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Simulations of ion permeation through narrow model cylindrical channels are carried out using a dynamic
lattice Monte Carlo (DLMC) algorithm (equivalent to high friction Langevin dynamics) for the time evolution

of the ions in the system on the basis of a careful evaluation of the electrostatic forces acting upon each
particle. To mimic the process of ion transport through protein channels, the cylindrical channel is embedded
in a dielectric slab (representing a lipid bilayer membrane). The protein/membrane structure is taken to be
rigid, and the water solvent is treated as a dielectric continuum. Results of these simulations are compared to
corresponding results obtained via Poissdlernst-Planck (PNP) theory. In the PNP approach, the mobile

ions are treated as a continuous charge density, and the electrostatic force on each ion is treated in an
approximate fashion. Significant differences between DLMC and PNP results are found, with the degree of
discrepancy increasing as the radius of the ion channel is reduced. A major source of error is traced to the
neglect in the effective PNP potential of the dielectric self-energy (DSE), which is due to the interaction of
each permeant ion with the dielectrically inhomogeneous environment provided by the water/channel/membrane
system. When this static single-particle potential is precalculated and added to the effective potential used in
PNP theory, substantial improvement in the quality of the results for curkatitage curves and steady-state
concentrations is obtained. In fact, the results obtained by this approach, termed dielectric self-energy Poisson
Nernst-Planck (DSEPNP) theory, agree nearly quantitatively with DLMC simulation results over the entire

range of channel radii (412 A) studied.

1. Introduction all ion—ion interactions are computed accurately (within the
model of a rigid protein, dielectric continuum representation of

. 4 . ) the solvent, etc.) at each instant of time. Thus, the many-body
(BD) or dynamic lattice Monte Carlo (DLMC) simulations to nature of the ionic motion is properly described. Basic PNP

cakl:_ultz_ate Cué“ff.“s tE.m#gh blologltc_al channels via atpgys'cﬁ”ydtheory, on the other hand, describes mobile ionic charge by a
reakl]|s Ic m(')the Inw E)C dge(rjmelant ]oniare r((a)pres_en € tast aCcontinuous distribution, effectively regarding the individual
spheres with an embedded electric chrgé.One importan carriers as infinitesimal in charge (as well as in size) and infinite

goal of these studies has been to elucidate the behavior of ion, | number, taking only the charge density as given. Furthermore,

k|r(1j¢t|cs thr:puhg?] narrow _|f(_)n c?%nr}els_ (slevelral angstroms in j o implicitly assumed in PNP theory that the steady-state ion
radius), which have significant biological relevance (e.g., as concentration profile is characterized by negligible spatio-

§elect|V|ty_f|Iters). In such narrow ion channels, these calcula- temporal fluctuations so that each ion “sees” a static charge
tions predlct.very small superlinear currentfzfor voltages up to distribution due to the other ionghat is, a mean-field approx-
200 mV.. Curiously, the computd_d—v curves: . do not clpsely imation is adopted in order to treat mobile ieion interactions.
r_esemble thos_e measured experlmenﬂaliﬁwh!ch are typically Despite the additional realism in Brownian dynamics-type
:mear or SUbl'nf%r ra:ﬂler thqn sulpiﬂlmfaartla sth_ape and mUChcaIcuIations, they are at present still far from being ab initio.
arger in magnitude. AISo curious 1S the fact that in many Cases pare gre several significant approximations inherent in this

Ia:l)lcrudker rPnNogeI 3{ lon pgrmeit_|o|1r] ‘:QOW” as PO'SfNBrtht_ approach as it is most often implemented at present. First, the
anc ( h) ec&ry, in-w éc. _the lons are treate az a protein (and lipid bilayer) are considered to be static objects,
continuous charge density and ofon interactions are treate whereas they are in fact dynamical. They undergo fluctuations
within a_mean-ﬂeld approximation, p_redlc_ts q_ualltatlvely '3 ona picosecond time scale, which is much more rapid than the
sonablg lon currents throygh narrow biological ion chanfefs. time scale for ion permeation (several nanoseconds or longer).
Particle-based Brownian dynamics models are clearly more 1,5 protein atoms can relax instantaneously around the ion
realistic than the continuum/mean-field PNP theory in several oo it moves through the channel, and this conformational
respects. In BD models, the ions have a finite size and thus aré«polarization” can stabilize the permeant ion by minimizing
forced to traverse a narrow channel (e.g., gramiéidar the strong short-range electrostatic interactions between the ion and
KcsA channe®) in essentially single-file fashion. Furthermore, nearby protein atoms. Furthermore, the solvent (i.e., water) is
" : . . treated as a dielectric continuum in BD simulations. Because a
: Sgir\;gfg?”g'f”?e?%cg- E-mail: coalson@pitt.edu. water molecule is approximately the same size as’ @KCI~
*CarnegieyMellon University. ion, the separation of time/distance scales implicit in a model
8 University of Pittsburgh. of Brownian motion (in which the ion is the “Brownian particle”

