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We describe a new grid-based �or localized orbital-based� method for treating the effects of
exchange and correlation on electronic transmission through a molecular target where there are
initially other bound electrons. Our algorithm combines the approaches of �i� solid-state grid-based
algorithms using self-energies and �ii� the complex Kohn method from electron-molecule scattering.
For the general problem of a molecular target with n-electrons, our algorithm should ideally solve
for electronic transmission with a computational cost scaling as n2, although the present
implementation is limited to one-dimensional problems. In this paper, we implement our algorithm
to solve three one-dimensional model problems involving two electrons: �i� Single-channel resonant
transmission through a double-barrier well �DBW�, where the target already contains one
bound-state electron �Rejec et al., Phys. Rev. B 67, 075311 �2003��; �ii� multichannel resonant
transmission through a DBW, where the incoming electron can exchange energy with the bound
electron; �iii� transmission through a triple-barrier well �TBW�, where the incoming electron can
knock forward the bound electron, yielding a physical model of electron-assisted electron transfer.
This article offers some insight about the role and size of exchange and correlation effects in
molecular conduction, where few such rigorous calculations have yet been made. Such multibody
effects have already been experimentally identified in mesoscopic electron transport, giving rise to
the “0.7 anomaly,” whereby electrons traveling through a narrow channel pair up as singlets and
triplets. We expect the effect of electronic correlation to be even more visible for conduction through
molecules, where electrons should partially localize into bonding and antibonding orbitals.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2988495�

I. INTRODUCTION

From a quantum mechanical perspective, the conduction
of electrons through a microscopic junction is fundamentally
related to the time-independent scattering states traversing
the molecule. Indeed, one may describe a metal-molecule-
metal junction under voltage as a molecule with large contact
reservoirs of electrons on its left and right, each of which is
filled up to its respective Fermi energy. According to the
Landauer formula,1,2

I =
2e

h
�
nm
�

−eV/2

eV/2

Tnm�E�dE , �1�

the current through the molecule �I� is proportional to the
difference in transmission �Tnm� for electronic currents going
in different directions through the junction with incoming
channel n and outgoing channel m. �Here V is the voltage
window.� Thus, in order to calculate the low bias conduction
of a molecule, one needs to compute the transmission func-
tion T�E�, where E is the kinetic energy of the incoming
electron.

Several methods have been advanced for calculation of
this transmission function. Almost always, these have single
electron character in which the effects of wave function an-

tisymmetry �i.e., “exchange”� and correlation are either ig-
nored or treated on a mean-field level. The error incurred
when approximating these effects for transmission calcula-
tions is difficult to estimate most generally, but quantum
chemistry calculations for molecules in bound states indicate
that these effects can be crucial. Abundant research on mol-
ecules in the gas phase confirms that without properly ac-
counting for exchange and correlation, ground-state and
excited-state energies cannot be obtained to within chemical
accuracy. Exchange and correlation are also important for
accurate descriptions of low-energy electron-scattering ex-
periments. Indeed, current state-of-the-art algorithms for do-
ing three-dimensional electron scattering must account for
exchange and correlation for chemical accuracy. This is done
in different ways for the different three-dimensional electron-
scattering approaches �e.g., the complex Kohn method,3–5

the Schwinger multichannel method,6 and the R-matrix
method7�. In this paper, we will borrow slightly from the
complex Kohn method. According to the Kohn method, one
introduces a basis consisting of Gaussian atomic orbitals
near the molecule and free waves emanating from the center
of the molecule, and then one uses this basis to construct a
scattering wave function. By antisymmetrizing the wave
function and allowing for different bound-state channels �i.e.,
usually excited states� and so-called “closed-state channels”
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�i.e., channels that that do not change the asymptotic state of
the outgoing scattering electron�, the complex Kohn method
accounts for exchange and correlation.

Focusing on the electron transmission problem, there is
growing evidence that state of the art calculations based on
mean-field theories �including density functional theory� fail
to account quantitatively and sometimes qualitatively for
many physical observations and can be very sensitive to the
exchange-correlation functional �e.g., see Ref. 8�. Different
techniques have thus far been introduced for including
electron-electron correlation with varying degrees of success.
Techniques based on Green’s functions and perturbation
theory have been introduced by Ortiz and co-workers,9,10

techniques based on Green’s functions and clever construc-
tion of self-energies by Feretti et al.,11,12 techniques based on
functional renormalization group theory by Meden and
co-workers,13–15 and techniques based on constraining the
Wigner transform by Delaney and Greer.16 This list is by no
means exhaustive.

In this paper, we focus on the Landauer formula for cur-
rent. Even though the Landauer formula is usually derived
from a mean-field one-electron model, if we assume that the
incoming electron has the same energy as the outgoing elec-
tron, the Landauer formula for the current is valid using ad-
vanced electronic structure theories that go beyond the mean
field �and capture electronic correlation�. Thus, when calcu-
lating the elastic transmission of a single electron through a
molecule, one can account for the electronic correlation near
the molecular target by including degenerate bound-state
channels and all closed-state channels, and subsequently
plugging the result into the current formula. In Secs. II and
III of this paper, we take a close look at this issue by per-
forming an essentially exact calculation of electron transmis-
sion through a molecular target, represented by a one-
dimensional double-barrier well �DBW� �first solved in
Ref. 17� or triple-barrier well �TBW� that already contains
another electron. For this two-electron problem, we calculate
electronic transmission using a grid-based algorithm that
fully takes into account the effects of exchange and correla-
tion. We do this for both possible spin cases: The two elec-
trons can have the same spin or opposite spins, and these two
possibilities exhibit very different transmission behavior.

We use a grid-based algorithm for this two-electron
problem for several reasons. First, without a scattering cen-
ter, from which the scattered wave function emanates, the
traditional complex Kohn method is not immediately appli-
cable. Second, calculations based on grid points or localized
orbitals should offer a means for computational savings in
computing matrix elements compared to traditional electron-
scattering algorithms. Third, working with a basis of spa-
tially localized grid points allows us to assess how local are
the effects of electron-electron correlation around the target.

After analyzing the two-electron problem, in Secs. IV A
and IV B, we discuss more generally the role of exchange
and correlation on electronic transmission and electron trans-
fer. We do this in the context of the “0.7 anomaly”18 of
mesoscopic physics, which is usually regarded as an experi-
mental manifestation of electron-electron correlation. Fi-
nally, in Sec. IV C, we hypothesize about an algorithm for

solving the many-electron scattering problem. For the three-
dimensional many-electron problem, we anticipate using lo-
calized Gaussian orbitals in lieu of one-dimensional grid
points. We anticipate that, to a good approximation, the low-
energy scattering problem can be solved accurately �beyond
the mean-field approximation� in a computational time that
scales ideally as the square of the number of electrons. Our
algorithm will rely heavily on all of the tricks of local cor-
relation theory19 from quantum chemistry.

