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The decay of an oscillator and a two level system into a general heat bath is studied using a
truncated cumulant expression for the time evolution operator. Expressions for the decay rate in the
weak coupling and rotating wave approximations are derived, and the temperature dependence of the
rate examined in all cases. We find the temperature dependence to be strongly dependent on the

nature of the system and bath.

I. INTRODUCTION

The harmonic oscillator and the two level system,
when weakly coupled to heat baths, have been widely ap-
plied as models for studying quantum relaxation phenom-
ena.!=® Relaxation of a harmonic oscillator is used as a
model for studying decay of optical modes in laser and
maser cavities,!® vibrational relaxation in molecules
interacting with their surroundings,? and relaxation of
phonons in solids due to anharmonic interactions.® Re-
laxing two level systems are encountered in spin lattice
relaxation problems* and also in most of the studies on
atomic and molecular electronic transitions when one
focuses attention on only two particular levels,?

Theoretical studies of these relaxation phenomena have
utilized both stochastic methods using phenomenological
rate laws® and approximate solution of the equations of
motion obtained from various model Hamiltonians, -

In this paper we study these processes by applying

Kubo’ s” cumulant expansion method to the time evolution
operator of the system. This approach enables us to
obtain approximate results for the time evolution of a
harmonic oscillator or a two level system in contact with
a thermal bath of general nature. This generalizes the
results of recent work? which considered only a bath of
harmonic oscillators, and is equivalent to the earlier
work of Senitzky.® The present derivation is much sim-
pler than that of Senitzky and leads to a simple general
expression for the relaxation rate in terms of an equi-
librium time correlation function in the bath operators.
It also provides a better understanding of the approxima-
tions invoked in previous work.

We first study the relaxation of a harmonic oscillator.
We then repeat the derivation for the relaxation of a two
level system. Next we investigate the expressions ob-
tained for the decay rates, in particular their tempera-
ture dependence, for different types of baths. Finally
we discuss the application of our results to radiative de-
cay processes,

Il. RELAXATION OF A HARMONIC OSCILLATOR

Consider a system characterized by the Hamiltonian

H=Hy+V , (1a)
Hy=ea'@+Hy , (1b)
V=F'g+Fa' , (1c)

where @' and @ are creation and annihilation operators
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for the harmonic oscillator, and € is its frequency; Hyg
is the Hamiltonian of the free thermal bath, F is an op-
erator in the medium’s degrees of freedom, F' is its
Hermitian conjugate., The oscillator-bath coupling is
assumed to be of the form (lc). The operators F and F'
are assumed to have no diagonal matrix elements in the
bath eigenstates. 7 is taken to be 1 throughout the cal-
culation.

We shall be interested in the time evolution of the
population of the oscillator which, for the free oscil~
lator, is given by the expectation value of the operator.

n=a'a . (2)

The meaningful quantity for an oscillator coupled to a
heat bath is the thermally averaged operator

() =trp (px'n) , 3)

where p%' is the equilibrium density operator of the bath
and tr 5 denotes the trace over bath states. We now con-
sider the time evolution of this bath-averaged operator.
Starting from the Heisenberg form of the population op-
erator written in the Liouville operator notation, we
have

n(t)=expGH*)n (H*A=[H,A)) , (4)
we separate H; and V in the standard way
exp(iH™) = exp, [ifot V¥(r)dT)expGHjt) , (5)

where exp, denotes a time ordered expotential. Noting
that

exp(GHit) @' 6= exp(H,t) @' exp(- iHt)=a'a (6)
we obtain
n(t)=exp, [ifo‘ vi(r)dr]a'a )

and, taking the thermal average over a canonical ensem-
ble of bath states

(@) =Cexp[i [ Vi(r)dt]y @' @ (8)

Next we make a cumulant expansion’ of the thermally
averaged quantity

<expo[i fot V"(T)d'r]>= expa[ 2; foth%‘@] ) (9)

where Ki(r), n=1, 2... are the cumulants and the order-
ing prescription is given below. In particular Ki(7) is
equal to ¢(V*(7)} and vanishes as the bath operators F

and F' have no diagonal matrix elements in the bath ei-
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genstates representation, The second cumulant is given

by

Ki(rydr==2 [T(V¥(@) V(' hdr . (10)
We now assume that the coupling is weak enough to ne-
glect higher order cumulants, Thus

