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Vibrational relaxation of a harmonic molecule in contact with its sur-
rounding medium is studied, and its effect on the electronic relaxation rate
in such molecules is examined. Results of earlier works which considered
harmonic phonon models for the medium are extended to the case of a general
thermal bath. 'The formal expression for the vibrational relaxation rate is
modified but the general form of the final results for the electronic and
vibrational time evolution is shown to remain intact.

1. INTRODUCTION

The coupling between electronic and vibrational relaxation processes in
molecular systems has become a subject of much experimental and theoretical
concern [1-6). Effects of this coupling are negligible when either one of these
processes is much faster than the other. Thus electronic relaxation is usually
studied in the isofated molecule [7] limit (where the decay rate of a single vibronic
level is considered) or in the fast vibrational relaxation limit [8] (where this
decay rate is averaged over a Boltzmann distribution of vibrational levels).
When both electronic and vibrational relaxations occur on the same time scale,
they can no longer be considered separately and a theory which describes the
evolution of the system under both relaxation processes should be provided.
Experimentally this situation occurs in gas phase studies of radiative or radiation-
less electronic transitions under intermediate pressure conditions, or in dense-
phase studies of fast electronic relaxation processes. (By ‘fast’ we mean rates
comparable to vibrational relaxation rates in dense phases, i.e., 1010 sec™!
for large molecules.)

Theoretical studies of this problem have been recently published by several
workers [2-6]. In particular Lin [4] and also Heller and Freed [5] have con-
sidered stochastic models in which transition probabilities between the different
vibronic levels are taken as input data, thus providing a kinetic scheme from
which the time evolution of observables (like fluorescence intensity) and quantum
yields may be calculated. On the other hand, Nitzan and Jortner [7] have
provided a quantum mechanical theory in which electronic transition rates and
~ lineshapes are calculated from a given model Hamiltonian. In this theory the
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vibrational relaxation is introduced via a coupling between the molecular vibra-
tions and a bath of harmonic oscillators. In this form the theory 1is limited to
describing electronic-vibrational relaxation of a molecule imbedded in a dense
medium which may be modelled as a phonon bath.

In this note we extend the Nitzan—Jortner theory to account for processes
occurring in a general medium.  We show that the assumption that the medium
may be represented by a phonon bath may be relaxed without altering the forms
of the expressions obtained for the vibrational and the electronic relaxation
processes. Lhe results obtained in NJ18® and in NJ2%" are thus shown to be
valid in any medium (within the framework of the models described in these

papers).

2. REVIEW OF PREVIOUS RESULTS

The model applied by Nitzan and Jortner [6] is characterized by the following
assumptions :
(a) Assumptions concerning the medium :
(1) The medium is represented by a harmonic phonon bath.
(ii) The medium states are not modified by the electronic transition in the
impurity molecule.

(iii) The medium does not modify the molecular energy levels and the intra-
molecular coupling (or the molecule-radiation field coupling).

(b) Assumptions concerning the molecule :

(i) A two electronic state system is sufficient for describing the electronic
transition.

(ii) Only one electronic state is initially populated. (This will be the ground
state when absorption lineshape is considered or the initially excited
state when radiationless transition rates are calculated.)

(iit) Harmonic molecular vibrations. |

(iv) The normal modes and their frequencies are identical in the two elec-
tronic states. Potential surfaces are displaced in the electronic transi-
tions.

(v} 'The molecule is large and corresponds to the statistical limit. (The
case of small molecule can be described within the present model in the
fast vibrational relaxation limit.)

(vi) Interference effects (which arise when vibronic states in the initial
electronic manifold are effectively coupled to the same final states) are
neglected. _

(vi1) The condon approximation or its modification is invoked in calculating
the vibronic coupling.

(¢) Assumptions concerning the molecule medium interaction :

(1) The molecule medium interaction is taken to be the lowest-order
product of molecule and medium coordinates which is capable of 1n-
ducing an energy conserving transition.

