion charge states are chosen (other ionic states
were significantly higher in energy), and the ground and first
three excited states are included for each charge state. HF
(restricted HF/unrestricted HF) calculations are carried out
with the 6-31+G** basis set, and excited-state energies are
obtained with configuration interaction singles (CIS). DFT
(B3LYP, restricted KS/unrestricted KS) calculations are
carried out with the 6-314+G** basis set, and time-dependent
DFT (TDDFT) yields the excited-state energies. CCSD
calculations are carried out with the aug-cc-pVDZ basis set
and equation-of-motion method for excited states.** Recent
work suggests* that, to accurately capture the electron affini-
ties in benzene systems, fairly rigorous electronic structure
theory and large basis sets are necessary, and so our choice
of CCSD/aug-cc-pVDZ seems reasonable. Calculations were
carried out with Q-Chem 3.1 (HF,DFT,CCSD) and Molpro
2006.1% (CCSD). The geometry optimized neutral structure
of BDT (MP2, 6-314+G**) is used in all calculations. The
energy levels are positioned relative to the contact Fermi
level, and here we take Er = 0.4 eV, which corresponds
approximately to half of the gap between the neutral ground
and anion ground (the closest molecular state). The temper-
ature in the leads is 300 K, consistent with the room
temperature measurements.??’

The self-energies are defined in eqs 5 and 7. Vj,, are the
matrix elements representing electrode/molecule coupling,
and these terms are calculated as usual by transforming from
the atomic to molecular orbital basis. The matrix elements
of the form (N + 1,jld},IN,i) are not in the usual NEGF
treatment of transport and are a consequence of our state-
based approach; they represent the overlap between electronic
states with different electron occupation. For the sake of
simplicity (to avoid having to code the matrix elements above
within the coupled cluster equations), we use the same self-
energy calculation for all energy eigenstate calculations (HF,
DFT, CCSD). This approximation should be examined
closely, and we will attempt higher-order treatment of these
matrix elements in further work. For now, however, we use
the KS orbitals from ground-state DFT calculations in order
to calculate the quantities in eq 5 (i.e., the self-energies for
neutral-anion transitions with different electronic excitation
indices are assumed to be the same). For the g; term, we
make use of the semielliptical Newns—Anderson result*® for
the self-energy of a one-dimensional tight-binding model.
This model has been used in molecular conductance calcula-
tions before,””* but we emphasize that higher level treat-
ments of the electrode—molecule coupling could be carried
out within this model. Therefore, we take benzene-1,4-
dithiolate with one gold atom on each side (with Hay—Wadt
effective core potential®® for the gold atoms) and the S—Au
bonds collinear. Since only MCBJ results®?’ are available
for the finite bias conductance of this system, we assume
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Figure 1. Electronic energies at different levels of theory relative
to the neutral ground state (Ny). Three lowest-lying neutral excited
states (N;,3), the anion ground state (A,), and the anion excited
states (A,3) are shown. Details of the calculation are in the text.

the gold—sulfur bond lengths are asymmetric (3 and 6 A).*°
Accordingly, we can assume the voltage drop is entirely
across the more weakly coupled S—Au interface, and thus,
we only need to calculate the electronic eigenstates at zero
field. The symmetric results are available in the Supporting
Information. The sums over k,k” and m,n are restricted to
the atomic gold valence orbitals and the sulfur orbitals,
consistent with the assumptions of the Newns—Anderson
model.

We begin by presenting the electronic energy levels of
the isolated BDT molecule at different levels of theory
(Figure 1). The results show that considerable differences
emerge as electronic structure treatments are improved. In
particular, the DFT/TDDFT results underestimate both the
neutral-anion energy gap as well as the excitation spectrum.
This suggests that qualitatively different conductance spectra
will emerge from these electronic structure treatments. In
particular, the neutral-anion ground-state gap (Ny — Ag) of
BDT requires large basis sets: CCSD/cc-pVDZ yields an
electron affinity (EA) that is off by 0.7 eV as compared to
CCSD/aug-cc-pVDZ. Our CCSD result for the EA in BDT
(—1.09 eV) is very close to the electron transmission
spectroscopy measurement for benzene (—1.12 eV).*!