(exp, [ f V*(r)dr]) = exp, [3 f Ki(m)] . (11)

For the cumulant expansion (9), the ordering prescrip-
tion is chosen such that®

:;t[expoj —n—d:\
:expou ;Eﬂ-l)dv][?%ﬁ(t)} . (12)

Following this prescription we thus have

dt<expo[ [ ") dTD
~(ex s [ vinrar|)izkzon . (13)

Equations (8) and (13) then lead to
Loty (e [Voar)imnate. o)

Note that up to this point we have not used any property
of the operator @'@. Equation (14) may thus be used as
a starting point for a general derivation.

Next we calculate the factor 3 K3(t) a'a appearing in
Eq. (14);

ikt ata=- ['dr(v¢)vi(r)ate (
15)
- fo'dr([V(t), (v(r), a'a]]
Here
V(t)= F'(t) @ exp(~ iet)+ F(t) @t expliet) . (18)

Utilizing the commutation relations of the operators @
and @', the commutators in Eq. (15) may be disen-
tangled., This leads to

1Kit)a'a= (A, +4,) a'a+A,aa+A,aTa v Ag+ 4y , (A7)

where
A== ['drexplict- D)[FE), F(7)]) (18a)
Ap= f(,‘dTeXP[—ie(t- TK[F'e), F(r)]), (18b)
=— [larexp[-iet+ DIFE), F'@)]),  (18c)
A= [ darexplict+ DI(FG), FOD) (18d)
Ag= ['drexpliclt - II(F' (T F(t) (18e)
Ag= ['drexpl-iet- DIF' O F@) . (18f)

The contribution of the terms A; and A, is expected to
be small and these terms will be neglected. This is
equivalent to the rotating wave approximation involved
in previous works.? The equilibrium time correlation
functions appearing in Egs. (18) depend only on the time
displacements between their parameters,

(A()B(1) = (At~ 1) BO)=(AQ) B(r-¢t)) . (19)
Using this property it is easy to show that

B(t)=- (A, +4,)= [ dTexplier)([F(r), F10)])  (20)
C(t)= Ag + Ag= [ dTexplieT)(F'(0), F(r) . (21)

Equation (17) then takes the form

3Ki¢t)ate=-Bt)a'a+C(). 22)
Inserting this result into Eq. (14)and applying Eq. (18)
we get a closed equation for (n{t))

L (niey ==~ BOWEN +CO) . 23)

We now assume that the bath correlation time is much
shorter than the inverse relaxation time. Equation (23)
may then be recast in the form

L ey == Buty +C, 24)
where
B=B(x); C=C(»), (25)

The solution of Eq. (24) subject to the initial condition
7n(0)=n is given by

() = (C/B)+[n~ (C/B)]exp(- Bt) (26)
in which the decay rate is

B-= f;d-r exper){{F(r), F1(O)]) 27)

and the equilibrium (¢ = =) solution is

_C _[[LdTexplen)(F(T)F'O) .|
() [L,,dTexp(zET)(F"(o TF(r) " 1]

= (exppe ~ 1) (28)

which indeed characterizes a thermally averaged boson
population, In the last step in Eq., (28) we have used the
well known identity

f drexplieT)(A(T) B{0)) = exp(Be) f dTexplieT){BO)A(T)
(29)
for any two operators A and B,

The same method can be applied for obtaining the time
evolution of operators other than = @'@. In particular
for the operator e*"=¢“%'® (where a is a number) which
is the generating function for higher powers (@T@) of the
population operator, this procedure leads to the follow-
ing partial differential equation for (e*™¥}.

