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The properties of a reacting system near an instability are investigated and the analogy between
transitions in unstable systems and equilibrium phase transitions is developed in detail. The set of
macroscopic steady state rate equations plays the role of an equation of state. The bifurcation points
of this set are analogous to transition and critical points of equilibrium phase transitions. Hard
transitions of unstable systems correspond to first order and soft transitions to second and higher
order phase transitions. Critical exponents are defined for those properties of the unstable systems
which are singular at the transition points, and relations between these critical exponents are
investigated. Critical fluctuations are studied with stochastic analogs of the macroscopic rate
equations. Both master and Langevin equations are considered and lead to the following conclusions:
When a transition or a critical point is approached (a) the amplitude of fluctuations grows; (b) the
lifetime of these fluctuations becomes longer; and (c) the spatial correlation length increases. Our
approximations are similar to those made in mean field theories of phase transitions and our results
are thus “classical.” However the critical exponents are not necessarily numerically identical to the
Landau-Ginzburg exponents since they depend on the particular nonlinear system.

INTRODUCTION

The study of instabilities in chemical systems, like
others such as in hydrodynamics, semiconductors, and
electric circuits, is usually based on the phenomenologi-
cal equations of motion commonly accepted for these
systems. This reduces the problem to the stability of
the solutions of nonlinear differential equations.' In ad-
dition, Glansdorff and Prigogine? have developed a ther-
modynamical approach in which the second variation of
the local entropy plays the role of a Liapounoff function
in studying the stability.

Recently some attention has been drawn to the close
analogy between transitions in nonlinear systems which
are studied as instabilities of the corresponding nonlin-
ear differential equations, and phase transitions. In
particular Graham and Haken, % and independently,
DeGiorgio, Scully, Goldstein, and Lee,* have established
the relationship between laser threshold and a critical
point of a second order phase transition. On the other
hand, the equations of motion of a single mode laser
may be reduced to a set of coupled differential equations
of the Van der Pol type.? These equations exhibit a tran-
sition from a steady state behavior to a limit eycle type
oscillation at a given threshold value of a parameter
which, in the laser case, corresponds to the pumping
rate. Similarly, kinetic approaches to the Ising model
also lead to nonlinear differential equations for the time
evolution of the magnetization.® This equation possesses
a bifurcation point where the steady state of zero mag-
netization becomes unstable and stable steady states of
finite magnetization come into existence. These exam-
ples suggest a close analogy between transitions at bi-
furcation points of nonlinear equations of motion’ and
phase transitions.

The existence of this analogy has been suggested also
in a few other works on instability phenomena. Zaitsev
and Shliomis® and Boon® have considered this analogy for
the onset of thermal convection in the Bénard problem.
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Pytte and Thomas'® have studied it in their treatment of
threshold phenomena in the Gunn effect in semiconduc-
tors., Similar considerations have been made by Land-
auer and Woo! for the case of tunnel diode circuits and
for the problem of a parametrically excited subharmonic
oscillator, Recently the analogy between transitions in
nonlinear chemical rate models and phase transitions
has been discussed by Schlogl'®® and by Bienkowski and
Skolnick.'®® Some experimental work supports these
theoretical studies. The increase in the amplitude of
intensity fluctuations in lasers in the threshold region

is well known.'® Similar phenomena have been observed
for noise in nonlinear electric circuits near the thresh-
old of electrical oscillations.'* In one case the existence
of critical slowing down near such threshold has also
been demonstrated, **

In this paper we present a detailed study of the analogy
between phase transitions and instability phenomena.
Though we use as example the theory of chemical insta-
bilities, the treatment is general. It is applicable to
any system whose macroscopic behavior is determined
by nonlinear equations of motion and which undergoes a
transition when one or more external parameters as-
sume certain critical values. The properties of these
systems near their marginal stability points (points for
which linear stability analysis yields at least one root
with a zero real part while the remaining roots have
negative real parts) are studied by means of both the de-
terministic (averaged) macroscopic equations of motion
and their stochastic analogs. The following points are
discussed:

(a) The analogy between first and second order phase
transitions and the corresponding hard and soft transi-
tions between steady states of nonlinear differential
equations is displayed in Sec. II.

(b) A treatment of the divergencies which occur when
a system approaches a point of marginal stability and
the “critical exponents” related to these divergencies is
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presented in Sec. III.

(¢) Stochastic analogs of the deterministic equations
of motion are studied in Sec. IV, The concept of a
steady state is reevaluated. In particular, the stochas-
tic analog of a nonlinear differential equation which ad-
mits several stable steady states has only one (stable)
steady state solution for the distribution function. Dif-
ferent macroscopic steady states are shown to corre-
spond then to extremum points (maximum for stable and
minimum for unstable steady states) of this distribution
function. The properties of steady states and the mean-
ing of transitions between them are discussed from this
viewpoint. Also in Sec. IV we compare different ap-
proaches to the stochastic equations of motion. The re-
sults obtained from the phenomenological master equa-
tion are compared, for simple models, to those obtained
by adding a stochastic source term to the macroscopic
equation of motion (which yields a Langevin equation or
an equivalent Fokker~Planck equation),

{d) The behavior of fluctations from the steady state
when a system approaches marginal stability is dis-
cussed in Sec. V for a general system, using the lin-
earized stochastic equations of motion, The phenomena
of critical slowing down and the divergencies in the am-
plitude of fluctuations and in the spatial correlation
length are studied. These divergencies are obviously
a nonphysical outcome of a linear approximation, but
they serve as indication of unusually large (though finite)
fluctuations in the vicinity of bifurcation points.

Il. TRANSITIONS AND CRITICAL POINTS

A first order phase transition is defined as a transi-
tion which involves a discontinuity in the state of the
system and, as a result, in thermodynamic quantities
like entropy, internal energy, and volume. In a second
order phase transition the thermodynamic variables
change continuously at the transition point while their
derivatives, such as specific heat, are discontinuous.
Usually also some symmetry property of the system is
abruptly changed at a second order point.

Analogously, in the theory of instability in nonlinear
differential equations one distinguishes between hard
transitions and soft transitions which, as we shall see,
are similar in nature to first and second order phase
transitions, Adopting the language of chemical kinetics,
the time evolution of a set of concentrations and other
state variables ¥ which determine the state of the sys-
tem is given by

dp/dt=F{p,\] , (.1)
where A is a set of external parameters or constraints
like temperature or concentrations of particular chemi-
cal components, and where F is a nonlinear functional
which contains the (assumed known) kinetics of the sys-
tem under these prescribed constraints. The steady

states of the system are the solution y°(A) of
F{¥,]=0 , (11.2)

which constitutes the equation of state for the system
under the constraints A,

As F is nonlinear, more than one steady state solu-
tion y°(A) is possible for Eq. (II.2)., A given steady state
may be stable or unstable according to whether a small
arbitrary deviation from it decays to the original steady
state or evolves away from it. When the parameters A
are changed continuously the system may reach a point
A*, where the original steady state becomes unstable and
a transition to a new branch of steady states occurs.
Such a point is called a bifurcation or a transition point.

We define hard transitions between two steady state
branches as transitions in which ¢°(A) is discontinuous
at A=)*, that is the steady state concentrations are dif-
ferent in the two branches at the transition point. Soft
transitions are transitions in which g°()) changes contin-
uously but its derivative is discontinuous at the transi-
tion point.

A. Hard transitions

As a simple example consider the differential equation

dx/dt=F(x, 1) (I1.3)
with
Flx, == (x> = ux+2) , (11, 4)

where u is a positive constant and X is an external pa-
rameter. The steady states of Eq. (I.3) are determined
by the solution of the equation F(x°(1), ) =0; for the case
Eq. (I.4) there will be one or three physical (i.e., real)
roots depending on the value of A, In Fig, 1 we plot the
curve y(x)=x% - ux and the horizontal line y =— X, The
steady states are given by the intersection points of these
lines. For [X|> |A*|=(2/3) (1°/3)!/2 there is only one
steady state. For |x|<|x*| there are three steady states
which lie on two stable branches and one unstable branch,
The stability is determined as usual from linear analy-

y = XT—pnX

______ By

FIG. 1. The quantity y=x°— px displayed as a function of x.
The crossing points with curves y=— X are the steady state of
the system represented by the equation WmpxtA=0. = | N¥|
are the values of the parameter A at the transition points,
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x?(X)

FIG. 2. The steady states x*(0) of the system x*=px+1=0 and
their dependence on the parameter A,

sis: Equation (I, 3) linearized around a steady state
gives
ddx l: d

= 2 (y3 = .
T ( u,x+)\)] ox

(I1.5)
dx L)

where 6x =x —x’(A). Thus

d
l:d_ (3~ ux)] >0
X x0 )

corresponds to a stable steady state while the opposite
inequality characterizes an unstable steady state.