(ii) The molecule medium interaction is simplified by invoking the rotating
wave approximation,
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(ili) Interference effects (which arise when two vibrational modes are
coupled to the same medium modes) are disregarded.
Within the framework of this model the electronic transition rate takes the

form

2 . .  AE ,
WS:Ez Re _g dr exp [1(7—7)7] G(r, '), (1)

where AE is the electronic energy gap and where the time correlation function
G(r, 7') 1s given by

G(r, ") = Z |Cslxr2<‘]x ]—[ g;¢>T' (2)

aFH

Here C;* are electronic matrix elements between the two electronic states s and /,
( >r denotes thermal average over medium states and g, and J, are single oscil-
lator matrix elements given in terms of the matrix element

1,={my,| exp {=(8,/v2)a,!(r)—a,(r)]} exp {(K,/v2)
x[a,(7)—a MW |my,>,  (3)
by

g.=1(K,=4,)
(4)

J.=(82 joAdK,) A =K, =0.

in which m, is the initial population of the molecular vibrational mode y in
the initial electronic state s. a,' and a, are creation and annihilation operators
for the mode x and A, denotes the reduced origin displacement of this mode.
« 18 the index of the promoting modes of the particular electronic transition.
It 1s assumed that A, =0. Finally, for any nuclear operator A (A=a, a,!),
A(t) stands for the time dependent operator

A(t) = exp (:‘H ;é) A exp (—H;z), (5)

where

H = Z ﬁw;&a,uta,u-l' Z ﬁwubuTbv 0 Hint: (6)

in which 4," and b, are creation and annihilation operators for the »th medium
mode, w, and w, are frequencies of the molecular and medium phonons, re-
spectively, and H;,, is the molecule medium interaction which induces the
vibrational relaxation. Its general form is

Hint= Z Z h(Gv#apth'{"Gv'u*ava)Tr (7)
o ¥
where v is a vector which corresponds to a group of medium phonons vy, v,, . . .,
G ,# are coupling terms, and B, are products of medium operators
B,=b,5b,..... (8)
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The matrix elements.g# and J, may be calculated once expressions for
a,j(.?) and a}u‘(r) are avaxlable._ Obtaining such expressions is equivalent to
solving the vibrational relaxation problem. For a molecule imbedded in a
dense medium this was done in NJ1, resulting in

aty=ut)a,+ L v,M1)B., (9)

where the functions u (¢} and v #(¢) are given by

u,(t)=exp [—iw, 't —y,t] (10)
“(t —6, (—iw,t (-iw, t— 1yt
= — 1 J— —— -
v,4(1) oy —a) 7, [exp (—tw,t) —exp (- 1w, 't~y 1)], (11)
in which
w,/=w,+dw,, (12)
a2
Sw,=PPY L0 (13)
v W, wy

yp,:l_lz |G\'F|2n\f8(wﬂ_wv)! (14’)
n,={[B,-B,' )1, (15)

and finally
w, =Y w, (16)

Equations (2)}-(4) and (9)-(11) can now be utilized to yield the final result for
the correlation function G(7, ') [N]2 equation (V1.22)]

G, )= 5 [Co X H(Cmdn + 1) exp [ =i (7= ') = 3 (7= 7')]

+ {m oy exp [iw,/ (7= 7" )y (7 7))+ 2m,, — (m D)
xexp [—y{r+7)] cos [w,/ (-1 )]} xexp{— Y $A 2

+ Y A %exp {~iw, (r—7 )~y (r—77)]}
xexp [~ 3 (m (A 2 —exp (~2y,7)—exp (= 2y,7")]
—A2exp[—y (r—7)]—exp {—y {7+ )]} cos [w,/(r— 7 })]

xn[mw)!mf ! (ii—”:z)‘rx{expvzm;)

S (i — 1) (1)

+exp (=2y,7) =2 exp [~y 7 +7)] cos [w, (7~ Tf)]}il’ )

J

which together with equation (1) provides a convenient departure point for
calculating the electronic transition rate as a function of molecular spectroscopical
parameters (A, w/, mg,) and vibrational relaxation rates (y,).
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3. VIBRATIONAL RELAXATION IN A GENERAL MEDIUM