7 (") = Bla)zz ()~ Cla)e™™ ), 60)

where

B(a)ze“"(l—e“)[:dTexp(iE'r)([F(T), Fo)l), (31)

Cla)=(1-e*) [~ drexplieT)(F'0)F(r)) 32)
and where
[4,B],=AB- BAe™ . (33)

Equation (30) is to be solved under the initial condition
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(=00 = %" g®@ '@ The equilibrium solution is easily

obtained from the ordinary differential equation,

3

Bla) P

(exp [an(=)])- Cla)) (exp[an(=)])=0 (34)

which leads to

exp(Pe)-1

exp(Be)— expla) ®5)

{exp[an(=)]) = (exp(a@’@ ;.. =

For the operators @ and @' themselves, we can again
repeat the same procedure to obtain

d(a(t)/dt=—B,(at)) ; (att)=aexp(- Bt) (36a)
d{@'(t)/dt == B,(a'(t) ; (@'(t) =@ exp(- Byt),  (36b)
where
B, = [Ydrexper)((F(r), F'Q)]) , (37a)
B,= [ drexplier)([F(r), F10)]) . (37b)

Note that B, =B and B, + B,=B. From this we can ob-
tain the Green’s function associated with the relaxing
oscillator,

G(t)=—i6(t)(@(0)a’t)=-i6()[n(0)+1]exp(- Byt) ,

(1, =0 (38)
9(t)= 1
0, #<0
which is related, e.g., to the line shape by
L(E)<Im [~ exp(iEt)G(?) 39)
giving
L(8) Re By (40)

“{E-ImB,)'+ (Re B,

Re B, = B/2 is half the decay width while Im B, is a re-
normalized oscillator frequency (for explicit expressions
see Ref. 2a).

We end this part of our discussion by summarizing the
assumption and approximations employed in the present
approach. These are

(1) The weak coupling limit is invoked in neglecting
higher than second order terms in the cumulant expan-
sion, Eq. (9).

(2) The rotating wave approximation is employed in
neglecting the highly oscillating terms A, and A, [Eqgs.
(18c-d)].

(3) The Markoffian assumption is invoked in replacing

Eq. (23) by Egs. (24), (25).

In other equivalent treatments of this problem??® a
random phase approximation has been used instead of
the weak coupling assumption. It is seen that both ap-
proximations lead to identical results,

There is another route to get to the same result as
above, which depends on a projection operator proce-
dure. This has been employed successfully in the theory
of Brownian motion.'® In this method, one derives an
exact equation of motion for {(n{¢)), which contains a cor-
relation function (FF()) of the same form as above ex-
cept that the zeroth order time development operator has

been replaced by a modified operator, exp((1- P)Ht),
where P is a suitable projection operator. Except in the
case of completely harmonic systems where it is possi-
ble to show that this modified propogator can be replaced
by the zeroth order term, itis extremely difficult to use
this exact form. Some perturbation schemes have been
employed® but the usual (weak coupling) procedure is to
simply replace the modified propagator by the zeroth
order propagator. This then reproduces our results
when the rotating wave and Markoffian approximations
are employed.

. RELAXATION OF A TWO LEVEL SYSTEM
We now consider the Hamiltonian

H=Hy+V, (41a)
Hy=e;|1)(1] +e,]2) (2| +Hp (41b)
v=Flnel+Fl21], (41c)

representing a two level system with states | 1), [2) and
corresponding energies €¢;, €;, interacting with a heat
bath characterized by the same operator Hy, F, F!, as
before. The unperturbed Hamiltonian H,, Eq. (41b),
may be simplified by noting that

al (1] rel2) (2 =€ €[22 (42)
where

€=€;—€; . (43)
The constant ¢; may then be disregarded; Eg. (41b)is
thus replaced by

Hy=e|2) (2| +Hy . (44)
For brevity we make the notations

l2y@i=pP , (452)

Inel=e (45b)

l2y(1]=¢" . (45¢)
In terms of the operators P and € we now have

Hy=¢P+Hy (46a)

V=F @+ FQ' . (46b)

The following commutation relations follow directly from
the definitions (45):

[QT;P]:_ QT y (473)
[@,Pl=Q, 47b)
[@'Q]=2P-1; Q'@=P . (@7¢c)

We shall study the thermally averaged time evolution of
the operator P, We may start from Eq. (14) by replac-
ing a'a by P,

L (P4)=(exp,li [ V(r)ar]) LKEO P (48)

The analogs of Eg. (15) and (16) are now

L1Ki¢) P=~ fO‘dT(V"(t) Vr)H P
, (49)
== [ ar([ve), [v(n), PID ,

W¢) = F*(¢) Q exp(- iet) + F(t) Q' explict) . (50)
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Inserting Eq. (50) into Eq. (49) and applying relations
(42), then neglecting terms with highly oscillating inte-
grands and making use of relations (19) in simplifying
the remaining terms, we finally get the analog of Eq.
(22),