A closer inspection of Fig, 1 reveals two important
properties of the system described by Eq. (II.3): (a)
£°(7\) is discontinuous at the transition points A* =+ (2/3)
% (u®/3)}/% and (b) hysteresis occurs when the direction
of changing A is reversed. These features are summa-
rized in Fig, 2. Both features characterize also a first
order phase transition. To have a better view of the
analogy, Fig. 2 may be compared to Fig. 3 which de-
scribes the P—V diagram (at constant 7) of a liquid-gas
phase transition.'® Clearly the curve (abcdef) in Fig.

3 is analogous to the curve x°(2) in Fig. 2; the stable
branches (abec) and (def) on which (8P/8V); <0 corre-
sponds to the stable branches with dx®(\)/dx < 0, and the
unstable branch with (aP/8 V)T >0 corresponds to the un-
stable branches with dx°(A)/dx > 0. In addition the hy-
steresis loop in Fig. 2 corresponds to the hysteresis
Joop in Fig. 3 which is known to exist in the liquid gas
phase transition.

Despite this similarity between the two situations, an
important difference should be made clear: in the liquid
gas system the portions (bc) and (de) of the P~V curve
correspond to thermodynamically metastable states,
while the equilibrium transition occurs along the (be)

curve, constructed such that the chemical potential in
the two phases is equal at equilibrium. No analogy to
this construction exists in Fig. 2. However, the fact
that the points c and d cannot be realized in practice also
has its analogy in the case of Eq. (II.3): when noise and
fluctuations (which always exist in physical systems) are
included in Eq. (I.3), it will be shown (Sec. IV} that the
transition points are not attainable and that transition
will occur before they are reached. Moreover, as in
the liquid-gas transition, the occurrence of hysteresis
is an outcome of a relatively fast change of the param-
eter ) (which corresponds to P in Fig. 3) and if this
change is made slow enough relative to the average life-
time of the metastable state no hysteresis loop should
be observed, The problem remains whether in physical
cases, where the macroscopic behavior is described by
nonlinear equations of motion, and which exhibit transi-
tions between different steady states and fluctuations
around them, a construction analogous to the curve be
in the PV diagram (Fig. 3) exists.

Continuing the discussion of the analogy, we note that
as the points c and d in Fig. 3 correspond to a vanishing
derivative of P with respect to V, (8P/8V), =0, similarly
the marginal stability points correspond to

dr/dx®=0 (or dx®/d)) - =) . (I1.6)
In addition, the relation
OF(x, \) 1. 7)

8 Jeo®

holds, where the derivatives are taken on the branch
which becomes marginally stable.

In the case of liquid—gas phase transitions, on raising
the temperature, a critical P(V) curve is approached

\Y

FIG. 3. A pressure (P), volume (V) diagram representing a
liguid—gas phase transition.
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x° (A, p) (b)

r<0

————#=0

#>0

FIG. 4. The variation with y of the equation of state repre-
sented in Figs. 1 and 2: (a) y =% — px for different values of p.
) x°(, p) for different values of p.

[curve (gkh) in Fig. 3] which passes through the critical
point K; this point is characterized by the vanishing of
both the first and the second derivatives of the pressure
with respect to volume (8P/aV), =(8P/8V?), =0. To
explore this analogy for Eq. (II.§) we let u afso be a
variable parameter and consider the equation of state
F(x, 2, u)=0 for different values u (Fig. 4).

For p >0 an unstable branch exists and two stable
steady states might occur for the same “external condi-
tions” p and A, For u >0 only one (stable) steady state

exists, The case p =0 corresponds to the situation
where the unstable branch has just disappeared. This

is the only curve on which a point (A=0,° =0) exists
where (91/8x°),=[8°1/8(x°)?], =0. This point A, =0,

1, =0, x,=0 is the analog of a critical point in first order
phase transition.

The similarity between the example given by Eq. (I, 3)
and first order phase transitions should not come as a
surprise as our equation of state x® - ux +1=0 is identi-
cal to the classical equation of state of a liquid-gas sys-
tem near the critical point [Ref. 16, Eq. (87.5)] or al-
ternatively, to the van der Waals equation of state.
However the analogy remains very much the same when
more complicated systems with hard instability transi-
tions are considered. A chemical example is provided
by the Edelstein model’’

A+X=2X
X+E=C (Ir.8)
C=E+B ,

with A, B, E +C all constants. For this example the
steady state equation is a cubic in the concentration X
and the analysis is similar to the one presented above.

The examples given above together with many others
may be summarized by the following general scheme:
the system of equations of state obtained from Eq. (II.1)

F[¥°, 2, u]=0 (I1.9)

may be used to eliminate all members of the vector ¥
but one, which we shall denote x, and this leads to a re-

duced steady state equation
G[x°, A, p]=0 , (I1.10)

where G is another nonlinear functional. A marginal
stability point is given by*®

) (21
Wa c"b«fo)t

The reciprocals of these derivatives are the analogs of
thermodynamic susceptibilities. If

(25, ()
a(x"f /,  \a(x"/,
we shall call this a transition point. This is the analog

of points ¢ and d in the phase diagram (Fig. 3). Note
that Eq. (II.10) implies

(I.11a)

dG_8G 3G 9\ 3G su_
dx® 8x" " ax 920 aum_

which together with Eq. (II.11a) leads to an equivalent
condition for a marginal stability point

G\
() .0

A critical point is characterized by conditions (II.11)
with the additional condition

(). -

(I1.11b)

(I1.12a)

or
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#u\ _
(5(950)2)1 -0
provided third order derivatives are nonvanishing. The
three conditions (II,10), (II.11), and (II.12a) or (II.12b)
determine one or several points in the xAp space which
are the critical points. These are the analogs of point
K in Fig. 3. It should be mentioned that the two condi-

tions (II,12a) and (II. 12b) may be equivalent but unlike
the conditions (II, 11) this is not necessarily so. To see
this we differentiate Eq. (II.10) twice with respect to x,

(I. 12b)

at either constant A or constant . Taking Eq. (II.11a)
into account we get, for constant
9°G  8G 9°x
3GO% T o a(x())z—o (I1.13a)
and for constant A
22 aG 9°
G K (I1.13b)

8(x°F "o 8L
From Egs. (II.13a) and (II. 13b) we obtain the interesting

result that (provided 8G/au, 8G/ax< = at the critical
point)

e )
= II.14
(567 ) (I.14)
where the subscript ¢ indicates the critical point. How-

ever, this does not imply that both 3% x/8(x°)% and 8% 1./
3(x°)? are zero at this point, as 8G/ax or 8G/au {or both)
may be zero there [in fact this was the case for the ex-~
ample given by Egs, (I1.3) and (II.4)].

In Appendix A we demonstrate the use of the general
relations obtained here for a particular problem: insta-
bility in a chemically reactive illuminated system.

To end our discussion of hard transitions the following
comments are in order:

(a) More than two external parameters are of course
possible., Our discussion remains valid when variations
in only two of these parameters are allowed. When this
is not so and one considers spaces of higher dimensions
the analogs of critical points of higher order are found.
Without going into detail here, it is worthwhile to note

that from
G, =0 x=0y,...)] {I1.15)
we have
(IL. 16)

a)\ aIN; N,
(8)\)0 (8x6> :—<8—x_&>
I ety Mgt Mo

so that at a marginally stable point (and at a critical
point of a first order transition) we have

A,
(58),,
X Apzg

for every A; provided

ax
(a ) -0,
47 rollm;

where \; is a parameter for which relation (II. 17) is
known a priori to hold. At marginal stability we have

(I, 17)

(I, 18)

Fluctuations and transitions at chemical instabilities

3G
: II.19
(25 ) -0 ; (1. 19)
moreover, at a critical point
3¢ G
—5ns ) =0 11,2
<B(XO)2 >3’ ( 0)
It is worth noting that provided (8G/87\j)x0’,tw #0 for at

then condition (II.19) is sufficient for a mar-
This results from

least one 7,
ginal stability point,

8G 3G N
a0 ), o, ) 0
X 375045 N g

which is obtained from differentiating the equation of
state with respect to x° keeping all A,(i #§) constant.
Similar reasoning shows that Eqs. (II.19) and (II. 20) im-
ply a critical pomt if (3G/ax),0 wyyy 70 for that 2, for
which 8®4°/8(),* =0 at the critical point, and prov1ded
that third order derivatives are nonzero.

(b) The conditions (II,10), (II.11), and (II.12) can be
used to construct a form for the equation of state near
the critical point if analytic behavior about this point is
assumed. This equation is expected to be of the general
form

G(&, 1, m) = +f,(L, m) E+1,(,m) E+£,(L,m)=0, (I.21)
where
E=x-x,
I[=x=X\, (11, 22)
M= =

From Eq. (II.10) we get £;,(0,0)=0, Eq. (II.11b) gives
/2(0,0)=0 and finally Eq. (II.14) implies that also £,(0,0)
=0. Expanding the functions f;, f;, f; near the critical
point then leads to

Bl l+p,m) E+(ayl+B,m) E+(agl+Bym)=0 . (I1.23)

If the critical point is such that (8% 11/8x%), #0 then in
addition we have (8G/811),=0 or

By=0 . (I1.24)

B. Soft transitions

As a simple example consider again Eq. (II.3) where
now we take for Flx, )
Fle, ) == (= ulf+alx—p) (m.25)

in which u is a constant and A is a variable parameter,
There are two steady states

xo:u, H*A (11.26)

These steady states and their stability (as obtained by
linear stability analysis) are displayed in Fig. 5.