Combining these electronic structure calculations with the
self-energy terms yields the conductance (d//dV) of the
asymmetric gold—BDT—gold system at different levels of
theory (ignoring the role of vibronic coupling). In Figure 2,
we present these results and plot the conductance contribu-
tions from various electronic transitions. The doubly peaked
structure seen by both Reed et al.?® and Lortscher et al.?” is
reproduced here in the CCSD calculations and is due to
transitions between the neutral ground state (N;) and the
anion ground (Ao) and first excited state (A;) for the first
peak and between N, and A, for the second peak. The HF
calculation also presents this double peak structure but
originates from transitions between Ny and A, (first peak)
and Ny and A (second peak). The DFT calculation results
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Figure 2. Conductance of the asymmetric BDT junction at various
levels of theory. Total conductance as well as contributions from
each state-to-state transition are shown. HF (a), CCSD (b), and DFT
(c) results are shown. Other state transitions did not contribute
significantly and are not shown.

in a single peak structure due to the underestimation of the
anion excited-state energies in the TDDFT calculation.*? For
small, localized systems, such as BDT, it is not surprising
that HF performs better than DFT methods due to large self-
interaction error.** As expected, DFT overestimates the
conductance due to the lower anion energies. This might be
responsible for the overly large conductances found in
traditional DFT-NEGF calculations of conjugated molecular
wires.*

Given a reasonable set of parameters for the geometry of
the junction (asymmetric Au—S bonds), we have been able
to reproduce the qualitative features of the finite-bias
conductance measurements in MCBJ experiments.?®?’ Other
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computational treatments have been able to reproduce
qualitatively the two peak structure of the BDT conductance
spectrum. These have been based on Lippmann—Schwinger-
based methods,* semiempirical Landauer treatments with
two benzene molecules bridging the electrodes,*® and equi-
librium GF methods.*’ The state-based approach presented
here, however, has the advantage of providing a hierarchy
of improvements in the treatment of the molecule (electronic
structure theory) and its coupling to the contacts (higher order
functional derivatives), as well as the ability to indicate which
transitions dominate the transport at each bias.

In future work, we intend to apply this method to study
molecular junctions in which oxidation/reduction of the
molecule leads to essential changes in its transport properties,
such as negative differential resistance and hysteresis.*®

Acknowledgment. S.Y. is grateful for support from the
Office of Naval Research through a NDSEG fellowship.
M.A.R. thanks the NSF for support through the Chemistry
Division and the MRSEC program. M.G. gratefully acknowl-
edges support from the UCSD Startup Fund. This work was
performed, in part, at the Center for Integrated Nanotech-
nologies, a U.S. Department of Energy, Office of Basic
Energy Sciences user facility at Los Alamos National
Laboratory (Contract DE-AC52-06NA25396). The research
of A.N. was supported by the Israel Science Foundation, the
U.S.-Israel binational science foundation, and the German-
Israel Foundation.

Supporting Information Available: Electronic structure
calculations and conductance results for the symmetric
junction. This material is available free of charge via the
Internet at http://pubs.acs.org.

References
(1) Buttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. ikt 1985,
31, 6207-6215.
(2) Stokbro, K.; Taylor, J.; Brandbyge, M.; Ordejon, P. jniiiinmm
Sci. 2003, 1006, 212-225.
(3) Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W_; Siddiqui, L.; Datta,
S. inflmseitia. 2005, /23, 064707.
(4) Reimers, J. R.; Cai, Z. L.; Bilic, A.; Hush, N. S Ann. N.Y. deddmtai.
2003, 1006, 235-251.
(5) Galperin, M.; Ratner, M. A.; Nitzan, A.; Troisi, A. Sgigucg 2008, 379,
1057-1060.
(6) Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge
University Press: Cambridge, 1995.
(7) Koentopp, M.; Burke, K.; Evers, F. iiiiibinlt 2006, 73, 121403.
(8) Ke, S. H.; Baranger, H. U.; Yang, W. jonfsisiiins. 2007, /26,
201102.
(9) Toher, C.; Sanvito, S. jiiuieitiadg 2008, 77, 155402.
(10) Toher, C.; Filippetti, A.; Sanvito, S.; Burke, K. jiniinsinag. 2005,
95, 146402.
(11) Krstic, P. S.; Dean, D. J.; Zhang, X. G.; Keffer, D.; Leng, Y. S;
Cummings, P. T.; Wells, J. C. AN 2003, 28, 321-
341.
(12) Neaton, J. B.; Hybertsen, M. S.; Louie, S. G. jiinig. 2006,
97, 216405.
(13) Bonca, J.; Trugman, S. A. . 1995, 75, 2566-2569.
(1) ron Torres, 1 . s Roche- & NN
2007, 86, 283-288.
(15) Wang, J.; Lu, X.; Wu, C. Q. | NNINIINEQN 2007, /9,
496216.
(16) Zazunov, A.; Feinberg, D.; Martin, T. Sl 2006, 73, 115405.
(17) Jean, N.; Sanvito, S. kit 2006, 73, 094433.
(18) Delaney, P.; Greer, J. C. i 2004, 93, 036805.
(19) Harbola, U.; Esposito, M.; Mukamel, S. iiiimitaiinl 2006, 74, 235309.