5Ki(t)P=-B'(t)P+C'(t) ,

where the function C’(#) is identical to the function C(#),
Eq. (21), but the function B'(¢) is different from B(?),
Eq. (20), in that the commutator in Eq. (20) is replaced
by an anticommutator

(51)

B’(t):f_:dTexp(ieT)({F(T), Fo)) (52)
c'{¢t)= j::dfexp(ie‘r)(F'(O)F(T)) ] (53)

Equations (51) and (48) now lead to
d{P@)/dt=-B(PEt)+C" |, (54)

where here again we make a Markoffian approximation in
replacing B'(t) and C’(¢) by B’ = B'(«) and C’ = C’ ().
Equation (54) with the initial condition (P(0)) = P yields
the final solution

(PN =(C'"/B')+[P~ (C'/B')]exp(- B't) (55)
with the decay rate
B' = [~ drexplier)({F(r), F'(O)}) (56)

and an equilibrium { = =) solution

_C_'__{L:dfexp(ier)(F(T)F’(o)) ]'1
B | [ZdrexplGer)(FO)F (7)) "

= [exppe + 1] (57)

as expected, Note that the time evolution of the generat-
ing function e*® is easily obtained from the identity

) n
e""’=1+PZ)9——=1+P(e°‘— 1)
minl

which yields
(exp(aP(t))) =1+(P@t) (e*-1) . (58)

Analogously to the time evolution of the averaged op-
erators (@) and (@" studied in the previous section, we
can obtain expressions also for the evolution of the op-
erators (@) and {Q". Starting from Eq. (49) with @ re-
placing P we get in the same way

HOUD . _ piee) ; (@EN-Qexpl-Bi) ,  (9a)
'l
KEED__ 50 ; (@D - expl- B), (9D)
with
B,= ['arexplen)({F(r), F'O}) (602)
B}= ["drexplier)({F(r), F1O)}) . (60b)

This leads to the following expression for the time de-
pendent Green’s function:

G(t)=-i6()(Q(0) Q")) = exp(~ Byt) (61)

and to the line shape function

BI
(E-Im B, + (L B')

L(E)e (62)

IV. TEMPERATURE DEPENDENCE OF THE DECAY
RATES

Equations (27) and (56) together with the identity (29)
yield the following forms of the relaxation rates: for the
harmonic oscillator

B=[exp(Be) - 1] [ dt expliet) (F'(0) F(¢) (63)

and for the two level system

B’ =[exp(Be)+1] [ dt explie) (F}(0) F(t) . (64)

The difference in the pre-integral factors indicates a
difference in the temperature dependence of the two rates
(for the same bath) which disappears in low temperature

'B",=—'5;—1- . (65)

To obtain explicit expressions for the temperature de-
pendence of the relaxation rates we have to study specific
models for the bath and for the coupling operator F, A
model employed recently by Nitzan and Jortner? for
studying vibrational relaxation of molecules imbedded
in solid matrices take the bath as a collection of har-
monic phonons and the coupling operators as

F=),G,B,; F'=2,G!B} , (66)
14 v
where v is a set of phonon indices, G, are coupling con-
stants, and where
B, EIVI b, 67)
in which b, are phonon annihilation operators. Within

this model, the time correlation function in Eqs. (63)
and (64) becomes

FO F 0 =T |6, T (6}5,) exp [- z<2w>t] (68)
and the rate becomes

5,803 |6, oe- Do, {lemian) - 1]
(69)

where the upper signis for B andthe lower for B’. The ex-
pressionfor Bwas recently studied by Nitzan, Mukamel,
and Jortner.%® A particularly simple result is obtained
for an Einstein type model where all w, are taken as con-
stants w,=w in Eq. (69). Then the temperature depen-
dent parts of B and B’ are simply

B,B'~ (e x1)/(e® - 1)V | (70)
where
N=¢/w ()

is the number of bath phonons participating in the transi-
tion. The approximation (70) fits well the experimental
results of Legay et al.'® on the temperature dependence
of the vibrational relaxation rates of matrix isolated NH,
and CO molecules. It should be pointed out that these
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experiments were performed in low temperatures