II. THEORY: STEADY-STATE TWO ELECTRON
SCATTERING COMPUTED OVER A GRID

We seek to calculate the wave function describing an
incoming electron as it attempts to pass through a molecular
target, which is initially occupied by another bound electron.
For concreteness, one may consider the target to be a DBW
as in Fig. 2 or a TBW as in Fig. 7. The problem of one
electron passing through an exactly symmetric double well
�initially occupied by another electron� and with one possible
outgoing channel was first solved by Rejec et al.17 Our algo-
rithm below applies to two electrons interacting in an arbi-
trary external potential and, in Sec. IV C, we will show the
generalization to many electrons. As noted by Rejec et al.,
there are effectively two ways to solve the two-electron dy-
namical problem: On the one hand, if we assume that the
bound electron remains in a static single-electron orbital in
the target, we recover mean-field theory. On the other hand,
if we allow both electrons to interact without any constraints
�so that each electron can respond to the other�, we recover a
correlated multielectron scattering wave function.

For simplicity, we restrict ourselves to energies low
enough such that there is no chance for both the incoming
and bound electrons to be released from the target. In other
words, the kinetic energy of the incoming electron is always
less than the binding energy of the bound-state electron. For
our problem that involves two indistinguishable electrons
with spin, two different levels of treatment �mean field and
correlation� and two different spin cases �same spin and op-
posite spin� can be identified for the scattering problem, giv-
ing a total of four cases �all of which will be treated below�.
Note that, provided the Hamiltonian does not depend on
spin, the case of spinless “distinguishable electrons” is
isomorphic to the case of opposite-spin indistinguishable
electrons.

A. A one-electron scattering formalism over a grid

Let us consider a Hamiltonian H=T+V�x�, where the
potential energy V�x� is assumed nonzero only in a finite
region about the origin. This Hamiltonian is described on a
finite uniformly spaced grid which encompasses the region
of nonzero V. Fixing a as the uniform grid spacing, we con-
struct a grid going from −na to +na, with 2n+1 grid points.
Here, n is some integer large enough such that V�x�=0 for
�x��na. In what follows, we shall consider this set of grid
points to be a vector space, and we shall denote the basis
element at grid point i as �gi�. Working in this finite vector
space, we seek to compute the transmission for an incoming
electron. We represent the kinetic energy operator using a
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three-point approximation for the second derivative. The ma-
trix elements of the potential and kinetic energy operators in
this basis are thus as follows:

Vij = �ijV�i� , �2�

Tij =
− �i,j+1 − �i,j−1 + 2�ij

a2 . �3�

Here, we work in a.u. and we take m=1 /2 so that we may
ignore the 2m term in the kinetic energy operator �p2 /2m�.
The Hamiltonian H is defined by H=T+V for one electron.

Our first step is to define three new vectors, which de-
pend on the given incoming wavevector k:

�winc� 	 �g−n� + eika�g−n+1� , �4�

�wrefl� 	 �g−n+1� + eika�g−n� , �5�

�wtrans� 	 �gn−1� + eika�gn� . �6�

All matrix elements of the �w� vectors can be constructed
from Eq. �2�.

Next, consider the vector space Y
	span�g−n ,g−n+1 . . .gn−1 ,gn ,wrefl ,wtrans�. Although we
have written Y with 2n+3 vectors, it follows from the
definitions of �winc� and �wrefl� that dim�Y�=2n+1,
which is the number of grid points. In fact, it is helpful
to use the decomposition Y =Y inner � Youter. Here, we
define Y inner	span�g−n+2 ,g−n+3 . . .gn−3 ,gn−2� and Youter

	span�g−n ,g−n+1 ,gn−1 ,gn ,wrefl ,wtrans�. As should be clear,
dim�Y inner�=2n−3 and dim�Youter�=4.

Solving the scattering problem for an incoming wave
with wavevector k amounts to solving the Schrodinger equa-
tion for ���= �winc�+ �v� for �v��Y.

H��� = Einc��� . �7�

We choose to solve this equation in reduced spaces
Wbra ,Wket�Y, where dim�Wket�=dim�Wbra�=2n−1 and the
W subspaces are defined as follows:

Wket = span
�� j��

	 span
�g−n+2�, . . . , �gn−2�, �wrefl�, �wtrans�� , �8�

=span
�wrefl�,Y inner, �wtrans�� , �9�

Wbra = span
��i��

	 span
�g−n+1�,�g−n+2�, . . . ,�gn−2�,�gn−1�� , �10�

=span
�g−n+1�,Y inner,�gn−1�� . �11�

Note that, in Eqs. �8� and �10�, we define the one-particle
basis functions 
�� j�� and 
��i��. These functions will be ref-
erenced later on.

The intuition behind the subspaces Wket and Wbra is that
we sample the same basis functions for the ket and bra
spaces from the inner grid points but different basis functions
from the outer grid points. Over the outer grid points, we
design the ket states to extend farther away from the scatter-
ing region than the bra states because we want to avoid
surface effects at the edge of our grid. Because the kinetic

energy operator T is nonlocal and, when written as
T=−�2 /�x2, the T operator acts directly on the ket space,
stability requires that the ket vector space extends spatially
beyond the bra space.

Now, solving the scattering problem is easy. First, we
expand the scattered part of ��� in Wket:

��� = �winc� + �
j

cj�� j� �� j� � Wket. �12�

Second, we solve the Schrodinger equation by projection
into the bra space, followed by matrix inversion �solving for
the cj variables�:

��i�H − Einc��� = 0 where ��i� � Wbra, �13�

�
j

��i�H − Einc�� j�cj = ��i�H − Einc�winc� . �14�

The reflected and transmitted coefficients are given by
cwrefl

and cwtrans
in Eq. �12�.

B. A steady state one electron formalism

It is important to realize that the procedure,
Eqs. �12�–�14�, for solving a time-independent scattering
problem is not limited to genuine scattering situations and
can be formulated as a steady-state problem which has
source �i.e., incoming� and sink �outgoing� channels �see
Ref. 1, Chap. 9�. Formally, such a steady state problem is
described in terms of the wave function:

���t�� = e−iEinct�winc� + �
j

cj�t��� j� , �15�

where �winc� drives the system with energy Einc. The time-
dependent Schrodinger equation gives us

H��� = i
�

�t
��� , �16�

H
e−iEinct�winc� + �
j

cj�t��� j��
= i

�

�t
e−iEinct�winc� + �
j

cj�t��� j�� . �17�

If we assume steady state, then cj�t�=cj
0e−iEinct and

Eq. �17� becomes

�H − Einc�
�winc� + �
j

cj
0�� j�� = 0. �18�

If we project again into the bra space, this is the same
equation as Eq. �13�. It should be emphasized, however, that
a steady-state solution to Eq. �17� can be realized only pro-
vided that a sink channel is introduced through the boundary
conditions. Such a sink can be implemented either by �i�
imposing a suitable form of boundary wave function �as we
have done by constructing �wrefl� and �wtrans� in Eqs. �4� and
�5� or �ii� by applying appropriate absorbing boundary con-
ditions, e.g., a surface self-energy term in the Hamiltonian.20
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C. The two electrons and one bound state formalism

Consider now a two-electron Hamiltonian of the form

H�x1,x2� = T�x1� + T�x2� + Vext�x1� + Vext�x2�

+ Wee�x1,x2� . �19�

Here T is the kinetic energy operator, Vext is the fixed exter-
nal potential acting on the electrons, and Wee is the electron-
electron interaction potential. We will assume that Wee is
nonzero only when both electrons are near the target. Such a
situation is approximately realized in metal-insulator-metal
junctions where screening in the metals makes it possible to
model the space away from the junction as a free-electron
system.