A different example which is closely related to the
second order phase transition in a ferromagnet and to
the laser threshold phenomenon is provided by

dx/dt=F(x, ) == [(x = p) = Mx - p)]

which may have one or three real steady states accord-
ing to whether X is smaller or greater than zero. These

(Ir.27)
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X°(X\)
stable
stable
e ————————
18
/_/ unstable
Vd
//
unstable -
Ve
7
7

FIG. 5. Steady states of a system represented by Eq. (IL.25).

states with their stability are shown in Fig, 6.

A “chemical” example is provided by the following
sequence of reactions

A+C+XZTA+2X
{11. 28)
X-Y+B

where the second reverse reaction is neglected. The
rate equation is

dX/dt=-AX®+(AC-1)X (I1. 29)
or, putting y=#A and A=(AC-1)/C ,
dX/dy=~X%+2X {11. 30)
x° ()
stable
stable unstable
M
stable
A

FIG. 6. Steady states of a system represented by Eq. (I.27).

x°(\)

stable

———
— e —

e unstable

FIG. 7. Steady states of the system (II.28) with the reverse of
the second equation included,

which is identical with the situation represented by Fig.
5. It is however important to note that when slow re-
verse reactions are included in Eq. (I1.28) the corrected
steady states curve do not cross and the new situation is
as given by Fig. 7.°

The examples presented here reflect the analogy be-
tween soft transitions in instability theory and second
order phase transitions. Two important features are
evident in all these cases: (a) x°(A) is continuous at the
transition point A=2* =0, but its derivative is not; (b)
no ambiguity about the actual transition point exists and
no hysteresis appears. Hence we cannot distinguish
here between a transition point and a critical point as
in the case of hard transitions and, more important, a
soft transition point is expected to be experimentally
achievable.

Hopf?® has analyzed the case in which a steady state

becomes unstable at \*, with the real part of a complex
conjugate pair of eigenvalues vanishing linearly in

{x = 2*) (critical exponent one) near A*, Under this cir-
cumstance, for a broad class of nonlinearities which
balance off the “linearized” growth, a family of limit
cycles bifurcates beyond X > 2* with amplitude varying
as (A= 1*)!/2 (with critical exponent 1/2). Many of the
general theorems studied above can be extended to this
and other cases of bifurcating cycles.

1il. CRITICAL EXPONENTS

The analogy between transitions in nonequilibrium
systems and phase transitions suggests that one may in-
vestigate divergencies and critical exponents in much
the same way as in thermodynamic critical points, We
also show the relationship between the steady state di-
vergencies and the conditions for marginal stability ob-
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tained from a linear analysis, The analysis given here
is based on the assumption that the kinetic equations
hold up to the transition point itself. Experimental mea-
surement of critical exponents is necessary for verify-
ing this assumption.

A. First order (hard) transitions

The equations of motion are again represented by Eq.
(I1.1) and the steady state equation is

F[g’(x),A]=0 (111, 1)

The system is assumed to have transition points and
criticalpoints. Aswas notedin the previous section only
the latter are expected to be experimentally achievable
The discussion in this section applies equally to both
types and arbitrarily we shall use the term critical
points.

Let X, be one of the external parameters. A first or-
der transition point is characterized by the divergency
of the derivative of the vector °(\) with respect to %, .
Let A, denote the direction of approach to the critical
point [that is X, approaches its critical value while all
A;(j #a) are maintained at their critical values]. Then
we can write

. 2
o, a7 % (T 2)

where, for brevity, we take the values of all (;) to be
zero at the critical point considered, and where (8/0},),
denotes a derivative evaluated at A; =0 for every ¢ #a and
220, A (),) is a vector which may depend on A, but
remains finite when A, — 0.

Equation (II.16), in which x may be replaced by any of
the components of 3° implies that for every A, for which
at the critical point

(351) =————Li(aG§a“)‘ t40 (111 3)
O I (8G/8M )y,
we have
W)Y AN (1. 4)
B\, ), Ae .
with the same o, as in Eq. (III.2) and with
E
(ﬁ) AP()=AP(0,) (II1. 5a)
i/a

In particular, at the critical point itself Eq, (II1. 5a) may
be recast in the form

(351) AP(0)=A®(0)

o, (I11. 5b)

After estabishing these points it will be sufficient to
define a critical exponent in terms of only two parame-
ters: A, with respect to which derivatives are taken and
A, which determine the direction of approach. Of course
A, =1, is a possible case.

Besides the divergency represented in Eq. (III. 2), the
system has another singularity at the critical point which
manifests itself by the vanishing?'? of at least one eigen-
value of the matrix Q(}) defined by

o) = (M) (I11.8)
280 )

%y
It is interesting to study the relation between this singu-
larity and the divergency of 8y°(\)/81, and between the
critical exponents involved. To this end we start from
Eq. (III.1) in the form

F[Z/)O(hl ’ ha); A1 ’ )\a] =0 ] (HI 7)

where X\; =0 (for i #1, a) and are no longer considered
explicitly. From now on we shall also omit the sub-
script & which specifies the direction of approach to the
critical point, while keeping in mind that such specifica-
tion is implied. Taking the derivative of Eq. (III.7) with
respect to A, at the point 2, =0, A, =1 0" we get

mx)(i‘lf) +(311) -0 (1. 8)
N fg=0 \Bq Jy =0
or, using Eq. (III.2)

QAN ==2*B,(0) , (I11. 9)
where the vector

B,(M) = (E%E_)).lﬂ (1m.10)

is expected to remain nonzero and finite at the critical
point (A=0). Now expand the vectors A(x) and B(2) in
the set of right eigenvectors ¢,(A) of the matrix Q(1)

2N o, =2,000,00 , (1. 11a)
A=) a,0)¢,0) (II1. 11b)
B,(W) =Y 5, ¢,(0) (. 11c)

Inserting Eqs, (III.11) into Eq. (I, 9) and taking the
scalar product with the nth left eigenvector Q(A), we ob-
tain

2,0 a,(N)==2%b,(2) . (Im. 12)

Assuming that none of the quantities z,(2), a,(1), and
b, (A) diverge when A~ 0, we can write quite generally

b,(A) = £, A®n (II1.13a)
a,(\) = £, X1 (I1I. 13b)
2,(\) = £, A, (I11. 13¢)

where 8,, 7,, 0,>0 and where &,<0. &,G=1, 2, 3) re-
main finite when A— 0, We thus obtain

Byt V= +B, (1m.14)

Usually 6, =0 for most of the roots but we know that there
is at least one root which becomes zero at the critical
point. Such “unstable roots” are denoted by the index

u so that

5,>0

5,=0 for n #u (1. 15)
Hence, for » #u we have

Yp=+B,>0 (I1L.16)

which [from (I, 11b) and (III, 13b)] means that eigenvec-
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Nitzan et a/.: Fluctuations and transitions at chemical instabilities 1063

tors which belong to stable roots do not contribute to the
vector A(0). This vector is thus an eigenvector of §(0)
with the eigenvalue zero. [This is of course also clear
from Eq. (111.9).] For unstable roots we have

Yy=Q+B,~05, (Im. 17)

We know that there is at least one v, which is zero [as
A()) must remain nonzero when A—~0]. In the usual case
when there is only one unstable root, the corresponding
Y, must be zero. In this case

5,=0+p,=a (II.18)

This is an inequality among the critical exponents which
states that the rate at which the unstable root vanishes
is at least as fast as the rate at which (3y/8)) diverges
when A~ 0. Often g, will vanish in which case §,=a.
We stress again that all these critical exponents are
evaluated for a particular direction of approach to the
critical point and may depend on this direction,

Finally it is important to note that like in other theo-
ries of this kind (e.g., Landau theory of second order
phase transitions) which neglect the effect of fluctuations
on the critical exponents, our theory will usually pre-
dict “classical” exponents. For example, the relation
between X and X° near a transition point,

A=A* +l oA (® — x%%)2 + (Im.19)

2 3(O) RN .
which describes the extremal behavior (e.g., Fig. 2) at
the transition point, leads to

8x%/an~ (A = n*)1/2 (I11. 20)

about this point. At the critical point 8 x/3(X°)? may be
zero and critical exponent 1/3 is then obtained.