Recently, several groups have carried out Brownian dynamics
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and the water is the “source of thermal buffeting”) is not fully The outline of the paper is as follows. To set the stage, we
justified. These issues are exacerbated when a few waterbriefly review the structure of standard PNP theory in section
molecules and a few ions are confined to a narrow ion channel.2, and in Section 3, we describe a simple procedure for
Of course, the same assumptions, namely, treating the proteinincorporating the DSE into PNP (i.e., DSEPNP). Our reasoning
as a static object and the water solvent as a dielectric continuum,here closely follows that of Schuss efaDur DLMC algorithm
plague the continuum PNP theory as well. is outlined in section 4. In section 5, we compare the results of
Recent work® suggests that two competing effects, both left PNP and DSEPNP with our DLMC simulation data. The paper
out of standard PNP theory, compensate each other and in som&oncludes, in section 6, with a discussion of our findings.
cases approximately cancel out, thus explaining why standard
PNP calculations are often “unjustifiably” successful in repro- 2. Continuum Models: PNP Theory
ducing experimental data. One effect is the dielectric self-energy A the simplest level of the theory of drift diffusion in an

(i.e., the electrostatic energy of a single mobile ion moving in inhomogeneous environment such as an ion channel, the mobile

a r(]jlelectr_lcally mhorr;]ogeneous environnfétin particular,  jons are treated as a continuous distribution. The concentrations
when an ion enters the aqueous pore of the protein channel, ito¢ these jons are therefore described by a set of partial

is surrounded “on the sides” by the low-dielectric environment ittarential equations, termed drift-diffusion or Neragtlanck

of the sgrrounding protein/membrane. Thus, the electrostatic (NP) equations, one for each ionic species. In particular, the
energy increases as the ion goes further into the channeljy.g fluxTi is given by

(maximizing when the ion is “most buried”, i.e., halfway through

the pore). The magnitude of this dielectric barrier can be quite - ac, (T) ap, (T)
significant-the narrower the ion channel, the greater the effect. —J,(T)=D,(T) o7 + B (T) o7 (1)
For gramicidin (radius of ca. 2A), the dielectric barrier for a ' '

monovalent ion is~20 kT.2* In the absence of some compensat- where ¢ is the concentration of speciésandq is the charge

ing stabilizing mechanism, no ions would flow through this - on an ion of this type. Furthermorg, is an appropriate effective
c_hgnnel, whlch_ c_:ontradlcts the experimental reality th_at grami- potential energy experienced by each particle of spdciBs
cidin passes millions of cations per second under physiologically js the diffusion constant (possibly position-dependent) for this
relevant conditions. The effect of dielectric self-energy on ion species, ang = (kT)"%, k being Boltzmann’s constant arnd
permeation has been recognized and extensively discussed ifhe absolute temperature. The time evolution is then given in
earlier ion-channel Ilteratyre, even thoughthe three-d|men5|onalgenera| by the continuity equati¥nac,/ot = —diU(T|)- Here
structure of actual protein pores was in general not known at we are primarily interested in the steady-state profile satisfying
the time?>~%* One potentially compensating mechanism is the gj,(j,) = 0, which constitutes the NP equation for spedies
relaxation of the protein channel itself around the ion as it passes The details ofy obviously play a critical role in this
thr(_)uglj the pore. As noted above, this_ prc_>tein stabi!i_zation, description. Most properlyy(f) should be thought of as a
which involves small (sub-angstrom) shifts in the position of potential of mean forcé for a single mobile ion of species
nearby protein atoms, can occur on a picosecond time scalepecause this generates a Boltzmann distribution [proportional
and via slight movement of partial charges on the protein provide to exp(-Sy(F))] in the case of a zero-flux steady state
significant electrostatic stabilization. Physically, this distortion corresponding to thermal equilibrium. Of courge(F) depends
of the protein atoms closely resembles the mechanism by whichon a complicated average over all mobile ions in the system.
the atomic lattice of a crystal distorts to stabilize a free electron Thus, it is natural to seek simplified approximations to this free-
moving through it (i.e., polaron formatiéf). energy function. The simplest plausible approximation follows
The above scenario is complex, and it is thus important to upon considering contributions to the force on a typical mobile
decompose it into component contributions and analyze eachparticle including the electric fields produced by all other
of these carefully. In this paper, we adopt the “standard” model charges in the system, plus impenetrable hard walls of the pore/
of ion permeation through a protein channel, namely, one in membrane structure. We may distinguish three types of free
which the protein itself (as well as the lipid bilayer membrane charges in the system: mobile ions, immobile (partial) charges
in which it sits) is represented as a rigid dielectric slab embedded in the protein/membrane, and charges on the distant
characterized by a low dielectric constant and pocked with point capacitor plates of the probing electrodes. The electric field of
charges embedded at various locations to represent (partialithe fixed ions is easily calculated (including effects of dielectric
charges in the protein/membrane. Furthermore, the water solveninhomogeneity). The electric field from the charges in the
is treated as a permeable dielectric medium characterized by sexternal capacitor plates can be subsumed into a solution of
dielectric constant and an appropriate viscosity. Within this the Laplace equation with boundary conditions that enforce fixed
model, we carry out accurate DLMC simulations based on the electric potential values on the capacitor plates. This leaves the
instantaneous force on each ion, taking into account all mobile charges. The force on a test ion due to the other mobile
electrostatic interactions. The results of these calculations serveions in the system depends on the instantaneous configuration
as a benchmark against which to test standard PNP theory andf all mobile particles. As a crude approximation, we can assume
variants on the PNP theme. Indeed, we find that standard PNPthat the number density of mobile ions at each point in space is
calculations deviate significantly from the DLMC resutthe frozen at its steady state (average) value (further subtleties in
disagreement becomes worse as the radius of the ion channelhis reasoning are discussed below) and calculate the electric
becomes narrower. We trace the disagreement to the neglect ofield at positionr due to the corresponding steady-state charge
the DSE in standard PNP theory. Furthermore, we find that by distribution. The sum of all of the electrostatic forces can be
“putting in” the DSE energy function as an additional single- obtained from the gradient of the electric potential field that
particle potential in the PNP equations (an approximation that satisfies the following Poisson equation:
will be termed DSEPNP) the agreement with DLMC simulations
improves dramatically, becoming nearly quantitative over the %-(g(‘r’)%qﬁ(‘r’)) = —4ﬂ(pf(?) + qu C (T)) 2
entire range of ion channel radii studied (from 4 to 12 A).
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where p¢(f) is the density of immobile charges in the system the negative of the gradient of the following potential energy
(i.e., partial charges on the lipid bilayer membrane and the function:

protein molecule). The appropriate boundary condition on the - -

surface of the “computational box” is a fixed surface potential Y = 0¢0o(R) + EDSE(Rn) (4)
that incorporates the potential difference across the membrane

supplied by the electrodes. Then, for each species of mobile With

ion there is one NernstPlanck equation (eq 1 above with _ 1., - =

— 0i¢). The boundary conditions on each NP equation enforce EpsRy) = zqﬁg(Rn,Rn)

the bulk concentrations in the bathing solutions on either side

of the membrane. For internal boundary surfaces (e.g., theThjs expression is exact, but if there are mobile free charges
surface of the membrane and the inner walls of the protein), (ions) in the system, it depends on the instantaneous configu-
zero-flux boundary conditions are utilized. This set of NP 5tion of all ions except the “test” iom. Thus, one must
equati_ons (cf.eq 1), one for each io_nic species, plus_one_Poissor}ee\,&uuate it every time a particle is moved (as in DLMC
equation (eq 2) constitutes a nonlinear set of partial differen- simylations) or else approximate it as a functional of an average
tial equation that are the embodiment of standard PNP mopile jon density (as in PNP theory). To do the latter, it is
theory:>-20:37 useful to specialize to the case that there [dgemobile ions
and N fixed charges (cf. Figure 1). Then

3. Dielectric Self-Energy PoissorNernst—Planck = = = =
(DSEPNP) Theory ¥ ;qj O(R, = R) = p(R) + p(R) (5)

When an ion moves through a dielectrically inhomogeneous
medium, it experiences a force due to the variation of the
dielectric self-energy (DSE) with the position of the ion. In N
particular, the DSE of an ion increases as it moves from the o (R) = qué(ﬁn -R) (6a)
bulk solvent, where it is surrounded by a high-dielectric medium &
(water), to the inside of a narrow ion channel, where it is
surrounded by a low-dielectric medium (the protein/membrane and
system). Note that this force persists even in the absence of - —
any other free charges in the system. If thereMu@harges in PRy = ij o(R, — Rj) (6b)
total and we are interested in the net force on ittte charge J=n
without (for the moment) any applied external electric potential, (The summation that determines, includes allNy, mobile
then the analysis performed in Appendix 1 shows that this charges except theth charge.) Clearly, in eq a?f(ﬁn) is an
force_ is the negative of the gradient of the following energy externally prescribed charge distribution, Wﬁn) depends
function: on the instantaneous configuration of all mobile ions. It is the

latter term that requires further attention. The approximation

. . 1 . . . .
ER) = qnij g(Rn,Rj) + EQ§9(Rn’Rn) ©) issequence that is necessary to obtain a tractable mean-field theory

where

j=n

- N
In this expressiong(R,,R) is the potential generated at point By, & DS D} D D DE — (D
R, by a unit source charge &, subject to the boundary PRy Jznqjé(R“ Ri) [JE‘qjé(R“ Ri) Pr(Ro)
condition thatg — O far fromR;. Thus, the first term accounts (7
for the electric field at poinR, generated by the othé& — 1 . ) i
point charges (mobile and immobile charges enter on the sameVherepm is the average net charge density profile
footing here). The second term is the DSE, which varies with . =
position in a dielectrically inhomogeneous medium, thus giving prlT) = qu c(r) (8)
rise to a nonzero force on iam