In order to generalize the formalism above to more than
one electron �with one bound state in a quantum well�, we
first solve for the bound state of the one-electron
Hamiltonian. Let us denote ��b

exact� as the exact bound state
of the one-electron Hamiltonian on an infinite grid, with
spacing a:

��b
exact� = �

i=−�

�

bi�gi� . �20�

This defines the bound state in terms of an infinite array of
numbers b.

For our calculations, we will need finite vectors repre-
senting the bound state in both the ket and bra spaces: To that
end, we define

��b
ket,m� = �

i=−m

m

bi�gi� , �21�

��b
bra,m� = �

i=−m

m

bi�gi� . �22�

For m large enough, these finite vectors provide good ap-
proximations to the exact infinite bound-state wave func-
tions. The needed length m will vary depending on the algo-
rithm that we implement, but just as for the one-electron
case, the ket vector should extend farther than the bra vector
in order to avoid surface effects.

In order to solve for the two-electron wave function, the
next step is to tensor together the appropriate single particle
functions, creating two-electron functions, and then to con-

struct the appropriate ket and bra spaces: Wket
˜=span
� �� j�˜�

Wbra
˜=span
��i�˜� Here, we use tildes to signify two-electron
states. Once we have specified the two-electron basis, we can

solve the Schrodinger equation H���˜=E���˜ starting from an

incoming state which acts as a driving force. Let ���˜= �vd�˜

+�cj��d�˜. To compute the transmission of the incoming
electron, we invert and solve for the cj variables �just as in
Eqs. �12�–�14��:

��i�˜H − Einc���˜ = 0 ��i�˜ � Wbra
˜ , �23�

�
j

��i�˜H − Etot�� j�˜cj = − ��i�˜H − Etot�vd�˜ . �24�

In our model calculations, we assume that before the
incoming electron arrives at the target, the bound electron is

in the ground state of the target. Thus, the driving term �vd�˜ is
always one of the three options: �winc� � ��b

ket� �distinguish-
able spinless particle� or �winc�b

ket� �antisymmetrized indistin-
guishable same spin� or �winc�̄b

ket� �antisymmetrized, indistin-
guishable, opposite spin�. Here, a bar denotes spin down,
while no bar denotes spin up.

We now have the tools to solve the scattering problem
within several different approximations, whereby we choose
different forms for the incoming wave function and we select
different ket and bra vector spaces. In what follows, we solve
four distinct problems whereby one electron is transmitted
through a target which is originally occupied by another
electron.

1. The static approximation for spinless
distinguishable particles or, equivalently, the static
approximation for indistinguishable particles
of opposite spin

The most elementary scattering algorithm invokes the
static approximation, where we assume the particles are spin-
less and distinguishable and we ignore interparticle correla-
tion. The incoming electron sees the average static field of
the bound electron, while the bound electron may not re-
spond to the incoming electron. The problem is nothing more
than potential scattering, which is a one-particle problem. If
we insist on using a two-particle formalism, then the two-
particle wave function must consist of one particle frozen in
a bound state. A sufficient two-particle basis is

Wket
˜ = span
�� j� � ��b

ket,n�� , �25�

Wbra
˜ = span
�� j� � ��b

bra,n−1�� . �26�

Here, �� j�, �� j�, and n were defined in Sec. II A, and our
bound states extend into the outer grid points. As discussed
above, the ket state extends farther than the bra state in order
to avoid artificial effects on the grid surface.

Consider now the case of two electrons �or fermions�
which are indistinguishable and have opposite spin. For con-
creteness, suppose that the bound-state electron is fixed with
spin down and the incoming electron is always spin up. In
this case, the two-electron wave function must be antisym-
metrized, and the easiest way to accomplish that is to anti-
symmetrize the basis in Eqs. �25� and �26�. We still insist on
freezing the bound-state electron according to the static ap-
proximation, so the two-electron basis should be chosen as

Wket
˜ = span
�� j�̄b

ket,n�� , �27�

Wbra
˜ = span
�� j�̄b

bra,n−1�� . �28�

Here, we use the antisymmetrized notation: �uv�= �u� � �v�
− �v� � �u�.

If we compute the Hamiltonian matrix elements �accord-
ing to Eq. �19�� for the basis vectors in Eqs. �25� and �26�,
we will find that the matrix elements are identical to the
matrix elements for the basis vectors in Eqs. �27� and �28�.
The important observation is that, when the two electrons are
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of opposite spin, the matrix elements of the electron-electron
potential, Wee�x1 ,x2�, are unchanged by introducing antisym-
metry. More precisely, we assume here that Wee is a function
only of spatial coordinates, so that orbitals of opposite spin
cannot be coupled together through Wee. Thus, according to
Eqs. �12�–�14�, the two problems yield identical scattering
solutions, and there is an isomorphism between the two situ-
ations. In what follows, we will refer to these situations
equivalently as the “static approximation” or “static �oppo-
site spin�,” keeping in mind that this is a simple potential
scattering problem.

2. The static exchange approximation or, more
precisely, the static approximation for
indistinguishable particles of the same spin

Next, consider the case of two �identical� electrons
which are of the same spin where, just as before, one elec-
tron is initially bound to the target and the other electron is
incoming. Equivalently, one can consider indistinguishable
spinless particles, because spin is now irrelevant. According
to the static approximation, we freeze one electron in the
bound state and we solve for the scattering state of the other
electron. In this case, there is no isomorphism between dis-
tinguishable �spinless� and indistinguishable �spin 1/2� prob-
lems. Indeed, the matrix elements of the electron-electron
potential, Wee�x1 ,x2�, are distinctly changed when we
antisymmetrize the basis, going from basis elements like
�u� � �v� to elements like �uv�. The Wee matrix elements in-
troduce new �“exchange”� terms in the effective Hamiltonian
matrix, which are not zero because there is no spin orthogo-
nality.

By analogy to the static approximation above, we might
be tempted to choose for our basis:

Wket
˜ = span
�� j�b

ket,n�� , �29�

Wbra
˜ = span
�� j�b

bra,n−1�� . �30�

There is, however, a problem with this basis. The bra
space is linearly dependent because ��b

bra,n−1� is the sum of
grid points from �−n+1�a to �n−1�a, while the grid points
�� j� also go from �−n+1�a to �n−1�a. Because the two-
electron basis is antisymmetrized, it follows that this two-
electron basis is linearly dependent. This minor complication
can be easily corrected, however, by allowing ��b

bra� to extend
out one more grid space into the outer grid points. In other
words, by extending the bra state from ��b

bra,n−1� to ��b
bra,n�,

we avoid linear dependence. Nevertheless, we still need the
ket space to extend farther than the bra space, so all wave
and bound basis elements in the ket space ���b

ket�, �winc�,
�wrefl�, and �wtrans�� must also be extended uniformly. If we
define extended three-point waves as

�wrefl
�3� � 	 �g−n+1� + eika�g−n� + e2ika�g−n−1� , �31�

�wtrans
�3� � 	 �gn−1� + eika�gn� + e2ika�gn+1� , �32�

then the correct two-electron basis in this situation is

Wket
˜ = span
�wrefl

�3� �b
ket,n+1�, �Y inner�b

ket,n+1�, �wtrans
�3� �b

ket,n+1�� ,

�33�

Wbra
˜ = span
�� j�b

bra,n�� . �34�

One can then invert the Schrodinger equation rigorously.
In what follows, this situation under the static approxi-

mation will be referred to as either the static exchange or
static �same spin� case.