B. Second order (soft} transitions

Here y°(A) is continuous at the transition point but
9¢°/aX is not. We consider two cases: (a) ay’/o is
finite at the transition point but undergoes a finite jump;
(o) 83"/ is infinite for one of the branches at transi-
tion (transition to a soft limit cycle is included in this
class), We show that both cases imply a marginal sta-
bility root at the transition point. For simplicity we
consider one external parameter .

Case (a). Taking the derivative of Eq, (ITI.1) with re-
spect to A we obtain

nl()\)<%)+8F DY -0

an , (im.21)

for each of the two branches i=1, 2 which exchange sta-
bility at the critical point. At this point both §*(\*) and
the second term on the lhs of Eq. (II.21) are the same
for the two branches since ' (\*) =¢?(\*). Thus taking

AR =5 B0 - () (o 22)
Eq. (fII.21) leads to
a0 a0 =0 . (Im. 23)

Hence, the stability matrix @ has at least one zero ei-
genvalue at A=2* and a corresponding eigenvector par-

allel to the discontinuity vector A(\*). Taking the two
sets of eigenvectors (p{(\) of Q') (=1, 2)

QN pi(0) =20 ¢ i) (111, 24)

we may expand in terms of these eigenvectors to obtain

i) el =-bi(n) | (1. 25)
where
i

9‘%—:; etV ol (11, 26)

(II1. 27)

i
9—1':%‘%)—&:2 BN BEN)

With 2* =0 we can write in the vicinity of the critical
point

i
zE () ~ A%

el(\) ~ A% (111 28)
bi(n)~ Ao

so that
8yt €= By (IIL. 29a)

For the unstable root # =u we expect that €} will be zero
at least for one of the branches. In this case we have

si=pt . (TIL. 29b)

Case (b). If 8y'/8x is infinite for the branch i at the
transition point, Eq. (II.21) implies that there must be
at least one associated zero eigenvalue of (2*) (assum-
ing 8F/a) is finite at A=1*). The analysis of critical in-
dices is similar to that for hard transitions.

Consider now a transition from a steady state to a soft
cycle. Let us briefly consider the relationship between
the amplitude of the bifurcating cycle and the stability
properties of the system. Taking the derivative of the
kinetic equation (II.1) with respect to X we obtain

2(8)oq 2,F

ETACH ar 8x’ (1. 30)
where § = (8F/89) is to be evaluated at the limit cycle
and is thus time dependent. If the amplitude of the cycle
increases from zero at A* with infinite slope (typically
as (A= A*)1/2)20 then  assuming (8F/8)) to be finite and
noting that at A* the matrix @ becomes simply the ma-
trix determining the stability of the steady state, we see
that the stability analysis for the steady state yields a
pair of conjugate pure imaginary roots at A*. [This is
seen by comparing the coefficients of the divergent left
and first right hand terms in (III. 30) at A*, ]

C. Divergence of penetration length

The mathematical feature common to all types of tran-
sitions from a steady state to another steady state or to
a limit cycle is the vanishing of the real part of a root
of the matrix Q(2) defined in Eq. (I1.6) as A=~ 0, In this
section we have established the relation between this
phenomenon and the singularity in (III. 2) for the case
where the vanishing root is real. In the following sec-
tions we shall study the relation between this approach
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1064 Nitzan et a/.: Fluctuations and transitions at chemical instabilities

to zero and fluctuation phenomena. For completeness
we mention here the penetration of boundary perturba-
tions® into a system in which diffusion and nonlinear
chemical processes occur simultaneously. The kinetic
equations take the form,

%:DVZ¢+F[¢, A, (II1. 31)

where D is a matrix of diffusion coefficients. The pen-
etration vectors K are obtained as solutions to the equa-
tion

det{#* D - [2{x) - jwl]}=0 , (im. 32)

where w is the frequency of the applied perturbation
which penetrates like exp(ék. r). For the simplest case
of equal and diagonal diffusion coefficients D;; =D5,;, the
penetration length for the mode m is obtained in the form

1 D \/?
A= = .
i Crem) (- 33)

where z,,(\) is the mth eigenvalue of the matrix Q(1).
For the unstable roots «, 4, diverges like [Rez,(A)]™/2.
Equations (II1.18) and (III. 20) imply that the associated
critical exponent is §,> 1 /4 where the last inequality is
introduced for typical case (a=1/2) as discussed below
Eq. (I0.19).

D. Long time tails

At the transition point the dynamics of even small per-
turbations is determined by the nonlinearities since at
this point the linear analysis yields at least one stability
eigenvalue having zero real part. The evolution of small
perturbations at the transition point is thus not simply
exponential but may involve long-time contributions de-
caying with some inverse power of the time.

To illustrate this phenomenon consider the model sys-
tem (I1.23) at ;=0

dx/dt=>rx-5* . (Im, 34)

This system has soft transition at A =0 from the =0
branch to the x°=X branch. For arbitrary initial condi-
tion x(¢=0) =x(0) this system may be solved exactly as
follows:

x(0) et
1+x(0)[(e* ~1)/2]

x(t,A) = (1m. 35)

We see that small amplitude perturbations from the null
state x(0) << 1, evolve according to x(0) ¢ for A< 0 as
expected from a linear analysis. However, at the tran-
sition point A~ 0 we obtain

x(t, x=0)=x(0) [1 +x(0)¢]™ (111, 36)

For »=0 we see a slow decay proportional to #* which
is shown below to be typical of the effect of a second or-
der nonlinearity at the transition point.

If x(0) < 0 we see that x(¢) diverges as ¢ goes to
- [x(0)]™. This corresponds to the instability of the sys-
tem to negative perturbation in x. For A< 0, x also
grows if x(0) <1< 0.

Consider a system evolving according to (II.1), We

take the system to have a single (stability) eigenvalue
which vanishes at the transition. Let us introduce the
deviation x (¢, ) from the steady state,

X, ) =9(t, ) = ° (V)

in terms of which the rate equation (II. 1) becomes

(T1. 37)

ay'/dt=a\)yx’ +N'[x',A] , (111, 38)

where f is the stability matrix {see (II1.7)] and N’ is the
nonlinear contribution (in ¥’) to F. It is convenient to
transform variables to a new set x, constructed from

(A dependent) linear combinations of the x’, which leave
(1) diagonal. Thus for component » of x we have

dy, /dt=z,(\) x, + N,{x, 2] , (I1I. 39)

where N, is the nth component of the nonlinearity, trans-
formed according to the similarity transformation which
diagonalizes € and alters x’ into y. If at the transition
point A* the particular root » =u vanishes then we have

dx, /dt=N,x[x, \*] (I11. 40)

Now if we assume that N, is second order in x, and sec-
ond or higher order in the other components of x then
we show that the long time behavior of x, must be 7,
assuming that Rez, < 0 for » #%, and that x may be ex-
panded in inverse powers of ?.

We take

N[x, A*] =B, (%) &+ aN,[x, 2], (TI1. 41)

where AN, contains only second order terms in y,,, (or
their products with x,) and third or higher order terms
in x,. As t— o, decaying perturbations in x, must obey

Xt ) ~ %, 0, X*) [1 = B, x(0, A*)¢]™ (1I1. 42)

Since z,,, does not vanish, the dominant contribution to
Xn#ys a5 Obtained from the solution of

AXp /At =2,(A) X, + B, X2 + AN, [x, A] (I11, 43)

is of order £ as ¢~ . Taking an asymptotic expansion
in the form of inverse powers of f as {— « and using
(ITI. 42) we find from (III. 43) that y, has the limiting be-
havior

Xetw 7~ = (B, /2, B) 1 (I11. 44)
As in the simple example (III. 34) these results on the
regression of fluctuations hold only in one polarity of the
perturbation [B,x,(0)* < 0]. In the opposite case ¥,
grows and couples strongly to the other variables y,, .

To end this section we note that many of the results
presented here can be extended to transitions between
states of inhomogeneous systems.

IV. FLUCTUATIONS

In this and the next section we consider stochastic
analogs of the macroscopic equations of motion in order
to study fluctuations from steady states, % in particular
when the system approaches a critical point. (Again, if
not explicitly said otherwise, statements about critical
points apply also to transition points.) We limit our-
selves to fluctuations in those macroscopic quantities
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Nitzan et al.: Fluctuations and transitions at chemical instabilities 1065
motion is
dx/dt=@Q(x, )~ R(x,\) (v.1)
Qx) R (x) fat=q
——] X > and the corresponding steady state equation is
QU°(W), A) = R(x* (), 2) (v.2)
The stochastic analog of this situation is a birth and
death stochastic process. For simplicity we shall as-
FIG. 8. Model for nonlinear kinetic systems with one variable. sume a Markoff process in which in each elementary

which are influenced by the approach to instability and
to time scales which are inherent in the macroscopic
equations of motion for these quantities. We neglect
fluctuations from local equilibrium (which, as usual, is
assumed to exist) which occur on a much shorter time
scale. In the chemical case we shall thus limit our-
selves to fluctuations which occur on the chemical and
hydrodynamic time scales, taking the corresponding
transport coefficients (like chemical rate and diffusion
coefficients) as constants. We shall be concerned with
the effects of approaching a critical point on (a) the
amplitude of these fluctuations, (b) the rate of regres-
sion of these fluctuations, and finally (c) the spatial
correlation length. In analogy to phase transitions we
expect an increase in all these quantities in the vicinity
of a critical point. As in thermodynamical critical
points we shall find that these quantities diverge in a lin-
ear approximation, but remain finite {and large) when
nonlinear corrections are included.