As noted above, the electric field contributed by external thys yielding a closed set of equations for the species concentra-
electrodes can be obtained by solving the Laplace equation withtjgns.
appropriate “fixed potential” boundary conditions and then  Essentially, we have just sketched the “derivation” of classical
differentiating the resultant electric potential field. Hence, the pNP theory, warts and all. The new development is the
force on particlen due to all other free charges in the system jgentification of an additional single-particle potential, the
plus the applied electric field from external capacitors (elec- dielectric self-energy (DSE), which does not appear in traditional
trodes) can be obtained by differentiating the scalar potential pNP discussions. Because this really is a static single-particle

field go computed from aingle Poisson equation, namely, potential, it can be added to the effective potential utilized in
- N ~ the NP part of the PNP equations.
Ve(e(T)Vey(T)) = —471qu o(r — R) For clarity, we summarize here the final modified DSEPNP
= prescription: The concentration profile of each ion speties

. - satisfies a NernstPlanck equation
subject to the boundary condition th@§(f) = ¢n(f) on the

system boundaries. 0= V+{D,(T)[Vc,(T) + Bc;(T)Vipeg, (M} (9)
To this must be added the force due to the spatial variation

of the DSE. The net force on partiate(including the electric ~ The effective potential seen by each ion species is

field from the external electrodes, the fields generated by all _ _ _

other free charges in the system, and the DSE) is thus given as Yerry (T) = G () + Epsel (r) (10)
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Here, ¢ is the solution to the Poisson equation:
V-(e(T)Ve(T)) = —4alpr(T) + ()]

with the fixed charge density: given in eq 6a, the net mobile
ion charge densitgy, given in eq 8, and the boundary condition
@(F) = @) on the various bounding surfaces of the simulation
box. Furthermore, the dielectric self-energy function for ion
specied is given by

(11)

-1 S
8DSEI(r) :quzg r,r) (12)
The NP equations for all species (cf. eq 9) and the Poisson
equation (eq 11) must then be solved to self-consistency.
The above arguments are similar to the ones used in the
discussion of the replacement of conditional by unconditional
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algorithm often used in dynamic Ising model simulatiéhs.
Given a current configuration 1 and a random trial configuration
2, the criterion for choosing the next configuration as 2 or 1
depends on the energy differents®V between these configura-
tions. A uniform random deviate 8 r < 1 is generated. If

1
r<————— 13
1+ exp[fAW] (13)
then the next configuration is taken to be 2. Otherwise, the
current configuration 1 is carried over. The energy of the system
was calculated as the following sum:
W= V\IBtat-i- \Nself + choul + Vvdiel + chorr (14)
where each energy term is defined below. The details of how
various energy contributions are calculated are described

charge densities in ref 35. Our presentation emphasizes that theelsewheré. The first term (the sums below are over all ions in

effective potential that determines the force on an ion due to
the induction of surface charge in a dielectrically inhomogeneous
medium is given as the negative gradient of the DSE potential
defined herein (i.e.EDSEl(?) = (1/2)qlzg(f,?). Its inclusion is
consistent with the way in which we perform our DLMC
simulations (see section 4) and also with the way in which free
energies of solvation are typically computed in continuum
solvent models (cf. ref 38). Note that in order to make one
dynamical move in our DLMC algorithm we need to evaluate
the electrostatic energy of the system twice: before and after a
trial move of the particle is attempted. Thus, formally we must
solve the Poisson equation for the electric potential generated
by an (ionic) point source two times in order to calculate the
DSE contribution to the relevant energetics. [In practice, these
DSE evaluations can be precalculated and stored on the
computational grid (cf. section 4).] Even in the absence of any
other source charges in the system, mobile or immobile, a
reevaluation of the DSE in this manner is required. In essence,
the difference between the DSE at initial and trial-move
positions of the ion (divided by the separation between these
positions) gives the instantaneous force exerted on the ion by
the induced charges at the dielectric boundaries. In the formula-
tion of Schuss et af3 a different prescription for this dielectric
boundary force is given. In particular, it is obtained from a single
solution of the Poisson equation for a point source charge at
the initial (“current”) position of the ion. From the resultant
electric potential profile, the dielectric boundary force is
extracted (by evaluating the gradient of this potential in an
appropriate manner). Although it may not be immediately
obvious that the two prescriptions give the same force, in fact
they do: a simple equivalence proof is provided in Appendix
2. Which prescription is employed in a given calculation is a
matter of convenience and computational efficiency.