1773


http://pubs.acs.org/action/showImage?doi=10.1021/nl803635t&iName=master.img-001.jpg&w=200&h=477

(20) Muralidharan, B.; Siddiqui, L.; Ghosh, A. W. | NN

2008, 20, 374109.

(21) Bergfield, J. P.; Stafford, C. A. 2008, arXiv:0803.2756. arXiv.org
e-Print archive. http://arxiv.org/abs/0803.2756.

(22) Sandalov, L.; Johansson, B.; Eriksson, O. | . 2003,
94, 113-143.

(23) Fransson, J. Sdiieibsinlt 2005, 72, 075314.

(24) Sandalov, I.; Nazmitdinov, R. G. biteltilt 2007, 75, 075315.

(25) Galperin, M.; Nitzan, A.; Ratner, M. A. pbiiimigimi 2008, 78, 125320.

(26) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Sgigucg
1997, 278, 252-254.

(27) Lortscher, E.; Weber, H. B.; Riel, H. jinnsimgi 2007, 98, 176807.

(28) Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Mgiaubgh 2004, 4, 267-271.

(29) Reddy, P.; Jang, S. Y.; Segalman, R. A.; Majumdar, A. Sgiguce 2007,
315, 1568-1571.

(30) Newns, D. M. RlamRgs 1969, /78, 1123-1135.

(31) Meir, Y.; Wingreen, N. S. isinimg 1992, 68, 2512-2515.

(32) Kadanoff, L. P.; Baym, G. Quantum Statistical Mechanics; W. A.
Benjamin, Inc.: New York, 1962.

(33) As a result of memory issues, the ground states were calculated with
aug-cc-pVDZ, but excited state energies were calculated with cc-pVDZ
and renormalized to their ground state energies.

(34) Hajgat6, B.; Deleuze, M. S.; Tozer, D. J.; Proft, F. D. iy
2008, /29, 084308.

(35) Shao, Y.; et al. | NN 2006, 8, 3172-3191.

1774

(36) Werner, H. J. et al. MOLPRO, version 2006.1, a package of ab initio
programs; Cardiff, UK, 2006.

(37) Hall, L. E.; Reimers, J. R.; Hush, N. S.; Silverbrook, K. kgl
Ll 2000, 772, 1510-1521.

(38) Mujica, V.; Kemp, M.; Ratner, M. A. jufsiasusiiiang. 1994. /01, 6856—
6864.

(39) Hay, P. J.; Wadt, W. R. jnflassitian. 1985, 82, 299-310.

(40) Stokbro, K.; Taylor, J.; Brandbyge, M.; Mozos, J. L.; Ordejon, P.

. 2003, 27, 151-160.

(41) Burrow, P. D.; Michejda, J. A.; Jordan, K. D. oy 1987.
86, 9-24.

(42) We note that, in ref 45, DFT is used, and two peaks are seen in the
conductance. The disagreement with our DFT results could be due to
different basis sets.

(43) Thygesen, K. S.; Rubio, A. il 2008, 77, 115333.

(44) He, J.; Sankey, O.; Lee, M.; Tao, N.; Li, X.; Lindsay, S. Lguaday
Riscuss. 2006, 131, 145-154.

(45) Di Ventra, M.; Pantelides, S. T.; Lang, N. D. i 2000,
84, 979-982.

(46) Emberly, E. G.; Kirczenow, G. sl 2001, 87, 269701.

(47) Wang, C. K.; Fu, Y.; Luo, Y. HEEEEGE. 2001, 3, 5017
5023.

(48) Wu, S. W.; Ogawa, N.; Nazin, G. V.; Ho, W. it 2008,
112, 5241-5244.

NL803635T

Nano Lett.,, Vol. 9, No. 5, 2009