No first principle microscopic theory exists for fluc-
tuations in reacting chemical systems. We shall utilize
the conventional approach of writing a phenomenological
master equation based on the macroscopic rate equa-
tions. Alternatively one can consider a Langevin equa-
tion obtained by adding stochastic source terms to the
macroscopic rate equations. If these terms are taken
as Gaussian stochastic variables one can then consider
the equivalent Fokker—Planck equation. This approach
is equivalent to the master equation approach only for
linear rate and transport laws.® For nonlinear systems
the two approaches are equivalent only if a detailed de-
scription of all the higher moments of the stochastic
source terms is known to fit the master equation. Both
the master equation and the Fokker-Planck equation lead
to the same qualitative consequences regarding the be-
havior of fluctuations near a critical point, though they
differ somewhat in quantitative details.

In this section we shall consider the meaning of steady
states and fluctuations from steady states using these
two approaches for simple model systems, The linear
approximation for a general system is considered in the
next section,

A. Model systems

Consider a box which contains x particles, through
which passes a flow of these particles (Fig. 8). The
fluxes of particles into and out of the box depend on the
number of particles in the box and on some external pa-
rameters A=(};). These fluxes are denoted by @{x,2)
and R(x, \), respectively, The macroscopic equation of

step only one particle is added or eliminated, with rates
Q{x,A) and R(x,)), respectively. If Plx,X, ) denotes the
probability that the box contains x particles at time ¢
under the constraints XA then the master equation is

8P, 1)

Y: =Qx~1)Plx~1,8)+R{x+1) Plx+1,¢)

(@) +R(X)) P(x, 1) , (Iv.3)

where the dependence on X was not written explicity. By
expanding the first and second terms on the rhs of Eq.
(IV.3) around x we obtain this equation in the form of an
infinite order differential equation (the “Kramers Moyal
expansion”)

apx 3P(x, t) Z 1)n<—-—> [M,x) Plx,8)] tv.4)
where
Mylx) = (1/n)) [Q) + (= 1) R(x)] .9

This result is a special case of the general property of
Markoff processes: Eq. (IV.4) always holds for such
processes where however M,(x) is generally replaced by
the nth moment of the transition probability

M,(x, t)=— lim — fdx Plx', t+at|x, D) (' = x) (IV.8)

! at-0 AL

in which P(x', ¢+ Atlx, t) is the conditional probability for
the system to be in state x’ at time £+ Af, given that it
was in state x at time /.

A different stochastic model can be constructed from
Eq. (IV.1) by adding a stochastic source term to its
rhs, which leads to a Langevin equation

dx/dt=Q(x) - Rx)+ Alx) g(f) .7
The Langevin function g() obeys -
(gth=0 (1v.8)

the average is taken over a long time or over a large
ensemble of similar systems. The simplest choice for
g(#) is to assume that it is a Gaussian stochastic vari-
able, that is we require

(gt gty =260, = 1,) (Iv.9a)
<H g(t1)>L =0; >2 , (IV.9b)
i=1

where {)* denotes linked (or cumulant) averages. In
calculating the moments of the transition probability
[Eq. (IV.6)] for this process one obtains®

M, (x) = Glx) +Alx) [dA(x)/dx]
M,(x) =(A(x))?

(Iv.10)
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M,(x)=0 forn>2 , @av.11)
where

G(x) = Qx) - R{x) {Iv.12)

With these results Eq. (IV.4) takes the form of a Fok-
ker~Planck equation

PN 2 16 i, 1) +3%{A(x)5%[14(x) Plx, t)]} .
(Iv.13)
Note that from the general equation (IV.4) we obtain
[by multiplying by x and integrating over all x, assuming
that all the expressions involving P(x, f) vanish at the
limit of integration]

a(x)/ ot = (M{x)) .

From Eq. {IV.11) it is evident that if we want to retain
the kinetic equation of the form (IV.1) for (x), at least,
we should take A(x)=K'/?=constant. This yields a Fok-
ker-~Planck equation of the form

(Iv.14)

) 3 2
2P 2 epmkp

2}
57 Py Py {Iv.15)

The master equation and the Fokker-Planck equation ap-
proaches are now both characterized by the same first
moment

M (x)=Gx) (Iv.16)
and by the same equation for the average
d (o /dt = (Gx) = Q) - Rx)) . v.17)

They differ however in the equations of motion for the
higher moments {(x — {x))*). Physically Eq. (IV.3) seems
more appropriate in case of chemical reactions whose
stochastic description often takes the form of a birth and
death process, while Eq. (IV.15) is suitable to describe
a system whose stochastic nature is originated from an
externally provided noise as may be the case for elec-
trical circuits {or chemical systems with floctuating en-
vironment),

In many works a master equation of a given Stochastic
process is used to derive a Fokker-Planck equation
which hopefully describes approximately the same pro-
cess, The primitive way to achieve this is to neglect
higher than second order derivatives in Eq. (IV.4), as-
suming that the functions involved are sufficiently
smooth.?® This procedure has been shown by van Kam-
pen®® to be inconsistent; he suggested instead a systema-
tic expansion of the master equation in inverse powers
of V2 or equivalently N'/2 (V being the volume of the
system and N the average number of particles). How-
ever, van Kampen’s method is based on the assumption
that fluctuations from the average are small relative to
this average (more precisely AN/N~V /%) It cannot
be used for our purpose, that is for exploring the am-
plitude of fluctuations near critical points. The master
equation, Eq. (IV.3) should thus be solved without ap-
proximating it first by a Fokker—Planck equation.

In what follows we shall utilize both approaches, Egs.
(IvV.3) and (IV.15) to study the properties of simple mod-
els of unstable systems. Such models are easily ob-

Nitzan et a/.: Fluctuations and transitions at chemical instabilities

tained by suitable choices of the functions @(x, A) and
R(x,A). Thus if we take

Qlx, X, W= px+x u,A=0

Iv.18)
Rlx,x, p)=x>

then we have a system with the same “macroscopic” be-
havior (Eqs. (I, 3) and (Il. 4) with a change of sign 1)
studied in Sec. II, which was found to exhibit a first or-
der (hard) transition, For the choice

Qlx,\)=xx; 220
Rix,\) =%

we obtain a system [Eq. (II, 37)] which macroscopically
exhibits a second order transition. Note that both Egs.
{(IV.18) and (IV.19) may correspond to chemical reac-
tions in open systems (with reverse reactions neglected).
Thus the rate laws in Eq. (IV.18) may originate from a
system of chemical reactions

(Iv.19)

A-X
B+X-2X
X-2X+C

(Iv.20)

in which A and B are kept constants, while the rates in
Eq. (IV.19) correspond to
A+X~2X

{(Iv.21)
2X~-X+B

where A is kept constant.

As was discussed in Sec. II the “macroscopic” equa-
tion of motion which corresponds to Eq, {IV.18) has one
or three steady state solutions while the one correspond-
ing to Eq. (IV.19) always has two steady states. Turn-
ing to the stochastic analogs, Eq. (IV.3) and (IV.15), we
see a basic difference as these equations are known to
possess a unique stable steady state solution for the dis-
tribution P(x).#¢ However, the “macroscopic” steady
states retain a meaning in the stochastic description
since P(r) has extremum values at these points, such
that local maxima correspond to stable steady states and
local minima to unstable steady states. To see this we
note that the macroscopic steady states are the solutions
2°()) of the equation

Glxg, V=", ) =R(K°,\)=0 (Iv.22)
such that for stable steady states (8G/8x),0< 0 and for
unstable ones (8G/dx),e > 0. Starting with Eq. (IV.15),
we obtain its steady state solution from

Gl N) Pyyle, N =K 5= Pl ) Iv.23)
where P, denotes the steady state distribution. We have
assumed that the probability current J=GP - K(8/8x) P
vanishes at the boundaries (in x space) and, being con-
stant at steady state, vanishes everywhere. From Eq.
(Iv.23) it is evident that (8P/8x),, =0 implies G =0.
Moreover, taking the derivative of Eq. (IV.23) with re-
spect to x and using 8P,, /9x =0, then due to the fact that
P,, is positive-definite, we see that (8G/8x),0 and (8* P/

8
axz)st have the same sign. This proves the relation be-
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tween the stability of the macroscopic steady state and
the nature of the extremum in P, .%