In concluding this section, note that in the limit where a
continuous charge distribution is obtained by reducing the charge
per mobile particle and increasing the number of mobile particles
concomitantly (such that the charge density remains constant)

the computational box)

Vvstatz q ¢§tat (15)
]z ] 7]

is the energy of individual ions in the local electrostatic field
arising from static charges and from the source of the imposed
(Dirichlet) boundary condition. Next, the term

V\Felf — z

J

2

qiqsfe” (16)
2

is the self-energy (or solvation energy) of individual ions in
the inhomogeneous dielectric environment.

Turning to the ior-ion interaction, it is convenient to separate
it into two terms. The first

G,

wWeul = z > 17)

= €

¢COU|(rij)

is due to the direct Coulombic interaction between pair of ions
in a reference homogeneous dielectric environment with di-
electric constantg. A second term

> agé

1]

diel
i~

iel _ 1‘
Wi = 5 (18)

is the energy resulting from pair of ions interacting via
polarization charges induced at internal dielectric interfaces.

\Ncorr — @poer (19)
J
3

is a correction to the solvation energy that accounts for the
effects of ions outside the inner (primary) system.
The simulation procedure was implemented on a lattice as

the DSE effect becomes negligible. The DSE scales as the squarelescribed in ref 4 where each mobile ion can occupy one lattice

of the charge on a single mobile particle, and this charge tends
to zero in the limit process just described. Thus, DSEPNP theory
reduces to standard PNP theory in this limit.

4. Dynamic Monte Carlo Simulations

cell. The total simulation timé&sis related to the total number
of Monte Carlo cycles\c as

h°Ne

Ts= 1D (20)

The details of the DLMC procedure used here were thor- whereh is the grid spacing anD is the diffusion coefficient of

oughly described in previous wofln this method, the system

a single ion moving in the dielectric environment. The latter is

of particles evolves in time according to the transition probability taken to be the same for all mobile ions and is assumed to be
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Figure 1. Two-dimensional cross section of the 3D DLMC simulation
box depicting an assembly of free charges in a dielectrically inhomo- b)
; X : 60
geneous medium. Note that some free charges (encircled) are mobile
and that others (in the dielectric region with) are fixed in space. =
£ 40
e
known. D = 105 cn?/s was used in all the calculations g
presented in this work i i g 20
A cycle is defined to consist dfl steps withN =N + N,. N o
is the number of ions in the system, which may fluctuate with 0

time. The total number of particles must, however, be kept
constant to ensure the consistent accounting of time; therefore,
the number of virtual particleN, > 0 is chosen such thét is

0.0 0.1 0.2 0.3
voltage [V]

a constant.
c) 200
5. Comparison of DLMC Simulations versus PNP and 7
DSEPNP Calculations on a Model 3D lon-Channel 8 150
System 2 100
We consider a 3D model ion-channel/membrane system §
depicted schematically in Figure 1. The protein channel is g S0
represented as a cylinder of specified radius and length. This 0

cylinder spans a dielectric slab, which approximates a lipid
bilayer, in a perpendicular fashion. The cylinder is lined with
two layers of charge: an inner layer (closest to the aqueous
pore) of total charge-1.5¢, which is surrounded by a second Figure 2. Comparison of currertvoltage characteristics calculated
layer of total charge 165 These charge distributions mimic the  for the ion channel shown in Figure 1 via DLMC (filled symbols) and
arrangement of polar groups that line cationic channels. For DSEPNP (open symbols) methods for channel radii of (a) 0.4 nm, (b)
example, in gramicidin, carbonyl groups from the peptide 0.75 nm, and (cF 1.2 nm. The choice of dielectric constants, fixed

charge distributions, boundary positions and other parameters is as

backbone are oriented along the aqueous pore region, with theoutlined in Figure 1 and described in the text for all three channels

(electronegative) oxygen atom of each carbonyl group pointing studied and remains the same for all results presented in this paper.
inward. The model adopted here is not intended to representNote that positive voltage correspondsgio— ¢r > 0.

precisely the gramicidin protein channel, but the presence of a
layer of negative charge on the innermost lining of the channel constant of ca. 2, the value of the appropriate dielectric constant
contributes significantly to the mechanism by which cations are for the protein is less certain. Various flexible polar groups in
drawn into and ultimately passed through it, so it is important the protein suggest a polarizability that may put the dielectric
to include this feature in our idealized channel model. constant of the protein in the range of 202%41 Despite all of

