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We consider phononic heat transport through molecular chains connecting two thermal reservoirs.
For relatively short molecules at normal temperatures we find, using classical stochastic simulations,
that heat conduction is dominated by the harmonic part of the molecular force-field. We develop a
general theory for the heat conduction through harmonic chains in three-dimensions. Our approach
uses the standard formalism that leads to the generalized~quantum! Langevin equation for a system
coupled to a harmonic heat bath, however the driving and relaxation terms are considered separately
in a way that leads directly to the steady-state response and the heat current under nonequilibrium
driving. A Landauer-type expression for the heat conduction is obtained, in agreement with other
recent studies. We used this general formalism to study the heat conduction properties of alkane. We
find that for relatively short~1–30 carbon molecules! the length and temperature dependence of the
molecular heat conduction results from the balance of three factors:~i! The molecular frequency
spectrum in relation to the frequency cutoff of the thermal reservoirs,~ii ! the degree of localization
of the molecular normal modes and~iii ! the molecule–heat reservoirs coupling. The fact that
molecular modes at different frequency regimes have different localization properties gives rise to
intricate dependence of the heat conduction on molecular length at different temperature. For
example, the heat conduction increases with molecular length for short molecular chains at low
temperatures. Isotopically substituted disordered chains are also studied and their behavior can be
traced to the above factors together with the increased mode localization in disordered chain and the
increase in the density of low frequency modes associated with heavier mass substitution. Finally,
we compare the heat conduction obtained from this microscopic calculation to that estimated by
considering the molecule as a cylinder characterized by a macroscopic heat conduction typical to
organic solids. We find that this classical model overestimates the heat conduction of single alkane
molecules by about an order of magnitude at room temperature. Implications of the present study to
the problem of heating in electrically conducting molecular junctions are pointed out. ©2003
American Institute of Physics.@DOI: 10.1063/1.1603211#
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I. INTRODUCTION

The investigation of the electrical conductance
nanowires is in the focus of the quest for developing no
submicron and nano-size electrical devices. Molecular
vices already demonstrated include molecular wires, field
fect transistors, single electron transistors, molecular dio
rectifiers, and switches.1,2 Localized Joule heating poses
crucial question over the functionality and reliability of su
devices. The combination of small molecular heat capa
and inefficient heat transfer away from it may cause a la
temperature increase that will affect the stability and int
rity of the molecular junction. The rate at which heat is tran
ported away from the conducting junction is, therefore, c
cial to the successful realization of nano electronics devic

As in macroscopic solids conductors heat can be car
away from the junction by electrons and phonons. In me
heat flow is dominated by electrons, while in insulators h
is transmitted solely by phonons. This study focuses on
phononic mode of heat transfer. Theoretical interest in

a!Electronic mail: nitzan@post.tau.ac.il
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mode of heat transfer in solids goes back to Peierls’ ea
work.3 Recently it was found that thermal transport prop
ties of nanowires can be very different from the correspo
ing bulk properties. For example, Rego and Kirczenow4 have
shown theoretically that in the low temperature ballistic
gime, the phonon thermal conductance of a one-dimensio
~1D! quantum wire is quantized, and have obtainedg
5p2kB

2T/3h as the universal quantum conductance un
where kB and h are the Boltzmann and Planck constan
respectively, andT is the temperature. Also of considerab
interest are attempts to derive the macroscopic Fourier law
heat conduction in one-dimensional systems from mic
scopic considerations. The Fourier law is a relationship
tween the heat currentJ per unit areaA and the temperature
gradient¹T

J/A52K̃¹T, ~1!

whereA is the cross-section area normal to the direction
heat propagation andK̃ is the thermal conductivity~the ther-
mal conductanceK is defined asK5J/DT). Perfect har-
monic chains were theoretically investigated by Rieder a
0 © 2003 American Institute of Physics
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Lebowitz5 and by Zürcher and Talkner6 who found that heat
flux in these systems is proportional to the temperature
ference and not to the temperature gradient. Conseque
the thermal conductivity diverges with increasing cha
length. Anomalous heat conduction was also found in o
dimensional models of colliding hard particles.7,8 Different
models that potentially avoid this divergence and yield F
rier law conduction were discussed. Some invoke impuri
and disorder,9,10 others11,12 consider anharmonicity as th
source of normal heat conduction. Numerical simulations
chains with a random potential were performed
Mokross,13 and the role of phonon–lattice interaction w
studies by Huet al.14 Still, there is yet no convincing and
conclusive result about the validity of Fourier law in 1
systems.

Experimentally, remarkable progress has been achie
in the last decade in nanoscale thermometry, and meas
ments on the scale of the mean free path of phonons
electrons are possible. Using scanning thermal microsc
methods one can obtain the spatial temperature distribu
of the sample surface, study local thermal properties of m
terials, and perform calorimetry at nanometric scale.15,16The
thermal conductivity and thermoelectric power of single c
bon nanotubes were studied both experimentally17 and
theoretically.18,19 In a different experiment, Schwabet al.20

have observed the quantum thermal conductance i
nano fabricated 1D structure, which behaves essent
like a phonon waveguide. Their results agree with
theoretical predictions.4 These and other experimental an
theoretical developments in this field have been rece
reviewed.21

In a recent paper22 we have estimated the rate of he
generation in a model of a current carrying molecular ju
tion. We have found that a substantial~;0.1–0.5! fraction of
the voltage drop across the junction is dissipated as hea
the molecule, implying that a power of the order of 1011eV/s
may be released as heat on a molecular bridge carryin
current of 10 nA under a bias of 1 eV. This would cause
substantial temperature rise in the molecule unless he
effectively carried into the metal leads. This motivates
study of molecular heat conduction. In Ref. 22 we have u
a simple classical continuum model~Fig. 1! in which the
molecular bridge is represented by a cylinder character
by a heat conduction coefficient;sh51024 cal/~s•cm•K),
typical to solid saturated alkanes. However, classical h

FIG. 1. A schematic representation of a molecular chain connecting
heat reservoirs.
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conduction theory is expected to overestimate the heat
through a single molecule that has a discrete vibrational
quency spectrum, and a molecular level treatment is nee
for a correct description of this process.