Turning now to Eq. (IV.3), we can recast the steady
state equation in the form

(€% = 1) QUx) Pyy() = (1 = €/ *) R(x) P,y x)
= ¢ (/% _ 1) R(x) Pyy()

(Iv.24)
which leads to?®
Q(x) Pyy(x)=R(x +1) P,,(x +1)
or
Py(x+1)=[Q)/R(x +1)] P, (x) , (Iv.25)

so that Plx) is an increasing function of x when @(x)
>R(x +1) =R(x) (the last equality holds when x> 1, that
is for large systems), and is a decreasing function of x
when the opposite inequality exists. An extremum of
P(x) occurs whenever @(x) =R(x +1) ~R(x) which is the
macroscopic steady state equation. If d(Q — R)/dx <0

x °(\) (@)

(b)

A = ,
f
P

—

= —

1067

this is clearly a maximum; otherwise it is a minimum,

For more general statements about the relation be-
tween macroscopic steady states and extreumum points
of the distribution function see Appendix B,

The picture in which a unique stable steady state dis-
tribution exists, where different macroscopic stable
steady states correspond to different maxima in this prob-
ability distribution, raises some doubts concerning the
independent existence of steady states and the occurrence
of hysteresis in hard transitions which are implied by the
macroscopic equations of motion. Similar problems are
encountered concerning the existence of a state of non-
zero average magnetization in ferromagnets below the
critical temperature, the existence of a state of nonzero
average electric field in a laser above threshold and the
existence of thermodynamic metastable states. The
problem is demonstrated in Fig. 9, which schematically
represents [Fig. 9(b)] the steady state distribution func-
tion P, (x, 2) for different values of a parameter A, for
a system in which the macroscopic steady state x°(A) is

FIG. 9. Probability distribu-
tion for multistate system.

(a) A diagram representing
multiple steady states (com-
pare with Fig. 2). (b) Proba-
bility distribution of the variable
x for different values of the
external parameter A.

=N\ N
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a multivalued function of X [Fig. 9(a)]. The macroscopic
description, Fig. 9(a) implies a hysteresis loop as was
discussed in Sec. II, while the stochastic description
[Fig. 9(b)] exhibits a gradual change in the steady state
probability distribution,

This apparent paradox is resolved by considering the
time scales involved when X is changed. When we start
from a steady state at A=X, (Fig. 9) and increase X to
the value A=), , then the system’s relaxation to the new
steady state distribution involves two time scales: a
short time scale for the relaxation within the initial
branch and a longer time scale for populating x values
at the vicinity of the other macroscopic steady state,
which for A=2; is equally probable according to the com-
plete steady state distribution. If the rate of changing
X is fast relative to the long time scale of diffusion be-
tween different branches, but is slow relative to the re-
laxation rate within the initial branch, the “macroscopic”
state of affairs will hold: the system will move along the
initial (upper) branch until X approaches A,. When the
system begins from A=X; and A is decreased with the
same rate as before, the system will move along the
original {lower) branch until X approaches A, . According
to this description hysteresis exists as long as the ex-
ternal parameter X is changed on an appropriate time
scale. It should be noticed however that when a marginal
stability point (A, or ),) is approached (from left or right
respectively) the rate of relaxation within the initial
branch decreases while the rate of transition from the
initial to the other branch becomes faster (see below).
When, for some value of A, these two rates become com-
parable (which occurs before A reaches its transition
value) the original branch can no longer claim an inde-
pendent existence on the time scale of the experiment,
Macroscopically we expect the crossing point to occur
(with some distribution) at the vicinity of this value of X.
We thus conclude that the marginal stability points are
never realized (except of course for critical points).

To get a better feeling of the time scales involved in
this description consider the Fokker Planck equation,
Eq. (IV.15), with the model given by Eq. (IV.18),
namely

oP__ 0

Py ——E[(—x3+ux+7t)P]+K

8 p

Z {Iv.26)

The unnormalized steady state solution of this equation

is Pst(x):exp[—%(%xh%xz—m)] ,

which has one or two maxima according to whether the
macroscopic steady state equation x° - yx — A=0 has one
or three real solutions. Consider the case of three mac-
roscopic steady states and let x2, < xJ, denote the two sta-
ble ones and x)—the unstable one. From the discussion
of Sec. Il we have 1%, <l <x),. Moreover, when mar-
ginal stability is approached xﬂ approaches x%, (at the
point A, of Fig. 9) or x2, (at the point A,).

(Iv.2m)

To obtain the relaxation rate within a given stable
steady state, in say, it is sufficient to linearize Eq.
(Iv.26) for small deviations from this value of x. Put-
ting £=22 we get

iﬁgt”ﬁ:%[n EP]+K%¥—) , (1v.28)
where

71=30% - p
which leads to (c.f. Ref. 23a)

(&(t) £(0)) =exp(~ v, 1) (£(0) £(0)) (1v.29)

for the time correlation function of fluctuations around
the steady state considered (see Sec. V for a discussion
of a multidimensional system). The relaxation time is
determined by the external parameters p and X [which
determine x°(x, u)]. At marginal stability of °; we have,
according to Eq. (II.17a), 3x% — u=0, that is the relaxa-
tion time within the steady state becomes longer as mar-
ginal stability is approached.

The steady state distribution which corresponds to
Eq. (IV.28) is a Gaussian centered around £=0

AR n o

PSt_(-ZW—K) expl:—ZK(x_xsl) ] .
The other stable steady state is disregarded by the lin-
earization procedure which leads to Eq. (IV.28). To
obtain an estimate of the time scale for diffusion be-
tween the two stable steady states, consider a system
for which the initial distribution is given by Eq. (IV.30)
but which evolves according to Eq. (IV.26). We inte-
grate Eq. (IV.26) from xﬁ to «, assuming that P and its
derivatives vanish at infinity at all times to get for

Wt = [ Pl )dx

oW (2P
ot "_K< 8x>xo ’
u
Next, on using Eq. (IV.30) we get for the initial rate of
populating the ¥, region

i’lV:(—”ly/z<x3—x21)exp(——“(x2-x21)2) (v, 32)

(1v.30)

(Iv.31)

9t 27K 2K

This clearly gives an upper bound for the rate of transi-
tion from #2, to 2% . When the distance x% - xJ, is large
and if K is not too large, this rate is vanishingly small.
When marginal stability is approached, 8W/8t increases
(as both 7, and x° — %2, go to zero). This rate takes a
maximum value of ¥, /(27e)*’? for x° — x2%; = (K/v,)'/%, but
it should be kept in mind that this analysis cannot be car-
ried too close to marginal stability because then the ini-
tial Gaussian distribution is meaningless. %®

After establishing the relation between macroscopic
steady states and the stochastic description of nonlinear
systems we turn to consider the behavior of fluctuations
from stable steady states when critical points are ap-
proached. Very little can be said about multidimension-
al systems without utilizing the linearization approxima-
tion.?® We study fluctuations under this approximation
in the following section, For future reference we con-
sider here a simple example without using this approxi-
mation. As we noted above, theoretical transition points
of hard transitions cannot be experimentally reached,
Meaningful results can be obtained in case of hard tran-
sitions only for the approach to a critical point. In case
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of second order (soft) transition marginal stability
points are always identical to critical points and
they are in principle always physically realizable,
We therefore consider the system (IV.18) for the case
A=0, When p approaches zero this system approaches
its critical point, Note that this system has been used
in Sec, II to demonstrate both hard and soft transitions,

For this system, the Fokker-Planck equation [Eq.
(IV.15)] yields the unnormalized distribution [Eq. (IV.27)
with A =0]

PG =exp| - 5 (o *—M)]

while, from the master equation approach we get, using
Eq. (IV.25)

(Iv.33)

for x >0
and u >0

PA(x)=P¥Q1) (v.34)

x(x'
The distribution (IV.33) can be studied both above

(u >0) and below (< 0) the critical point. An estima~

tion of the noise around the macroscopic steady states

is given by the function

N(p)= f PEPG)ax]™ [T -VRP PR ; n>0
f Pl (x)dx'lf P PIF(x) ; TR
(Iv.35a)

For u< 0, N(y) is simply the amplitude, ((x - x")), of
fluctuation around the single steady state x°=0. For
>0, N(u) gives an estimate of the fluctuations around
the positive (x”=v ) stable steady state, which is mean-
ingful only far enough from the critical point, The func-
tion N(y) is plotted as a function of u in Fig. 10(a).

The distribution (IV. 34) is meaningful only for positive
u and ¥, The master equation (IV.3) with @(x) = px,
R(x)=x% has a natural boundary at x=0, and thus de-
scribes only fluctuations around the steady state
x=vu>0. The corresponding noise is given by

G -P{ 2 pgam]'li =

x=1 x=1

VI PY (x) (Iv . 35b)
and is plotted against u >0 on Fig. 10(b). In both cases
the noise is seen to increase when ¢ approaches its zero
critical value.