The channel/membrane/water system under study is dielec-these complications, in this work we have chosen to use the
trically inhomogeneous. Roughly, the water is a high-dielectric dielectric constant,, = 80 for both bulk and channel-confined
medium &, = 80), and the protein/membrane complex, being water and the value,, = 2 everywhere else. With such
composed largely of low-polarizability alkane chains and other parameter choices (which are often considered as standard in
organic moieties, is a low-dielectric mediuan (= 2). In reality, the field of biomolecular simulations; see the extensive discus-
the situation is more complicated. Whereas bulk water is indeed sion in ref 23), the effect of the dielectric barrier on ion dynamics
characterized by a static dielectric constant of 80, the appropriatein the channel is expected to be significant.
dielectric constant in the pore interior is not known experimen-  The membrane thickness (and channel length) was taken to
tally. Given the highly confined geometry associated with be 24 A, consistent with typical lipid bilayer membrane
narrow ion channels (less th& A in radius), the invocation of  thicknesses. Bulk 1:1 electrolyte concentrations of 0.1 M were
a dielectric continuum description of the water in the channel adopted throughout. Three values of the radius of the cylinder
is itself questionable. Ignoring this potential dilemma, the precise representing the interior of the channel protein were considered,
value for the dielectric constant of water in the interior of the namely,R = 4, 7.5, and 12 A.
channel remains an issue. Presumably, it is lower than the bulk All calculations presented below that require solving the
value because the ability of the confined water to rotate is Poisson equation (i.e., an evaluation of the electrostatic potential
restricted and hence its rotational polarizability is reduced. in both PNP and DLMC methods as well as an evaluation of
Furthermore, whereas the dielectric constant of the alkane chain-the DSE potential for a single ion) or the NeraStlanck
dominated lipid layer is probably well represented by a dielectric equations were performed on a cubic lattice with 2-A spacing

0.0 0.1 0.2 0.3
voltage [V]
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Figure 3. (a) Ratio of DSEPNP/DLMC currents as a function of
voltage for three channel radii: 0.4 nm (triangles), 0.75 nm (squares),
and 1.2 nm (circles). (b) Ratio of PNP/DLMC currents for the same

channels: 0.4 nm (triangles), 0.75 nm (squares), and 1.2 nm (circles).
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Figure 4. (a) Ratio of PNP/DLMC current (filled squares) and
DSEPNP/DLMC current (open squares) as a function of voltage for
channel radiuRk = 0.75 nm. (b) Ratio of PNP/DLMC current (filled
circles) and DSEPNP/DLMC current (open circles) as a function of
voltage for channel radiuR = 1.2 nm.
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Figure 5. Mobile ion concentrations calculated by DLMC, DSEPNP,
and PNP plotted for th&® = 0.4 nm channel at an applied voltage of
0.3 V and a 0.1 M reservoir concentration of salt. Filled symbols are
for cations; open symbols are for anions. Circles show DLMC results,
squares, DSEPNP results, and triangles, PNP results: (a) positive mobile
ion concentration along the (channeBxis k= 0,y = 0); (b) negative
mobile ion concentration along tlzeaxis; (c) mobile ion concentration
along the (transversejaxis at the center of the channel=€ 0,y =

0).

to the predictions of DSEPNP theory. The agreement is good
for all three channel radii. To quantify this claim, we show in
Figure 3a the ratio of DSEPNP/DLMC currents as a function
of applied voltage. Generally, the error is less than 20% (with
slightly larger deviations at low voltages in the narrowest
channel,R = 4 A). The performance of standard PNP is
dramatically worse than this, particularly for the = 4 A
channel, as is shown in Figure 3b. PNP significantly overesti-
mates the current flow relative to DLMC, with striking
deviations of nearly a factor of 50 for tie= 4 A channel at

low voltages due primarily to its neglect of the DSE contribution
to the free energy experienced by a permeating ion. For channel
radii of 7.5 and 12 A, the deviation of PNP from DLMC is
more modest. To emphasize this, we replot relevant data curves
from Figure 3 in Figure 4. As expected, the agreement of PNP
with DLMC improves systematically with increasing channel

between adjacent grid points. This choice also defined the sizeradius: for the 12-A channel, the error is only a factor of 2.

of an ion in the DLMC simulations. The charge discretization

procedure on the lattice has been described in detail in ref 4.

In Figure 2, we show for each of these cylinder ra&i 4,
7.5,and 12 A in panels a, b, and c, respectively) curreottage
(I-V) curves obtained via DLMC simulations and compare these

Itis also instructive to examine the steady-state concentration
distributions of the mobile ions in the channel. In Figure 5, we
show for theR = 4 A channel the cation (Figure 5a) and anion
(Figure 5b) concentrations along the channel &#ss is readily
apparent, the PNP curves bear little correspondence to their
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and PNP plotted for th&® = 1.2 nm channel at an applied voltage of
0.3V and a 0.1 M reservoir concentration of salt. Filled symbols are

Figure 6. Mobile ion concentrations calculated by DLMC, DSEPNP, for cations; open symbols are fo_r anions. Circles show DLMC_ results',
and PNP plotted for th® = 0.75 nm channel at an applied voltage of ~ SAuares, DSEPNP results, and trlangle_s, PNP results: (a) positive mobile
0.3V and a 0.1 M reservoir concentration of salt. Filled symbols are ion concentration along the (channeBxis =0,y = 0); (b) negative

for cations; open symbols are for anions. Circles show DLMC results, Mobile ion concentration along tizeaxis; (c) mobile ion concentration
squares, DSEPNP results, and triangles, PNP results: (a) positive mobile2long the (transversejaxis at the center of the channel< 0,y =

ion concentration along the (channeBxis k = 0,y = 0); (b) negative

mobile ion concentration along tlzeaxis; (c) mobile ion concentration

along the (transverse)axis at the center of the channel= 0,y = 6. Discussion and Conclusions