3. The fully correlated solution for nonidentical
spinless particles or, equivalently, the fully correlated
solution for identical particles of opposite spin

Consider again the case of nonidentical spinless par-
ticles. When we account for electronic correlation in the
course of the scattering event, we allow for the bound elec-
tron and incoming electron to mutually respond to each other
in the vicinity of the molecular target. To do that mathemati-

cally, we define Ã as the subset of all pairs of inner grid
points �corresponding to “closed channels”�:

Ã = span
�gi� � �gj�� − n + 2 � i, j � n − 2. �35�

For the case of nonidentical particles, we now choose
our basis as follows:

Wket
˜ = span�

Ã�i.e., inner grid points�
�wrefl

�3� � � ��b
ket,n+1�

�wtrans
�3� � � ��b

ket,n+1�
��b

ket,n+1� � �wrefl
�3� �

��b
ket,n+1� � �wtrans

�3� �
� , �36�

Basis elements 2–5 represent the physical case where
one electron is reflected or transmitted while a second elec-
tron is in a bound-state. These are the asymptotic possibili-
ties for the two electrons in a multi-body scattering calcula-
tion.

The corresponding bra-space is obviously parallel:

Wbra
˜ = span�

A†̃�i.e. inner grid points�
�g−n+1� � ��b

bra,n�
�gn−1� � ��b

bra,n�
��b

bra,n� � �g−n+1�
��b

bra,n� � �gn−1�
� . �37�

Pictorially, the two-electron basis can be drawn as in Fig. 1.
In this case, the extent of the bound-state orbital is not im-
portant computationally, provided that the ket basis elements
extend farther out than the bra basis elements. This funda-
mental rule requires increasing the extent of bound states in
coordination with the length of the incoming/reflected/
transmitted waves.

Finally, note that if the Hamiltonian does not depend on
spin, then understanding correlation for the case of distin-
guishable particles is equivalent to the case of indistinguish-
able particles with opposite spin. If we assume that the in-
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coming particle is spin up and the bound electron in the
DBW is spin down, then the isomorphism is the simple map-
ping:

�u� � �v� → �uv̄� .

With this mapping, the two problems become entirely
equivalent just as for the static approximation: all exchange
terms are zero because of spin orthogonality. Thus, from now
on, we will describe this situation equivalently as either “cor-
relation �distinguishable�” or “correlation �opposite spin�.”

4. The fully correlated solution for identical particles
of the same spin

When we account for both correlation and exchange be-
tween electrons of the same spin, the only change we must
make in the two-electron basis is to replace the direct prod-
ucts above with antisymmetric products, keeping in mind
that antisymmetry now greatly reduces the number of de-
grees of freedom:

�u� � �v�, �v� � �u� → �uv� . �38�

Thus, antisymmetry reduces the size of the two-electron
basis roughly by a factor of 0.5. Otherwise, the formalism is
exactly the same. From now on, this case will be abbreviated
equivalently “exchange correlation” or “correlation �same
spin�.”

D. Multiple bound states

When we have multiple bound states, the formalism
above for correlated solutions must be modified because we

now have different channels, i.e., different outgoing waves,
which are labeled according to the bound states to which
they are attached �by conservation of energy�. Let us use j to
denote different channels corresponding to different bound-
states. We then make the following replacements:

�wrefl� → �wrefl�j�� ,

�wtrans� → �wtrans�j�� ,

��b
ket,m� → ��b

ket,m�j�� .

In our basis Wket
˜, we couple waves from channel j only

to bound states from channel j. We never mix the eigenfunc-
tions from different channels, for energy conservation dic-
tates the possible asymptotic forms of the wave function.
Thus, for nonidentical spinless particles �or identical par-
ticles with opposite spin�, each additional channel increases
the size of the two-particle basis by only four functions. In
the case of identical particles with the same spin, each addi-
tional channel increases the basis size by 2.

E. Two colliding scattering states

For completeness, we briefly discuss the case of two-
electron tunneling, where two electrons enter the molecular
target at nearly the same time and interact with each other,
thus affecting the transmission and reflection of both. To the
best of our knowledge, the effect of such processes on the
overall tunneling current has not been estimated; however,
the relevant transmission probability must be an essential
ingredient in accurate calculations. Similarly, processes in
which the incoming electron is large enough to make an
ejection of a bound-state electron possible may also be im-
portant but pose similar mathematical difficulties.

While we have not addressed such processes in the
present work, we expect that the multichannel method de-
scribed in Sec. II D can be generalized to such situations by
introducing a finite, discretely spaced, energy grid as an ap-
proximation to the continuum of possibilities for distributing
the total energy between the two particles. We leave such a
generalization to future work.

III. TWO ELECTRON RESULTS

We first apply this methodology to calculate electron
transmission through a DBW that contains another bound
electron, expanding on the work of Rejec et al.17 Unlike the
work of Rejec et al. who constructed triplet and singlet two-
electron states from the start, we will assume that before the

FIG. 1. �Color online� A graphical representation of our two-electron basis
when correlation is included. The coordinate for particle one �incoming
electron� is in the horizontal direction while the coordinate for particle two
�bound electron� is in the vertical direction. The inner grid points are in the
green region �in print, center panel with black circles�. The reflected and
transmitted waves �in the ket space� are red arrows, in the yellow regions �in
print, light grey panels� to the left and right. These waves are tensored to the
one-electron bound states. The bra space includes the bound states tensored
to the grid points in the two smaller boxes around the inner grid points
�colored pink �in print, dark grey with light grey circles��. For the case of
distinguishable spinless particles, we must include this diagram and the
diagram which is rotated by 90° because, after collision, we do not know
which particle will be ejected. For the case of indistinguishable particles of
opposite spin, the same rules apply as before, only we must now reinterpret
all two-particle basis elements as antisymmetrized products. For the case of
indistinguishable particles of the same spin, this diagram is overcomplete,
for we require only the upper left-hand triangle of the inner grid-point
�green �in print, center panel with black circles�� region.
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collision there is no spin entanglement between the electrons.
The following issues will be of interest:

�1� The effect of exchange and correlation on transmission
as a function of energy.

�2� The effect of electron-electron repulsion, in particular,
in the limit of strong repulsion. Here we will examine
the effect of exchange and correlation on Coulomb
blockade behavior.

�3� Inelastic transmission associated with transitions be-
tween electronic bound states in the DBW.

Second, for the case of a TBW, we will calculate the effect of
electron-electron interactions on barrier crossings.

As a convenient DBW potential, we choose the
following function specified by five parameters Ra, Rb, Rc,
Vi, and Vo �Fig. 2�:

Vext�x� =�
�Vo − Vi�

2

1 + erf
3�x − Ra�

�Ra − Rb� �� + Vi, �x� 	
Ra + Rb

2

�Vo�
2

1 − erf
3�x − Rb�

�Rb − Rc�
�� ,

Ra + Rb

2
� �x� 	 Rc

0, Rc � �x� .
� �39�

For the electron-electron potential, we choose

Wee�x1,x2� = �W0e�x1 − x2�2/2WL, �x1� and �x2� 	
Ra + Rb

2

0, �x1� and/or �x2� 

Ra + Rb

2
.� �40�

Here, �−�Ra+Rb /2� , �Ra+Rb /2�� is the effective length of the
double barrier and corresponds to the interval �−10.5,10.5�
bohrs in Fig. 2. Electron-electron interactions are taken as
nonzero only when both electrons are in this interval.