V. FLUCTUATIONS IN GENERAL SYSTEMS IN THE
LINEAR (GAUSSIAN) APPROXIMATION

In the last section we studied fluctuations in some
simple model nonlinear systems and concluded that en-
hancement of fluctuations and lengthening of their decay
time (critical slowing down) are to be expected when a
system approaches marginal stability or a critical point.
In this section we study the same phenomena for a gen-
eral Markoffian system. The price we have to pay for
this generality is that a linear approximation must be
made., In this approximation the results obtained are:
(a) Fluctuation amplitudes diverge at marginal stability
or critical points. (b) The lifetime of fluctuations be-
comes infinite (or correlation times diverge) at the crit-
ical point. (¢) Fluctuations become long range, i.e.,
the spatial correlation length diverges at the critical

Fluctuations and transitions at chemical instabilities
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point. These conclusions result from the linear approx-
imation and are not expected to be correct for the physi-
cal nonlinear system. Nevertheless, as we saw in the
examples of Sec. IV (Fig. 10) the divergencies in the
linear approximation reflect a finite growth of the cor-
resl')_onding quantities in the nonlinear case.

The results concerning the behavior of amplitude and
lifetime of homogeneous fluctuations in the linear ap-
proximation may be found in the literature and are mere-
ly cited here.

N ()

<

-10.0 -5.0 0]
2
5.0 m
(b)
4.0t —
A 30 —
Nf—\
<3
|
X 20 —
I.O+— —
0 5.0 10
12
FIG. 10. The increase of noise near a critical point, given by
p=0, (a) A calculation based on Eq. (IV.35a). (b) A calcula-

tion based on Eq. (IV.35b). The results based on Eq. (IV.35a)
are meaningless for small values of positive u.
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The correlation time is obtained from®*

(oy(2) 69(0)) =exp[+Q(\) £] By 59> (v.1)
where
op=y-y°(A) (v.2)

and where, like in Secs. II and III  denotes the seg of
variables (like chemical concentrations) which determine
the state of the system while X is a set of external condi-
tions. y°(\) is the steady state of the system under the
conditions A. §(1) is the linearized rate matrix defined
in Eq. (II1.6).3! Finally, (6¢ 69) denotes the steady state
equal time correlation function. As the real part of at
least one of the roots of & vanishes at marginal stability
or critical points, it follows that the lifetime of fluctua-
tions diverge like (Rez,)™ (z, being the unstable root).

The amplitude of fluctuations is obtained in the linear
approximation from the relation

- 2K(\) =0 (\) (8 69y + Bowopy QT(A) (v.3)

where ' is the transpose of  and where K is a constant
“diffusion” matrix which is defined as the second mo-
ment of the transition probability [Eq. (IV.8) with x re-
placed by the vector y] evaluated at p=¢°(A\). Mazo*®has
shown that the components of the matrix (53 6¢) are in-
versely proportional to the quantity IT; I1,(z; (A) + 2,(V)),
where (z;(\)) are the eigenvalues of (\), and where ¢
and j go over all these eigenvalues. It thus follows that
the amplitude of fluctuations also diverges as (Rez,)™
Note that when several roots become unstable the fluctu-
ations of the amplitude will diverge as H,‘(Rezu)‘1 that
is faster than the correlation time.

’

In the rest of this section we study the behavior of the
gpatial correlation length. For this we make use of the
Langevin approach, ¢ assuming that our system is ade-
quately described by the set of kinetic equations

‘“ ul =DVY(r, )+ Flo(r, ), A] +glr, 1), (v.4)
where F is again a set of nonlinear rate laws and D is a
matrix of diffusion coefficients which is assumed to be
constant on the time scale of the fluctuations considered
and also to be independent of . Finally g(r, #) is a
stochastic Gaussian source®

&lr, =0 (V.5a)
&0y 1) g( (V.5b)

where K is a constant matrix. Let $*(\) be a homoge-
neous steady state and suppose that g is small enough to
justify consideration of small deviations 6¢(r, ¢) from y°.
Then Eq. (V.4) can be replaced by the linear equation

t)y=KO(ry - 1) 5(t — 1) ,

ﬂ%ﬁlzpvz olr, t) + () 89(r, 1) +g(r, 1) (v.6)

Taking Fourier transforms in time and space of Eq.
(V.8) such that

sk, w)z-(é-l;)-; f: e T mi9t sur 1) did >y V.7

and similarly for g(k, ), we obtain

Fluctuations and transitions at chemical instabilities

(iw+ A) 9k, w) =gk, w) (v.8)
where
A=A, N)=FD-g0) (v.9)

and where a product of iwwith the unit matrix is imvolied.
From Eq. (V.8) and its Hermitian conjugate we get

6k, w) 6p(k’w")) = (iw + A)™ (gkw) gk w ")) (- iw’ + AT,

(V.10)
Assuming that the system is invariant to time and space
displacements so that

(glr, Dgr’, 1) =(glr-1’, -t g0,0)) ,
Eq. (V.10) with Eq. (V.5b) allows us to write
<51[)(!', £ 54’(0; 0)) = f_:da Kdwe fwtrikr [iw +A]'1 K[— iw +A*]'1,

(vV.12)
We evaluate first the integral over w. To this end we
observe that each term in the integrand matrix has the
denominator det(iw + A)det(— iw +AT) = [detlw +A) %, Let
n;(k,A) (j=1.2...) be the eigenroots of A(k,1). This de-
nominator is then

H(iw +n5) (= iw +n;)
i

(V.11)

(V.13)

which vanishes at w=in;, —47;. The real part of n,(k, )
is positive (as our reference steady state is stable) so
that only the poles w =in; contribute to the w integration

with the result®
(69(r, 1) 6(0, 0)) =2mi R, (x, 1) , (V.14)
H
where
R;(r,t)= [d®ret™T e Bt S (k) (V.15)
with
s, (k) B, (k) (v.16)

7 " 2Ren, ()T, [= ;) +m; )] [ () +mF (R)]

B,(k) in Eq. (V.16) is an analytic function of . Noting
that the integrand in Eq. (V.15) is a function of the
scalar k(= |k|) only, we perform the angular integration
and Eq. (V.15) can be replaced by

R,(r, 1) -L f dke™ e P pS (k) (V.17)
ir ).

Consider first the simplest case of the equal time cor-
relationfunction (#=0)inEqgs. (V.14), (V.15), and (V.17)and
diagonal difusion matrix with equal elements (D =Dl
where [ is the unit matrix). In this case

n(k,A) == 2,(\) + 2D, (v.18)
where z,(A) is the jth eigenvalue of (1) of which the real
part is negative, Note that the restriction »,{k, \)

#n;(k, A) implies here that () is nondegenerate.
t=0 we can perform the integral over £ in Eq.
by complex integration,
are

For
(vV.17)
The terms in the denominator

2Ren, (k, A) = (¢ V2D +ivZTRez;(N) 1) (. V2D - i V2 Rez,(A) 1)

(V.19a)
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—T]j(k,X)+T)1(k,X)=Zj(X)—Z,(X) (Vlgb)

n;(k, N) + 15 (B, \) =2k2D — 2,(A) — 2} ()

= (V2D +a;; +ib;) (k2D ~ a;, —ib,;) ,
(V.19¢)
where, in Eq. (V.19c), a;; abd b,; are real numbers,
defined by this equation. Using these expressions we
rewrite R,(r,0) as

st /25

. aj1 bj1
+Xl:Aj,exp‘iz——mr —m7]> , (v.20)
where A;; is a constant matrix which is unimportant for
our purpose. Let the index « denote the roots z,(A) for
which the real part vanishes at A =2, (a critical or mar-

ginal stability point). The correlation function {(»,0)
x(0,0)), Eq. (V.14), can be written in the form

<¢(r,o>w(o,o)>=%£EAuue,@[_ R_e.;‘m,J

+2—n>< (terms which decay exponentially in #),

4 (V.21)
When A approaches A, the second term in Eq. (V.21) can
be neglected for large ». It is seen that the correlation
length diverges as [Rez,(\)]"}/2, This result is in agree-
ment with those obtained for the spatial correlation
length at the threshold of the Benard instability in lig-
uids.®® It should also be compared with the similar re-
sult obtained for the divergence of the penetration length
of perturbations applied at the boundary of an unstable
system [Eq. (IIL, 23)].

Note that a;; #0 for some j and / only if  has some
roots for which the imaginary part is nonzero, From
Eq. (V.20) it follows that such roots are always associ-
ated with oscillations in the correlation function.

Next, consider the case £#0, where still D=DI,
From Eq. (V.15) we have

R,(r,t)=e M p(r, 1) | (v.22)
where

py(r,0)= [ d¥rei® = o0t g ) (v.23)
Note that p satisfies a diffusion equation

2p_1e

5t oV P (V.24)

which could be solved with the result (V. 20) as the ini-
tial condition. Rather than pursuing this possibility we
note that if only long time behavior is desired, the in-
tegral (V.23) can be evaluated approximately. When ¢
is very large, only small values of % contribute to the
integral and approximately®*

p,(r, 1)=S,(k=0) [ d® e’ oDt

=S,(k=0)e™/42t (27 /Dp)*/? (V. 25)

The time correlation function thus decays at long times
like (1/£/2) ™ The slow ¢-*/2 decay becomes sig-
nificant for the term R, when the critical point is ap-

proached.