0). In this paper, we have studied ion permeation through
biological channels within the “standard model”, in which the
DLMC analogues. However, the results of the DSEPNP channelis rigid, water is treated as a dielectric continuum, and
calculation are in very good agreement with the DLMC the mobile ions are treated as charged spherical particles that
simulation results. Figure 5c¢c shows a lateral slice of the cation execute Brownian motion (based on thermally driven buffeting
and anion densities through the center of the same channelby implicit solvent molecules). We performed dynamical Monte
Again, PNP deviates substantially from DLMC, but DSEPNP Carlo simulations (equivalent to Langevin dynamics at high
results agree very well with DLMC. This cross-sectional view friction) for channels ranging in radius from 4 to 12 A. Current
also shows clearly that the DSE potential is higher near the voltage curves and ion concentration profiles were extracted
walls of the channel, thus preventing mobile ion density from for three channels, ranging in radius from 4 to 12 A. These
accumulating there in the DLMC and DSEPNP calculations. results were compared to corresponding results obtained from
Because the DSE is neglected in standard PNP, this effect isPoissor-Nernst-Planck (PNP) theory, in which the permeant
absent in the PNP concentration profiles, which extend almostions are treated as a continuous charge density and the force
uniformly in the lateral direction up to the channel walls. In  on each ion is assumed to be static and is computed within

x [0.1 nm]

Figure 6, we show the corresponding results forRhe 7.5 A standard mean-field theory approximations. We found, in
channel, and in Figure 7, results fBr= 12 A are presented.  agreement with previous calculatioch® that PNP greatly
The same general comments apply as forRhe 4 A channel overestimates the ion current through narrow channels, with the

case described above. As the channel gets wider, the PNP resultdiscrepancy increasing for narrower channels. The origin of this
become somewhat better, although certain artifacts of the neglectdiscrepancy was traced in large part to a force associated with
of DSE remain noticeable, for example, the nearly step-function the dielectric self-energy, which arises from the interaction of

nature of the PNP profile in the lateral direction. an ion with charges it induces on the dielectric boundaries. This
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force is properly included in the DLMC computation but is presentation of the issues that we want to focus on. We note,

ignored in simple PNP theory. The DSEPNP model, which takes however, that our conceptual model and its implementation in

this single ion force into account within the general framework the present and our earlier wérkre based on finite-sized ions

of the PNP theory, yields-V curves and concentration profiles  (i.e., spherically distributed chard€s

in nearly quantitative agreement with the corresponding DLMC  Consider a collection dfl point charges in an inhomogeneous

simulation results for all radii studied. This suggests that other dielectric medium, as sketched in Figure 1. The charges may

effects that are beyond the province of PNP theory (e.g., be mobile or embedded in the medium (“fixed”).

(mobile) ion—ion correlations and single-file ion queuing First, we calculate the electrostatic energy required to

kinetics) affect thd—V curves to only a minor degree, at least assemble this system of charges from infinite separation. For

down to the minimum channel radius (4 A) investigated here. the moment, we assume that no externally applied voltage is
The above findings do not address the important issue raisedpresent. The work required*s

in the Introduction concerning significant flaws in the “standard

model”, including a static representation of the channel and a g(ﬁl, -ﬁN) = if df E-D (A1.1)

continuum representation of the water solvent, especially the 8r

solvent molecules inside the channel. Because of these over- _ L ) )

simplifications, this model predicts extremely small currents Here,I_E is the electric field vector. It IS relate_d fo the glectnc

through narrow channels, in stark contradiction to experimental poter_mal af = __V¢’ where the scalar field(r) is the (umque)_

reality. Reference 23 suggests a practical, though approximate,sc"“t'o,n to the Poisson equathn (PE) corrgspondlng to the given

way to include these effects in determining the potential of mean coIIec_t_lon of source charges, d|elec_tr|c regions, and the boundary

force (PMF),; in eq 1, experienced by a permeant ion. The condition that¢>__= 0 on all bounding surfaces (far from the

full PMF includes, in addition to the DSE force, a stabilizing C¢"arges). Specifically, the relevant PE reads

force due to the local relaxation of the protein channel around N

an ion as_it moves thro_ugh the channel. When this full single- %-(e(‘r’)ﬁf)(?)) — _47[2 q (T — ﬁj) (A1.2)

ion PMF is utilized as input into PNP theory (with the usual = !

mean-field theory arguments used to simplify the effect of the

force on a test ion due to all other permeant ions), the resultantwhere on the |hg(r) is the dielectric profile and on the rlup

PMFPNP theory predicts ion currents that are in reasonableis the value of thgth charge and(r) is a three-dimensional

agreement with experiment even for the very narrow gramicidin Dirac delta function. Finally, the electric displacement vector

channel (radius of 2 A). As noted in the Introduction, this is is determined from the electric field by the proportionality

largely a consequence of the cancellation of two effects: the relationD(F) = (F)E(r).