A. Resonance tunneling with one bound state

Figures 3 and 4 show the results of calculations done for
electron tunneling through a DBW structure �in one dimen-
sion� that supports a single bound state. We examine two

cases: relatively weak and relatively strong electron-electron
coupling. Relatively weak coupling �Fig. 3� is defined such
that two electrons of opposite spin can be bound in the DBW,
while for relatively strong coupling �Fig. 4� such a doubly
occupied state cannot be supported. Obviously, electrons
with the same spin can never both be bound in the DBW due
to the Pauli exclusion principle.

1. Weak electron-electron interaction energy

Figure 3 shows the energy dependent transmission
in the weak coupling limit. The parameters used in the
calculation are Ra=8 bohrs, Rb=13 bohrs, Rc=17 bohrs,
Vi=−0.1 hartrees, Vo=0.3 hartrees, W0=0.05 hartrees, and
WL=4 bohrs. See Eqs. �39� and �40� for details. The grid
spacing in all our calculations here and below was taken as
a=1 bohr. Shown are the results for the opposite-spin static
approximation �red dashed line with stars� same-spin static
approximation �blue dotted line with diamonds� opposite-
spin correlated method �purple solid line�, and same-spin
correlated method �green dashed line with circles�. Also
shown is the case of noninteracting electrons, where the in-
coming electron does not see the bound electron at all �black
solid line�.

In the latter case of no electron-electron interaction,
there is only one resonant tunneling peak, and the corre-
sponding resonant tunneling state has a single node. This
result follows because the nodeless state is the �occupied�
bound state, and any one-electron resonant tunneling state
must be orthogonal to the bound state. For a weak electron-
electron repulsion energy, our well continues to allow only
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FIG. 2. �Color online� The double-barrier potential. In this figure, we
choose Ra=8 bohrs, Rb=13 bohrs, Rc=17 bohrs, Vi=−0.1 hartree, Vo

=0.3 hartree. Our grid spacing is a=1 bohr.
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one resonant tunneling peak �with one node� in both the
static and static-exchange approximations. The static-
exchange resonant energy does separate, however, from the
potential scattering resonant energy. If we rationalize that
that the resonant peaks occur at the energies of quasibound
states, then the resonant energy of an antisymmetrized same-
spin bound state should be lower because the exchange en-
ergy is always negative. Indeed, the static-exchange resonant
peak is lower in energy than the potential scattering resonant
peak.

Regarding the resonant tunneling energies computed
with correlation effects, one finds that, for a weak e-e poten-
tial, the same-spin resonant tunneling peak lies very close to
the static-exchange peak. Apparently, by insisting that the
spatial part of the wave function be antisymmetric, the static-
exchange approximation minimizes electron-electron repul-
sion, so that the effect of electron-electron correlation is not
very strong.

The most interesting case is that of two electrons of op-

posite spin, when treated with correlation. Here, we find two
peaks �in Fig. 3�, each of height 0.5. The first peak �at 0.0302
hartree� has the asymptotic form

��os,0.0302 hartree�

→̃ �winc�̄b� +
ei�

2
��wtrans�̄b� − ��bw̄trans��

+
ei��

2
��wrefl�̄b� + ��bw̄refl�� , �41�

→̃ �winc�̄b� +
ei�

2
�wtrans�b − �bwtrans� � �↑↓ + ↓↑�

+
ei��

2
�wrefl�b + �bwrefl� � �↑↓− ↓↑� . �42�

The peak at 0.0516 hartree has the asymptotic form:
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FIG. 3. �Color online� Resonant tunneling through a DBW with a weak
electron-electron interaction energy. The parameters used in the calculation
are Ra=8 bohrs, Rb=13 bohrs, Rc=17 bohrs, Vi=−0.1 hartree, Vo

=0.3 hartree, a=1 bohr, W0=0.05 hartree, and WL=4 bohrs. See Eqs. �39�
and �40� for details. We limit our incoming kinetic energy to 0.07 hartree
because this is the ionization energy of the DBW. These two figures repre-
sent the same data on linear �a� and log scales �b�.
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FIG. 4. �Color online� Resonant tunneling through a DBW with a strong
electron-electron interaction energy. The parameters used in the calculation
are Ra=8 bohrs, Rb=13 bohrs, Rc=17 bohrs, Vi=−0.1 hartree, Vo

=0.3 hartree, a=1 bohr, W0=0.15 hartree, and WL=4 bohrs. See Eqs. �39�
and �40� for details. We limit our incoming kinetic energy to 0.07 hartree
because this is the ionization energy of the DBW. These two figures repre-
sent the same data on linear �a� and log scales �b�.
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��os,0.0516 hartree�

→̃ �winc�̄b� +
ei�

2
��wtrans�̄b� + ��bw̄trans��

+
ei��

2
��wrefl�̄b� − ��bw̄refl�� �43�

→̃ �winc�̄b� +
ei�

2
�wtrans�b + �bwtrans� � �↑↓− ↓↑�

+
ei��

2
�wrefl�b − �bwrefl� � �↑↓ + ↓↑� �44�

This result is easily understood from the work of Rejec
et al.17 Because we assume that the incoming electron is spin
up and the target electron is spin down, the driving �incom-
ing� term in our wave function is not an eigenvector of the S2

operator. We can, however, decompose the driving term into
singlet and triplet flavors:

�winc�̄b� = 1
2 �winc�b + �bwinc� � �↑↓− ↓↑�

+ 1
2 �winc�b − �bwinc� � �↑↓ + ↓↑� . �45�

Because the singlet and triplet states are mutually or-
thogonal and the Schrodinger equation is linear, we may
propagate the scattering states of the singlet and triplet waves
independently. The triplet state �for particles of opposite
spin� will propagate exactly as for the triplet state �for par-
ticles of the same spin�, for the spatial parts of both wave
functions must be antisymmetric as a function of both elec-
trons. This explains why one opposite-spin peak �of height
0.5 at roughly 0.0302 hartree� lies directly on top of the
same-spin peak. The other peak �of height 0.5 at roughly
0.0516 hartree� corresponds to a spin singlet state, corre-
sponding to symmetric spatial state for the two electrons, and
this peak energy must be computed explicitly. Because of
this decomposition, we find that for particles with opposite
spin, at all resonant energies, one has equal probabilities for
the spin-up or spin-down electron to come out of the well.
There is no resonant peak at which only one spin comes out
of the DBW, and there is no resonant peak of height 1 with
only transmission. The case of opposite spins is thus very
different from the case of same spins, as noted by Rejec et al.

One mystery remains, however, regarding the phase
shift. According to our calculations, at the resonant transmis-
sion half-peaks, we have equal phase shifts ���� �to well
within 0.05 rad� for the two outgoing �triplet and singlet�
channels. This equality is not obvious according to a singlet-
triplet decomposition. Rather, this equality at resonant peak
energies suggests that, in the language of distinguishable par-
ticles, once the incoming particle has reached the target, one
forgets which was originally the incoming particle and which
was originally the bound-state particle: both particles are
kicked out with equal probability and in both directions.