(5°< T'<30°) and cannot distinguish between the expres-
sions for B and for B’, as both converge into the same
low temperature limit. The difference between B and
B’ will become significant for k7> €. It is interesting
that this quantum effect becomes significant in the high
temperature limit,

In a recent paper, Rackovsky and Silbey®® have dis-
cussed a particular relaxing two level system {as a mod-
el of electronic energy transfer) into a phonon bath, In
this case, the coupling operator is given as

erxp{Z:/G,, (6, - bz)}

- <exp{? G,(b, - bl)}> . (72)

Thus this form contains a sum of many terms like that
of Eq. (66). For this case, it is found that there is
again a marked dependence on N(= €/w). Recently,
Abram and Silbey® have extended this to include elec-
tron phonon coupling operators which are diagonal in

two level (electronic) system. In these papers, an ad-
ditional coupling between the two levels which is inde-
pendent of the bath variables, is also postulated. This
makes only a minor modification in the calculation of the
rate of decay.

A different possible model for a thermal bath is a bath
composed of two level systems. Equation (68) will re-
tain its form but the operators b, and b} are now fermion
annjhilation and creation operators. Egquation (69) will
be replaced by

-1
B,B'=(¢* n)? lc,|%6 (e -Zy?w,,){rul [exp(Bw,) +1]} (73)

and the Einstein approximation results now in

B, B ~(e®*F1)/(e®+1)" . (74)

As an example consider the case of one quantum decay
[N=1, w=€in Eqgs, (70) and (74)], This is usually the
case where the bath is the radiation field and also when
the bath is a solid whose Debye frequency is larger than
€. In this case we get the following results.

(a) A phonon bath: the decay of a harmonic oscillator
is temperature independent. The decay of a two level
system is temperature dependent for 7= €, and be-
comes proportional to 7 in the high temperature limit.

(b) A bath of two level systems: the decay of a two
level system is temperature independent while that of a
harmonic oscillator becomes inversely proportional to
T in the high temperature limit,

V. RELAXATION IN A RADIATION FIELD

As was mentioned in the previous section, radiative
relaxation is included in our theory as a particular
case--a one quantum relaxation (neglecting multiphonon
processes) of a system in contact with a boson bath,
For our purpose the field is adequately described by the
Hamiltonian

Hy :?;wv bib,, (75)

and the coupling operators are

F=21G,b, ; F'=2,G¥b} . (76)
v 14

v o

Equation (76) leads to the following expressions for the
correlation functions appearing in Egs. (17) and (52)

(F), FO)=216,[* exp( icw,) @7
dr(r), FO}) =216, [*exp(~iw,7) (@2, +1),  (78)

where
n,={blb,) (79)

is the average number of photons in the mode v, The
radiative relaxation rate of a harmonic oscillator is now
obtained from Egs. (27) and (77)

B=21|G,|?5(e-w,) (80)

while the radiative relaxation rate of a two level system
is [from Eq, (52) with ¢=«~ and Eq. (78)]

B’=.§)IG,,]2(2n,,+l)6(<—w,,) . (81)

Note that Eqs. (78) and (81) were obtained using the as-
sumption that the density operator of the field is diagonal
in the number representation. An alternative descrip-
tion of the field such that its density operator is diagonal
in the coherent state representation leads to a similar
result with n, replaced by |a, %, a, being the coherent
state amplitude of the mode v.

Equation (80), originally obtained in this form by
Glauber and Arecchi, ** indicates that, to the approxima-
tions employed in this paper, stimulated processes do
not change the radiative relaxation rate of a harmonic
oscillator. On the other hand, the radiative relaxation
rate of a two level system, Eq. (81) contains, as ex~
pected, a term proportional to the radiation intensity
which results from stimulated emission and absorption.

Vi. FINAL REMARKS

In the above discussion, it has been shown how to cal-
culate the rate for an oscillator or a two level system
decaying into a bath of oscillators or two level systems.
The calculation is approximate, but should be valid in
the weak coupling limit as long as the rotating wave ap-
proximation is also valid. The temperature dependence
of the rate calculated in this manner is strongly depen-
dent on the nature of the system and its heat bath, The
four possible cases are summarized in Egs. (70) and
(74). Since the temperature dependence is so different
for these cases, it is hoped that further experiments
over larger temperature ranges will lead to further
testing of these simple, yet physically appealing models.
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