Equations (1)-(5) do not depend on the particular model for the medium.
In what follows we repeat the calculation which leads to equations (9)-(16)
for a general mediumt, retaining however, assumptions (a ii}, (a 11}, {c i) and
(ciii). The medium iamiltonian will now be represented by its spectral
resolution,

}Inw(lium = Z Z ﬁe\a: €> <€, 0‘\, (18)

where |a, > denotes an energy eigenstate of the medium : ¢ is the total medium
energy (in frequency units) while a stands for other gquantum numbers apart
from energy which are necessary to characterize the medium eigenstates. We
assume that the whole system (molecule + medium) is confined in a macroscopic
finite box so that the medium energy states are discrete and normalizable

(o€ |aed =8,,0., (19}

According to assumption (c iii) the vibrational modes of the molecule can be
considered separately in the vibrational relaxation process. The molecular
Hamiltonian will be thus taken simply as that of a single harmonic oscillator

Hnmle('ulc (20)

_ 1
=hw,a,'a,

where, as before, a,’ and a, are boson creation and annthilation operators.
Finally the molecule medium operator is assumed to take the form

H,. = Zﬁ(GE“a#TBE+GE=“'a#BE*), (21)
E

where Gy, is a coupling parameter and where Bp' and By are operators which
add to or takes from the medium an amount of energy E. The general form of
these operators is

B! = uz Z;, Z:F(e)}a', e+ ED (¢, af, (22)
By = ; g Z F.(e)\a, e> (e + E, o&", (23)

where F(e) is a function of the energy e. In writing the form (21) for the
molecule-medium interaction we assume that this interaction is of the form of a
product between a coordinate of the molecular oscillator and some function of
the medium coordinates. This function is then expanded in terms of the
medium energy cigenstates, and finally we retain only terms which are capable
of conserving energy (according to assumption (¢ i1)).

The following analysis is closely related to the analysis in NJ1 which leads
to equations (9)-(16). The equations of motions for the operators a, and By
are obtained from the general Heizenberg equation

A—%[H,A], (24)

+ A different but equivalent treatment of vibrational relaxation of a harmonic oscillator
in a general medium has been recently provided by Nitzan and Silbey [9]. The present
approach, however, is more readily applicable when the effect on electronic transitions is
considered.

INZ
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in which 4 is a, or Bg and

H=Hmolecule+Hmedium+HinL' (25)
This leads to
d:_lwa‘—iz GE‘BE! (26 a)
E
By= —iEBg—ia Y, Gg.[Bg, Bx'); (26 b)
Yo

where the index p has been supressed as we deal here only with a single molecular
vibration. We now linearize equation (26 b) by replacing the medium operator
(B, Bg] by its thermal average

[Bg, Bg'1=ngd8r" (27 a)
where
ng = ([ Bg; EEW)T- (27 b)

This is a random phase approximation on the medium which amounts to the
assumption that processes in the medium are fast relative to the molecular
vibrational relaxation. The linearized system of equations

£ (28)

is now identical in form to (NJ1-3.15) and 1s solved in the same way to yield

a(t)=u(t)a+ % vg(t) B,

(29)
a()=u(t)a' + L vg (1)By,
E
where

u(t)=exp [—iw't —yth (30)

G | N
vE(t)=1.(—E%w—?)¢; [exp (—iEt)—exp { —iw't =y1)], (31)
w' =w+ dw, (32)
Sw=PPY, M, (33)

7 w—FE

y=nY, [Calngdle—E). (3#)

Equations (29)-(34) are analogous to equations (9)-(14). In addition the
commutation relation {a(t), @'(t)]=1 leads to

() *+ ZE:. |og(t) P =1, (35)
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which is analogous to (NJ1-3.37). Equations (29)-(35) provide a formal solu-
tion to the problem of vibrational relaxation of a harmonic oscillator in a general
medium.