2. Strong electron-electron interaction energy

When the interaction energy is raised, all resonant trans-
mission peaks are shifted up in energy. The relative positions

of resonant tunneling peaks with one node do not change:
The static-exchange peak is still lower in energy than the
potential scattering peak �which is not shown because it is
larger than the ionization energy of the DBW.� The same-
spin correlation peak is still directly on top of one of the
opposite-spin half-peaks �at 0.0547 hartree� as it must be.
The opposite-spin half-peak at 0.0547 hartree still has the
same asymptotic form as Eq. �42�.

At low energies, however, we do see differences. For a
strong electron-electron repulsion, we see a new peak in the
potential scattering that corresponds to a quasibound state
with no nodes. This is the potential scattering resonance peak
at 0.024 hartree. For the case of correlated opposite-spin
electrons �or, equivalently, distinguishable particles�, there is
also a narrow peak �with maximum transmission equal to
0.5� at 0.0135 hartree. Because these peaks correspond to
resonance in a zero-node well state, and because the zero-
node ground state is already occupied, we might expect these
peaks to disappear when we antisymmetrize the wave func-
tion for same-spin electrons. Indeed, that is the case: we do
not see any new same-spin peaks in Fig. 4. Finally, we men-
tion that the half-peak at 0.0135 hartree has the same
asymptotic form as Eq. �44�.

B. Transmission as a function of electron-electron
repulsion

In Fig. 5, we compute the transmission as a function of
the electron-electron repulsion energy �W0�, when the incom-
ing electron has energy 0.015 hartree. For small repulsion
energies, we see peaks in the transmission profiles for the
case of opposite-spin electrons. These are the peaks repre-
senting quasibound states with zero nodes discussed in Sec.
III A 2. For large electron-electron repulsion energies, we en-
ter the regime of the Coulomb blockade. First, for the case of
opposite-spin electrons, we expect potential scattering to
highly underestimate the transmission. According to poten-
tial scattering, the bound-state electron is fixed in its posi-
tion, and the incoming electron can never push out the
bound-state electron. If we allow for correlation, however,
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FIG. 5. �Color online� Transmission as a function of electron-electron re-
pulsion W0. Note that the transmission is much less asymptotically for the
case of opposite-spin electrons when we ignore correlation. The DBW has
the same parameters as in Figs. 3 and 4.
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we expect to see a small minimal current; for now there is a
small probability that the incoming electron comes into the
DBW and the bound-state electron goes out. This reasoning
explains why the transmission calculated by potential scat-
tering in Fig. 5 is so much smaller �asymptotically� than the
transmission calculated for correlated opposite-spin elec-
trons. Second, for the case of same-spin particles, the ques-
tion of which electron comes in and which electron goes out
is moot, and we see that the transmission curves for static
exchange and correlation exchange are very similar to each
other and to the case of opposite-spin electrons with
correlation.

C. Transmission with two bound states

We now consider the multichannel problem, where the
DBW can support two single-electron bound states of energy
E0 and E1. However, because of the interelectronic energy
�Wee�, both states cannot be occupied at the same time by
any two electrons �irregardless of spin�. We wish to investi-
gate the behavior of the transmission as a function of energy
near the excitation energy Eexc=E1−E0. If the kinetic energy
of the incoming electron exceeds Eexc, the incoming electron
can excite the bound-state electron from the ground state to
the first excited state and then exit with a correspondingly
smaller velocity. Although the effects of such phenomena on
molecular conduction properties cannot be described within
Landauer theory �especially for small voltage windows�, the
results shown below indicate the possible physical and com-
putational signatures of such a transition. All data are pre-
sented in Fig. 6.

Our calculations find a transmission curve with a small
kink where Einc=Eexc. This becomes a large peak in the sec-
ond derivative of the transmission �d2T /dE2�, as shown.
These findings are similar to inelastic tunneling spectra
�IETSs� near the voltage where a vibrational mode may be
excited. In the case of IETS, when a new channel for the
incoming electron is opened, one finds a peak in the second
derivative of the current-voltage curve, d2I /dV2. In our case,
where the bound state is initially propelled into an excited
state by the collision, note that the final outcome of the pro-
cess could be photon emission, with the bound electron ulti-
mately returning to the ground state. To examine this
possibility computationally, we would need to include the
interaction of electrons with the radiation field in the
Hamiltonian.

D. The effect of electron-electron correlation on
barrier crossings: The triple barrier well

In our final application, we consider the asymmetric
triple-barrier well �TBW� potential shown in Fig. 7. This
external potential admits two bound states, which are sepa-
rated in space and shown in Fig. 7. A large barrier separates
the ground state �on the left� and the first excited state �on
the right� of the system. Nevertheless, these one-electron
states are almost degenerate, separated by 0.013 hartree, and
if the system exists in a fluctuating thermal environment, an
electron on the left-hand side will occasionally transfer to the

right hand side according to Marcus theory. This rate will be
very small, however, because the barrier is large.

We now ask how this rate of transfer will be affected in
the presence of a bath of free electrons, imagining that this
electron transfer event may occur on a metal surface. Be-
cause the result is not very sensitive to spin, we focus on the
two-electron opposite-spin case. We suppose that one
spin-up electron is initially in the ground state on the left-
hand side, and we plot the probability of transmission when
there is another electron �spin-down� incoming from the left.
We do this with and without accounting for correlation. Dis-
regarding correlation, we first apply the static approximation,
forcing the bound electron to remain fixed during the colli-
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FIG. 6. �Color online� The transmission curve around the energy where
Einc=Eex. Here, the DBW is parametrized by Ra=8 bohrs, Rb=13 bohrs,
Rc=17 bohrs, Vi=−0.1 hartree, Vo=0.05 hartree, and W0=0.25 hartree.
�a� Function value, �b� first derivative, and �c� second derivative.
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sion; second, we solve for the correlated wave function, al-
lowing the bound electron to respond to the incoming elec-
tron. We compare this transmission to the case of a simple-
barrier potential �also shown in Fig. 7� where no trapped
electron exists in the well. All results are shown in Fig. 8,
where the �small� transmission is plotted in log format.

We find that, in the absence of a trapped electron, trans-
mission is a rare event with probability roughly 10−6 both for
a simple-barrier potential and an empty triple-barrier poten-
tial. Now, if there is a trapped electron on the left-hand side,
but that electron is fixed in space �according to the static
approximation� and acts only as a barrier to transmission,
then the probability of transmission is immensely reduced
�by five orders of magnitude� to approximately 10−11. If,
however, the trapped electron is allowed to respond to the
incoming electron, then Fig. 8 shows that the transmission
probability is only slightly reduced �to approximately 10−7�.
This can be rationalized in terms of two competing forces.

On the one hand, as the incoming spin-down electron ap-
proaches the barrier, the trapped spin-up electron repels the
incoming spin-up electron, thus acting to reduce transmis-
sion. On the other hand, the incoming spin-down electron
also repels the spin-up trapped electron, pushing the spin-up
electron forward, thus acting to increase transmission.

There is one final outcome that must be computed. As
the incoming electron approaches the trapped electron, there
is a finite probability that the incoming electron will impart
enough momentum to force the trapped electron over the
large middle barrier, while the incoming electron itself is
reflected out of the system. Indeed, according to Fig. 8, this
is the most probable form of barrier crossing, four times
more likely than one-electron tunneling through the simple
barrier. This effect may have ramifications for understanding
electron transfer in a metallic environment.