Finally, consider the equal time correlation function
(t=0) for a general diffusion matrix D, Here again we
have to find the poles of S,(2), Eq. (V.16). If x is such
a pole the corresponding contribution to the space corre-
lation function behaves like

(1/7) exp[i Rexy — Imkr] (V.26)

The poles « are functions of the external parameters X.
At marginal stability (A=0) there is a root 7,(%) for which
Ren, (k) =0 for some real (not necessarily zero) k. That
means that S,(k) has a pole x(\) whose imaginary part be-
comes zero at marginal stability, This corresponds ac-
cording to (V.26) to an infinite spatial correlation length,
i, during the process of changing A, Ren,(k) becomes
zero first at zero 2, then not only Imk but also Rek are
zero at marginal stability, and the slowly decaying con-
tribution to the correlation function, (V.26), has no
structure. This is the case for D=1D. For a general

D it may happen that Ren, () vanishes first for a given
nonzero k (symmetry breaking instabilities). In (V.26)
that means that Imx becomes zero at marginal stability
while Rex remains different from zero. The correspond-
ing contribution to the correlation function is then struc-
tured and oscillates like exp (i- Rex . »). We thus con-
clude that symmetry breaking instabilities correspond

to oscillating spatial correlation functions.

VI. CONCLUDING REMARK

This paper has been devoted to an examination of the
analogy between transitions in far from equilibrium re-
acting systems and phase transitions and critical phe-
nomena. Our treatment, particularly in Sec. V, closely
resembles the Landau-Ginzburg theory'®*® and accord-
ingly we obtain “classical” results for the exponents
characterizing the points of marginal stability. For ex-
ample in three dimensions [see Eq. (V.21)]

G(r) = @(r, 0)$(0, 0))~ Ay~ exp[- r£] ,

where ¢! is a correlation length. It is important to note
that by “classical” exponents we do not necessarily mean
Landau-Ginzburg exponents which correspond to a par-
ticular nonlinear model {i.e., the critical point of Eq,
(I1.27)]. Thus the most general prediction about the di-
vergence of £ is that it diverges like (A - 1,)®, where
6> 1/4 [see discussion following Eq. (IT.33)]. In the
model (II.27) one obtains 5 =% which is the Landau-
Ginzburg exponent, but cases where § = > are quite com-
mon.

Recent advances in the theory of critical phenomena
due to the renormalization group approach®™*® may have
an immediate application to the problems of chemically
unstable systems. Since in many complex chemical sys-
tems the number of components » of the state vector of
concentration variables @ is likely to be large, the re-
normalization group expansion in powers of (1/n) (where
n is the dimension of the internal “spin” variable)**
may well prove most useful. More important from the
chemical point of view is the recent extension of the re-
normalization group techniques by Halperin, Hohenberg,
and Ma* to dynamical critical phenomena. These work-
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ers begin with an assumed set of kinetic equations of a
structure very similar to that displayed in Eq. (V.4) and
apply renormalization group arguments to investigate
critical slowing down, We are presently investigating
the application of these ideas to the problems in chemical
instabilities.

APPENDIX A

Here we apply the formalism of Sec. II to obtain mar-
ginal stability and critical points in a system character-
ized by the kinetic equation

dA/dt=— (ky+k) A +kya

A
dT/dt=0A - (T - T,) - h}(dA/dt) A

with k; =k, e"®1/7(;=1,2), where k5, Ry 2, a, 8, and i
are constants; 7, and o are externally determined pa-
rameters., These kinetic equations determine the be-
havior of a chemically reactive (A B) illuminated system
with temperature dependent rate coefficients.*® In re-
duced quantities

x=TB/aa; A=T,B/aa; u=R,-R,)(8/ca)

(A2)
b=ty /Ky
the steady state equation takes the form
Glx,\, w)=x = [kexp(p/x)+1]=21=0. (A3)

Equation (A3) has been shown*® to have one or three (two
stable one unstable) solutions. Transitions between the
stable steady states are of the first order. We can now
use Eqs. (II.10) and (II. 11b) to obtain the following equa-
tions for the marginal stability lines in the (Aux) space.

(1= = 0]/l =N =ke"

(ke /* + 1% =k /x®) e /s,

(A4)

These are two equations in three variables, which define
a line (or lines) in the (Aux) space. To obtain the criti-
cal point we note first that for the G defined by Eq. (A3)
the condition (II. 11) implies that the two relations
(II.12a) and (II. 12b) are equivalent and thus correspond
to the same critical point. The condition for the critical
point is obtained from Eq. (II.14)

[(@/x)+ (w/x})] (1 +xe*/*) =2 (A5)

which must hold simultaneously with (A4)., These three
conditions for the three variables A, u, x define a point
in the (Apx) space.

APPENDIX B

Here we generalize the relation discussed in Sec, IV
between macroscopic steady states and extremum points
of the steady state distribution function. The general
one dimensional master equation may be written in the
form

dl;ix) =Y (emnerm_1)Q,(x) Plx) (B1)

where 7 denotes a given reaction and n(r) is the number
of particles created [r(») > 0] or eliminated [n(») < 0] in
the process ». The sum is over all the rate processes
which characterize the system. Now let m =» forn >0

and I=-n for n < 0. At steady state we can write

Z(e'm 3/ %) _ I)Qm(x) Pst(x) = "Z (e”a/ax) - I)Q-l(x)Pst(x)

m 1

=3 (el 1)t /M @ (x) Pyylx) . (B2)

[
Using
e-k@/ _ 1= (e-a/ax_ 1) +e-a/ax+e-2(a/ax) ...

+e'(k-1)(3/3x)) (B3)

-3/ &

and cancelling the operator e ~1 on both sides®® we

have

Z(l PRLVE SR UL I e-(m-l)(a/ax))Qm(x) P;t(x)

m

:Z (eP@/&) L gt=h@/a) | L o@/® g (x) P, (x) .
! (B4)
This is a difference equation of high order which in-
volves the probability distribution at points x — m +1,
.,%,..., x+[ for all the values of 7 and m involved.
Let x, be an extremum point of P, (x). In the vicinity
of xy, P, (x) is a slowly varying function of x and, if
max(!) and max(m) are not too large we can replace
P,.(x) by a constant in all the terms of Eq. (B4), so that

Z(1+...

m

te" m=1) (a/ax)) Qm(x)

=) e g (x) (B5)
i

where both sides are evaluated at x =x,. For large sys-
tems (x,> 1) all the exponent operators may be expanded
and only their zero order term retained, such that

Do mQulrg) =Y 1Q;(x) (B6)
m 1

which is the steady state equation.

In the multidimensional case we have

D e/ m 1), (x) P, (x)=0 | (B7)

where now n is the index of a process in which n; par-
ticles of component ¢ are created if »; >0, or destroyed
if #n; < 0, with the rate @,(x). The method used in the one
dimensional case seems here intractable unless we have
a detailed balance condition (i.e., at equilibrium)

™10/ %) g (%) Py, (X) — Q;(%) Py (%) =0 (B8)

for every n. This leads to

Py (x) :%ﬁ‘—agl P,y(x-n) (B9)

for every n, which shows that P(x) has its extremum
when @,(x) = @_,(x) for every n. From the LeChatelier
principle it immediately follows that this extremum is
a maximum.
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When detailed balance does not exist we can still study
the multidimensional case assuming that Van Kampen’s
approach® is applicable. Again let Xy be a maximum
point of P,,(x) and assume that the distribution around
X, is such that

X=V(y,+V-2y) | (B10)

where V is a size parameter of the system (e.g., its
volume), and where y;=%,/V. Also assume that the rate
laws are such that

Qax) = Vg, (yo + V1/2y) (B11)
where g, as well as y, and y are O(1). Then Eq. (B7)
can be expanded in powers of V"'/2 in exactly the same

way that this was done by Van Kampen for the one di-
mensional case, giving

Ruly -i/2m 1
0=2 > (-1} Non =11

m=1 =i
x(aiy) :{[;w(@;%—))m" : (y)m-']ﬂy)} . ®12)

where 7(y) = P(x) = P(x, + V*/%y) and where
r -
(a)®: (b)"_zz u.oZailaiZ.o. aikbil bizeoo bik .
iy 4y iy
The term m =1 [ =1 [which is {(V"'/?)] then gives

?-7813-'12 ng,(y,) =0 (B13)

for every y in the domain of applicability of Eq. (B12).
As 87/9y is in general different from zero this leads to

2 04,y =9 _nQ,x%,)=0 (B14)

which is the steady state equation,
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