4. T'IME EVOLUTION OF THE POPULATION

Although the results (39)-(35) are highly formal and contain the unknown
functions Gy, and ny, they may be used to obtain results for the time evolution
of different observables of the vibrational relaxation process. In order to
demonstrate this application we consider the time evolution of the population
of the molecular oscillator. This is given by (NJ1-4.3):

m(t)=[u(t)|>m(0) + ); |vg(t)|*{BE'Bg ) (36)

where m(t) is the population of the molecular oscillator at time t. Utilizing
equation (27 b), the second term in the right-hand side of equation (36) may
be recast in the form

; | vglt) |2y M(E, T) (37)
where
<BE1’9 BE>T
{[Bg, Bg'I>1

| V5(2)|? as a function of E is, according to equation (31), sharply peaked around
E =’ (as the relation y/w’ is of the order ~1073). Therefore, we can approxi-
mate the expression (37) by taking the function M(E, T) outside the sum at the
point E=w’. 'This enables us to apply the sum rule (35) and finally leads to

m(t) > [u(t)[2m(0) + (1 — |u(t) DM (', T). (39)

To obtain an explicit form for the function M(E, T) defined by equation (38)
we utilize equations (22), (23) and (19) to obtain

M(E, T)= (38)

BEtBEz ; “2 ; ‘F(e)‘zg(e)la, €+E> <e+E, oc'\, (40 a)
BBy = %, LT IF(0)Pgle+ Bl e <ol (406)

where
gle)= Z o, €le, a) (41)

is the degeneracy of the energy level ¢ of the medium. Taking thermal
(Boltzmann) average of equations (40 a) and (40 b) over the medium states,
using again equation (19), we arrive at

(Bg'Bg)r= E exp [ - Ble+ E)gle)gle + E) F(e) %, (42)
and
(BgBg'>r= E exp (— Be)gle)gle + E) | F(e)|?

= <BE?BE>'I‘ exp (BE), (43)
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where

B=1— (44)

Equations (38) and (42)—(43) now yield

{BgBg')r 1
M(E, T)={| o< |
@ 1= )
=[exp (BE) - 1] *. (45)
Utilizing equations (30), (39) and (45) we finally obtain
m(t)x exp (—2ytym(0)+[1—exp (—2y1)lfexp (o) — 1177, (46)

which is the usually accepted expression for thermal relaxation of vibrational
population of a harmonic oscillator. 'The result (46) enables us to identify the
quantity y, defined formally by equation (14), with the experimentally observable
vibrational relaxation rate.

5. CALCULATION OF THE ELECTRONIC TRANSITION RATE

Our aim is to show that our present approach which leads to the results
(29)~(34) instead of the results (9)-(14) obtained for a harmonic medium,
yields the same final expression for the correlation function G(7, ') as expression
(17) which was obtained in NJ2. 'To this end we note that all we have to prove
is that the result [NJ2, (VI.18)-(VI.21)] for the thermally averaged matrix
element (I > (equation (3)) is conserved in our present approach. 'The
following derivation is similar to that presented in Appendix C of NJ2t, but
differs from it as we cannot utilize boson algebra for the medium operators.

Starting from equation (3) we use the fact that the equal time operators
a,l(r), a,(7) commute like boson operators to obtain

A A K
Iﬂ_:<m8y| exp \:—\/—"2 aﬂ"(r)} exp [;7&2 a#(r):l exp |::—% a#*(r')}

K .
< exp [— e Nlm exp [ i(&ﬁ+K,ﬁ)]- (#7)
Inserting equation (9), this expression for [, is recast in the form
I,=S,P (48)

where

S = exp [~ HA -+ K,2)]<m, | exp (— . ())

A K, . K , .
com (5010, ) o (g Joxe (300 2, ) I (49

+ Note that equation (NJ2-C2) is in error. It should read
or=exp{— A+ K2+ KA M (7 (1)} X medium part
X <'Us‘ul exp [- )\p-(‘r) T’)aﬂ’] exp [)",H(T! T’)aﬂ]|v"r‘"\/

where the medium part is given in (N]J2-C4).
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is the molecular matrix element and where P# is 2 medium operator which takes
the form

A . A
p#=exp l:‘ 7‘"‘ ; Vg (T)BEYJ exp [\_/%' ZE: ”E”(T)BE]