IV. DISCUSSION

A. Summary

This article has presented an algorithm for computing
the transmission of an electron through a molecular junction
which is originally occupied by another electron. For the
two-electron problem, the algorithm uses only grid points
belonging to a finite grid. Ultimately, this is possible because
we limit the kinetic energy operative to be a finite-difference
operator, which implies, in the absence correlation, a tight-
binding model. Whereas standard solid-state approaches for
handling scattering states rely on complex self-energies at
the boundaries, we avoid the self-energy entirely by using
basis functions of “boundary waves” made up of two or three
grid points. Just as self-energies depend on the energy of the
individual electron near the boundary, so do the outgoing
waves. Moreover, this method is applicable to the problem of
a molecule between metal contacts, provided we can com-
pute the band structure �eigenstates and eigenvalues� of the
contact metal. In fact, using boundary waves or self-energies
is entirely equivalent approach for treating the escape of a
scattered electron from a boundary, though we find waves to
be more intuitive in the case of a multichannel problem.

One encouraging result from our two-electron calcula-
tions is that, if one limits the region of the electron-electron
interaction �which is physically motivated by screening out-
side the molecule�, then one can also limit the size of our
grid to be close to the boundaries of the molecular target and
gain computational efficiency without losing much accuracy.
Thus, even though the effects of electron-electron correlation
on the wave function can be long range, far longer than the
extent of electron-electron interaction, we find that this long-
range behavior is not very important in our calculations. One
easy check of the stability of our algorithm is to compute the
transmission profile as we enlarge the grid region and change
our approximation of the bound state. We find that, outside
of the interaction region, if we increase the grid region, the
transmission usually changes by at most 2%–3%.

Another measure of the stability of our algorithm is the
degree to which it maintains charge conservation �i.e., the
unitarity of the S-matrix�. For the one channel problem, we
find that the error in unitarity is near machine precision, sug-
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FIG. 7. �Color online� The geometry of a triple-barrier and simple-barrier
external Hamiltonian. The triple-barrier external Hamiltonian is constructed
by curvilinear extrapolation from the following �x ,y� points: �−10,0�,
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gesting that our algorithm obeys a pseudovariational prin-
ciple of some sort, which we have not yet found. For the
multichannel problem, we find that the error in flux �i.e., the
outgoing flux minus the incoming flux� is less than 1

10−5, and this error decreases as we lengthen the grid re-
gion and we decrease the spacing between grid points. Last,
we note that our algorithm is able to reproduce the deep
tunneling regime �depending on grid size� for transmission
rates smaller than 10−15.

Finally, let us now detail the differences between our
algorithm and the complex Kohn method. First, as published
thus far, the complex Kohn method has not yet treated one-
dimensional scattering with transmitted and reflected ampli-
tudes, but rather it has focused on three-dimensional
electron-molecule scattering and phase shifts. Second, be-
cause we make a finite approximation for the kinetic energy
operator, we are able to compute scattering states over a
finite grid rather than requiring scattering waves that go out
to infinity. Third, by our choice of different ket and bra
states, we naturally choose a nonsymmetric representation H
of the Hamiltonian, and we must therefore invert a nonsym-
metric matrix �H−E� for the scattering solution. The com-
plex Kohn method inverts a complex-symmetric �but not
Hermitian� Hamiltonian operator H−E. Both algorithms are
completely stable. �Notably, if one uses a Hermitian repre-
sentation of the Hamiltonian operator, one ends up with a
computationally unstable algorithm, which suffers from
Kohn anomalies.4� In the future, it will be interesting to com-
pare the computational efficiency of this algorithm versus the
complex Kohn algorithm.

Regarding the effects of exchange and correlation, our
general conclusions are in agreement with those reported by
Rejec et al.17 For same-spin electrons, enforcing exchange
produces a nontrivial shift in the position of some resonance
tunneling peaks �lowering their energy� while eliminating
other resonant peaks entirely. This behavior is reasonable:
enforcing exchange lowers the energy of the one-electron
quasi-bound states, but it also forbids the same state to be
doubly occupied according to the Pauli exclusion principle.
Now, the correlation of same-spin electrons in a scattering
apparatus also lowers the energy of quasibound states, only
now these are two-electron quasibound states. This may ex-
plain, perhaps, why the correlation between same-spin elec-
trons decreases the resonant transmission peak, though the
effect is less dramatic than the exchange effect. Of course, as
the electron-electron repulsion grows, we expect to see larger
and larger effects of electron correlation �and we do�.

For opposite-spin electrons, there is obviously no ex-
change effect, but the effects of correlation are significant.
Whereas, initially, the incoming electron has spin up and the
bound-state electron has spin down, this distinction is forgot-
ten at resonance. For resonant energies, one has an equal
chance of transmission or reflection, and the ejected electron
can be either spin up or spin down. This symmetry will natu-
rally be broken in the presence of magnetic fields but there
remains the conclusion that complete resonant transmission
�with probability 1� is impossible for electrons of opposite
spin. Pure transmission is possible only when the incoming

electron and the bound-state electron are spin entangled �as
triplet or singlet� before impact, which seems unphysical.

Altogether, the results of our computations should give a
straightforward and intuitive picture of how exchange and
correlation affect the transmission profile for any given mo-
lecular target. First, exchange is crucial in the case of same-
spin transmission. Second, correlation is crucial in the case
of opposite-spin transmission, and less important in the case
of same-spin transmission. We note that we have just reiter-
ated the usual working philosophy of electronic structure
theory when considering molecules in the gas phase. In that
subdiscipline, the dominance of opposite-spin correlation
effects over same-spin correlation effects has been well
established, and recently, new correlation algorithms �e.g.,
SOS-MP2 �Ref. 21� and SCS-MP2 �Ref. 22�� have been devel-
oped which are devoted to focusing on the dominant
opposite-spin correlation effects.

B. The 0.7 anomaly

In this paper, we have proposed an algorithm for solving
an electron-scattering problem while properly taking into ac-
count the effects of electronic correlation. If we seek to
transfer this algorithm to the problem of molecular conduc-
tion, however, our approach may be limited because we have
modeled a molecule between two metals as one bound-state
electron in a molecular target. For the case of real metal-
molecule-metal junctions �at zero bias�, such bound states
may not exist, for all electronic orbitals on the molecule may
hybridize to the continuum of states in the metallic leads. In
that case, we must not think of bound states on molecules but
rather quasibound states �with broadening� below the chemi-
cal potential.23 Calculating electron transmission correctly,
while accounting for electron-electron correlation, will be
more difficult in such a case, as should be expected from any
steady-state or time-independent approach.

Nevertheless, this basic scattering algorithm does cap-
ture some electron-correlation effects relevant to conduction
experiments. In particular, as argued by Rejec et al.17,24,25,27

and Flambaum and Kuchiev,26 the 0.7 anomaly can be ex-
plained in terms of the resonant peaks shown in Fig. 4. The
“0.7 anomaly”18,23,28 in mesoscopic arises when one mea-
sures the electrical conductance through a quantum point
contact �QPC� in the valley of a split voltage gate at tem-
peratures between 1 and 4 K. For very large negative gate
voltages, all electrons are excluded from the QPC and there
is no current, but as the gate-voltage is raised, electrons flow
into the channel and a current begins to flow. At very low
temperatures, the conductance rises in steps of G0=2e2 /h,
the factor of 2 coming from spin degeneracy, as more and
more transverse channels are allowed energetically.29,30

There are, however, sometimes anomalies to this simple-step
prediction, the most common anomaly being a small plateau
in conductance near 0.7G0. Meir and co-workers23,31,32 have
argued that, near the 0.7 anomaly, there will be a quasibound
state for only one electron �say, spin up� in the conduction
channel. If this were true, one should consider spin up and
spin down electrons approaching the channel where there is
already another bound electron. Because the opposite-spin
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case splits into peaks �triplet and singlet� of size 0.5, one of
which exactly matches up with the same-spin peak of size 1
�a triplet�, there may be conductance minijumps near 0.25G0

and 0.75G0, predictions which are, in fact, observed. See
Ref. 17 for more details.