DSE barrier is compensated by a potential well corresponding  This electrostatic energy can be equivalently expressed as

to the “polaronic” stabilization of the ion in the channel due to follows. Integrating by parts and discarding the surface téfms

local conformational relaxation of the protein. Furthermore, yields

PMFPNP can prediét the saturation of ion current with in-

creasing concentration (at fixed voltage), a property of current 1N ~

flow through real protein channels that does not emerge from €= EZQJ ¢(Rj) (A1.3)

standard PNP theory. It would be interesting to carry out calcu- 1=

lations in which the single-particle force on each ion is obtained noyt we examing in more detail. Because the PE is linear

from a PMF calculation of the type outlined in ref 23 while the ¢ oy erall potential is composed of contributions from each of
forces between all pairs of mobile ions are computed via a {ha source terms

DLMC simulation with an accurate evaluation of the relevant

electrostatic interactions. In this way, ieion correlation effects, N N

single-file queuing kinetics, and so forth could be studied more o(T) = Z q9(T.R) (A1.4)
carefully. Although these apparently play only a minor role in =

the present model system, they may be important in more ~ ) _ )
chemically realistic models of narrow channels, for example, Whereg(r,R) is the potential generated at pafrity a unit source
those that have selectivity filters (e.g., the KcSA chanhgipz  charge at poinR;, i.e., the solution of

Note Added in Proof. While this paper was in review, the V-(e(T)VQ) = —47d(T — R) (A1.5)
following papers addressing the issue of dielectric boundary ) N ~
forces in ion channel energetics appeared: (1) Nadler, B.; subject to the boundary condition timat— 0 far fromR;. Note
Hollerbach, U.; Eisenberg, R. Bhys. Re. E 2003 68, 021905, that in a homogeneous medium characterized by dielectric
1-9; (2) Corry, B.; Kuyucak, S.; Chung, S. Biophys. J2003 constants and far away from any boundary surfaces

84, 3594-3606. 1
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Appendix 1: Origin of the Dielectric Self-Energy Term
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g(ﬁ,»,?) (because the operat&rﬁ is symmetric). Substituting  satisfies the Poisson equation (eq A2.2). Thus,

eq Al.4 into A1.3, we obtain
1NN .
) = EJZ k;qj a9(R.R) The first equality holds foany change in an arbitrary charge
distribution, and the second specializes to the case under consid-

The double sum on the rhs can be separated into diagonal anration here, wherép = q(é(T —[Ro + OR]) — O(F — qu))
off-diagonal terms Equation A2.4 is clearly equivalent to the statement

o€ = [0pp dT = q(¢(Ry + 0R) — $(R)) (A2.4)

ER, ...R, (A1.7)

VER) g, = AVO(F) 1z, (A2.5)

~ — 1N ~ —
€= qu g 9(R.R) +52q,?g(aﬂ) (AL8)
]< J:
which establishes a nontrivial relation between the gradient of
where the first sum includes contributions from all pairs of the dielectric self-energy of a point charge at p(ﬁmand the
charges and we have used the symmetry property dted electric potentialp generated by a point charge aﬁl
above. The first term is essentially the potential energy obtained  Note that eq A2.5 gives the force on a test chargoatue
by summing Coulomb-like pair potentials (suitably modified to an arbitrary collection of free charges in a dielectrically in-
to take account of the dielectrically inhomogeneous medium), homogeneous medium. Here we are primarily interested in the
and the second term includes the self-energy associated withsjtuation where there are no free charges in the system besides

each ion.

The force on a given mobile ion, say ionis determined as
the gradient of the “single-ion energy”. To determine this, we
need to retain only the terms in eq A1.8 that dependrgn

&Ry = %y g gRR) + qng(Rn R) (AL9)

j=n

The first term in this equation is the potential energy experienced
by test charga due to all of the other free charges in the system.
The second term is the dielectric self-energy (DSE) of test
chargen. In a dielectrically inhomogeneous medium, the DSE

depends on the location of the test charge in the medium and

hence contributes to the force experienced by chargs it
moves through the system.

Appendix 2: Connection between Dielectric Self-Energy
and Dielectric Boundary Force

the test charge . In this caseﬁ(ﬁ) = (1/2ng(§,§), and

¢(r) on the rhs of eq A2.5 is the solution of the PE for a source
charge aRy (and¢(r) — o far away from this source charge).
This establishes the equivalence between the DSE perspective
adopted in the present work (the |hs of eq A2.5 specialized to
the case of one free chargeRy) and the dielectric boundary
force perspective of Schuss et al. (rhs of eq A2.5 under similar
conditions?).
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