K,w ... K ,
X eXp [\7; % vk (T )BE*:\ exp l:—v\—/—g % vpt(T )Bﬁ} (50)

The thermally averaged quantity ([, )y 13 obtained from equation (48) by
replacing the operator P, by its thermal average <P#>T. It is obvious that this
term, (Pﬂ>T, contains all the difference between the present approach and the
treatment in NJ2. Itis thus sufficient to consider this term only. In evaluating
(P> the following approximations, concerning commutation relations of the
operators By and By' are invoked :

(a) [Bg, Bg') will be approximated by equation (27 a) in consistency with
the RPA which leads to equation {28).

(b} [Bg', By') and [Bg, By ] are taken to be zero. From the definitions
(22)-(23) it is easy to see that these commutators are given by
[Bg's Be'l= 3 L > F{e)[F(e+E)gle + ')~ F(e+ E)gle + E)]
x o, e+ E+ B (¢, o | (51)

(and [Bg, Bg] by the complex conjugate). Also due to the highly peaked
nature of zg#, these commutators appcar only between such operators for which
E-E' is of order y, (~1cm™1). Taking the commutator (51) as zero amounts
to assuming a weak dependence of the function F(¢)G(¢) on ¢, such that

(AEQN) 2

With these approximations the operators B/+/ng and Bgljs/ng commute
like boson operators. This can be utilized to recast equation (50) in the form
(see e.g. NJ2 equations (B1-B5))

K A . ,
P, =exp |: ;;2 £ ; veh(T)op* (7 )”E] exp [%2;‘ jog (T, T Mgl

«exp [ $ ogi(r, 7)Ba= Lop 2B, (53)

where

K
opl(T, Tr):j‘é T’E#(T)“‘\‘/‘S”Eﬂ("f)- (54)

In taking the thermal average of equation (53) we further approximate it by
taking the lowest-order term in 2 cumulant expansion

Cexp | % og*Br— ; ot By e xexp {#<{ ; (op*Bg— og* Bg)]*>r}
=exp{—% ; 1Eﬁ\2[<BEBET>T + <BETBE>T]}

~exp {4 T [op#|mp(2M(E, T+1)},  (55)
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where M(E, T) is given by equation (45). As loy#|? is sharply peaked around
E=w, we can take the factor 2M + 1 outside the summation and replace it by
2{m,yp+ 1 where {m,>r=[exp (Bhiw,)—1]7" 1s the thermal population of the
mode p.

Equations (53)-(55) then lead to

K A . Lk Y
(Pyr=exp { p2 £ ; vgtvgh (7 )"E} exp { - im,‘)"r; log# (T, 7 ) |Bng ). (56)

At the same time the molecular matrix element, equation {49), can be evaluated
as described in NJ2, to yield

AK, . ,
Sﬂzexp[wi(A#2+K#2)+ ‘"2 ‘uu)u (7 )uﬂ(‘r)]

e (= 1) A T, T

“Cot L i 7
with
LA K,
A#(T, T )=7‘% u’,(‘r)—ﬁ u,(r ). (58)

Equations (54) and (56)-(58) are easily seen to be equivalent to equations
(C8)-(C10) of NJ2. Thesummations over E in equation (56) are easily evaluated
as described in equations (NJ2: B20, B22), to yield again the result (17). Tt
should be stressed that the approximations invoked in the present treatment
are completely equivalent to those made in NJ2 (Appendix C).  Within these
approximations we have thus established that the results obtained in NJ2 are
independent of the particular nature of the thermal bath.

6. CONCLUSION

This paper contains two main results. First we derived formal expressions
for vibrational relaxation of a harmonic oscillator interacting with a general
medium (equations (29--35), (46)). Secondly we showed that the expression
for electronic relaxation rate of a molecule imbedded in such a general medium
retains the form obtained earlier for the simpler harmonic medium model.
This result (equation (17)) is thus shown to be valid not only for molccules
‘mbedded in an inert solid matrix but for impurity molccules in gas phase
systems as well.
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