It is interesting to speculate on possible analogous ef-
fects of electronic correlation in molecular conduction. The
spacing between energetic levels in molecules is much
greater than the spacing in QPCs, so we see quantum effects
in molecular conduction at room temperature, whereas these
effects are washed away in QPCs above 5 K. Because elec-
trons are able to better localize in molecules, we also expect
to see sharp effects from electron-electron repulsion and cor-
relation when measuring the conduction through molecules.

C. Theory: Extension to many electrons

In Sec. II, we presented an algorithm for computing the
transmission of one electron traversing a one-dimensional
target that contains another electron. We will now sketch
how this algorithm can be extended to accommodate many
electrons on a molecular target, anticipating that the compu-
tational cost should ideally scale quadratically with the num-
ber of electrons.

First, for real, three-dimensional molecular targets, we
move from a basis of grid points to a basis of Gaussian
orbitals centered on atomic nuclei. Second, recall that, for
the two-electron DBW problem, we began the algorithm by
calculating the ground state of the external potential, ��b�,
which we took as the initial state for the bound electron.
Similarly, for the n-body problem, we must calculate the
ground-state wave function of the target molecule. For the
moment, let us ignore ground-state correlation and assume
that, initially, the target electrons on the molecule are in the
mean-field Hartree–Fock �HF� ground state ��HF�.

Third, we must specify an ansatz for the steady-state
scattering wave function. For the two-electron problem, we
constructed the exact ket form of the wave function as:

��HF� = �winc�b� + crefl�wrefl�b� + ctrans�wtrans�b�

+ �
i

ci�gi�b� , �46�

��corr� = �winc�b� + crefl�wrefl�b� + ctrans�wtrans�b�

+ �
ij

cij�gigj� . �47�

Analogously, we expect that the exact scattering state for
the many-electron problem can be expanded in terms of the
occupied �ijkl� and virtual orbitals �abcd� from the HF cal-
culation, yielding an exponential number of variables to
solve for

��HF� = �winc�HF� + crefl�wrefl�HF� + ctrans�wtrans�HF�

+ �
d

td�d�HF� , �48�

��corr� = �winc�HF� + crefl�wrefl�HF� + ctrans�wtrans�HF�

+ �
d

td�d�HF� + �
iad

ti
a�d��d�i

a�

+ �
ijabd

tij
ab�d��d�ij

ab� + �
ijkabcd

tijk
abc�d��d�ijk

abc� + . . . .

�49�

Here d is a virtual orbital capturing the path of the in-
coming scattering electron. Although the ansatz �Eq. �49�� is
intractable computationally, we can estimate the exact solu-
tion by means of an approximate solution that limits the
number of variables to single and double excitations:

��double� = �winc�HF� + crefl�wrefl�HF� + ctrans�wtrans�HF�

+ �
d

td�d�HF� + �
iad

ti
a�d��d�i

a�

+ �
ijabd

tij
ab�d��d�ij

ab� . �50�

Physically, the term �iadti
a�d��d�i

a� in Eq. �50� captures
the response of a target electron �i� to the incoming electron
�d�, i.e., it allows for one-electron excitation �i→a�. The
term �ijabdtij

ab�d��d�ij
ab� allows both for �i� the incoming elec-

tron to excite two electrons �ij→ab� and �ii� the incoming
electron to excite one target electron which excites another
target electron, which will be important for closed shell mol-
ecules, where alpha and beta electrons are paired together.
Last, if one wants to account for some electronic correlation
within the initial and final asymptotic states of the target
electrons, one can simply replace ��HF� by a correlated
ground-state wave function ��corr� in the first three terms on
the right hand side of Eq. �50�.

While the ansatz in Eq. �50� may not at first appear
similar to that in Eq. �47�, we can construct a very clear
analogy by changing our basis from canonical molecular or-
bitals to a set of localized occupied �ijkl� and virtual orbitals
�abcd� �corresponding to bonding and antibonding orbitals�,
and then recognizing that a localized orbital is equivalent to
a grid point in this formulation. Furthermore, in such a lo-
calized orbital basis, we may borrow from the techniques of
local correlation theory and quantum chemistry, insisting that
orbitals iajb be close together. Thus, even though the largest
tensor �tij

ab�d�� in Eq. �50� has five indices, we should be able
reduce the number of variables in the wave function to be
quadratic. Note that we can never make any assumptions
concerning the locality of the virtual orbital d relative to
orbitals iajb. The orbitals labeled d represent the scattering
electron that traverses the entire molecule and thus they
overlap with every orbital in the set iajb. Unlike the ground-
state problem, where local correlation theory can be success-
fully applied to a linear number of variables, the dynamical
scattering problem admits no fewer than a quadratic number
of variables.

Finally, we note that for a short-ranged electron-electron
potential �with screening far away from the molecule�, the
Hamiltonian matrix �H−E� should have only a quadratic
number of significant matrix elements in a localized basis.
Thus, �H−E� should be a very sparse matrix with a quadratic
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number of nonzero elements, and provided that the non-
Hermitian matrix can be inverted by an iterative algorithm,
the computational time for solving the scattering problem
should scale quadratically with the size of the system.

V. CONCLUSIONS

This article has described a new method for treating the
effects of exchange and correlation on electron transmission
through a molecular target. We have implemented the algo-
rithm for the case of an electron transmitted through a mo-
lecular target containing another electron. For same-spin
electrons, we find that exchange is crucial, strongly shifting
downward the position of the resonance tunneling peak, de-
pending on the strength of the electron-electron repulsion
�W0�. The effect of correlation on top of exchange is more
modest but also produces a shift depending on W0. For
opposite-spin electrons, there is obviously no exchange ef-
fect, but the effect of correlation is enormous, splitting full
peaks into half-peaks and forcing the outgoing state into a
spin-singlet or a spin-triplet configuration. When the
electron-electron repulsion energy is very large, we find that
there is a small transmission which comes about when the
first incoming electron jumps into the bound-state and the
second bound-state electron comes out. This phenomenon
can be correctly described if we account for electronic cor-
relation or if we consider the static-exchange approximation
for same-spin electrons; potential scattering drastically un-
derestimates the amount of transmission as the e-e repulsion
energy grows larger. Finally, we have shown that when a
new channel is introduced, the conductance shows a peak in
the second derivative of transmission with respect to energy.
Taken together, these results should yield some information
as to what is the general effect of exchange and correlation in
molecular conduction, where few such rigorous calculations
have yet been made. In the future, for the many-electron
scattering problem, the full algorithm detailed in Sec. IV C
should be implemented. For the conduction problem, how-
ever, the question remains as to how we may account for the
broadening of the molecular levels �by contact to the metal�
in a many-body scattering algorithm in order to correctly
account for electron-electron correlation.
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