In the present paper we address this problem, focus
on the steady-state phononic heat transfer through a m
ecule connecting two macroscopic thermal reservoirs of
ferent temperatures. The calculation is based on the gen
ized Langevin equation~GLE! approach6,23–25 which is
recast for a model of single molecule junction. The result
expression for the heat current through harmonic molecu
is analogous to the Landauer expression for electr
conductance.26 We apply our formalism to realistic models o
molecular systems: Alkane chains of varying lengths, us
the HYPERCHEM package to generate molecular structu
and obtain their vibrational~normal mode! spectrum, and
using a Debye model for the thermal reservoirs. This enab
us to study the dependence of the heat transfer on the br
length, the temperature and molecular composition, as w
as on the spectral properties of the reservoirs.

Section II introduces our formal model for phononic he
transfer through molecular bridges, and Sec. III describes
theoretical approach that yields Langevin-type equations
motion for the molecular subsystem and an expression
the heat transfer rate. Section IV presents some nume
results for the heat conduction by alkane and alkane
bridges connecting Debye solids, and discusses their im
cations. Section V concludes.

II. MODEL

We consider a molecule connecting two independ
macroscopic solids,L and R, which are held at fixed tem
peraturesTL andTR , respectively. In steady state there is
constant heat flow between these two heat reservoirs thro
the molecule. A schematic representation of the mode
depicted in Fig. 1. The Hamiltonian of this system is a su
of the molecular Hamiltonian,HM , the Hamiltonian of the
solid baths,HB , and the molecule–bath interactionHMB

H5HM1HB1HMB . ~2!

Even though the heat flow in our system is on
dimensional, the thermal reservoirs and the molecular bri
are three dimensional objects. The reservoirs are represe
as systems of independent harmonic oscillators at ther
equilibrium. In what follows we consider a harmonic mo
ecule coupled linearly to these thermal environments. Anh
monic effects will be discussed in Sec. IV where we sh
that for the relative short chains considered here and at ro
temperature they are relatively small. For simplicity we a
sume that only the end atoms,i 51 andi 5N, of the molecu-
lar chain are coupled~linearly! to the solids. To simplify our
presentation we write the molecule–bath coupling in o
dimension~the analogous three-dimensional expressions
are used in the computations are given in Appendix A!. The
Hamiltonian associated with the environment and its c
pling to the molecule is then given by25

o
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HB1HMB5(
l

H 1

2
mlv l

2S xl2
g1,lx1

mlv l
2D 2

1
pl

2

2ml
J

1(
r

H 1

2
mrv r

2S xr2
gN,rxN

mrv r
2 D 2

1
pr

2

2mr
J

5HL1HR1HMB , ~3!

where

HL5(
l

H 1

2
mlv l

2xl
21

pl
2

2ml
J ,

~4!

HR5(
r

H 1

2
mrv r

2xr
21

pr
2

2mr
J ,

HMB5HML1HMR5(
l

1

2

g1,l
2 x1

2

mlv l
2
2(

l
g1,lx1xl

1(
r

1

2

gN,r
2 xN

2

mrv r
2

2(
r

gN,rxNxr ,

~5!

and wherexj , pj , mj , andv j ( j 5 l ,r ) are coordinates, mo
menta, masses, and frequencies associated with the de
of freedom of the reservoirs, and where the subscriptsl andr
are used for the left~L! and rightR reservoirs, respectively
The molecule–solids coupling is characterized by the c
stantsg1,l andgN,r , andx1 andxN are the coordinates of th
molecule end atoms.

In what follows we use a generic description of the m
lecular bridge, representing it as a set ofN independent-
collective harmonic oscillators

HM5 (
k51

N H 1

2
vk

2x̄k
21

p̄k
2

2 J , ~6!

where x̄k and p̄k are the~mass weighted! displacement and
momentum associated with the normal modek. The normal
mode representation~6! is obtained from the atomic~local!
coordinate representation by the standard procedure of
transforming the local coordinatesxi andpi ( i 51,...,N) into
mass weighted coordinatesxiAmi→xi and pi /Ami→pi ,
then diagonalizing the molecular Hessian matrix. This
fines a linear transformation

x5Cx̄, ~7!

that relates theN-vector x of mass weighted local coordi
nates to theN-vector x̄ of molecular normal modes. TheN
3N matrix C is assumed in what follows to be known. No
that the coordinatesx1 andxN that appear in~3! and ~5! are
local, corresponding to the positions of the first and last
oms in the linear molecular chain, and when re-expresse
terms of the molecular normal modes results in coupl
terms that connectall normal modesto the thermal reser
voirs. A similar transformation to mass weighted represen
tion is done also on the normal modes of the macrosco
solids. The Hamiltonian terms~3!–~5! then become
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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HL5(
l

H 1

2
v l

2x̄l
21

p̄l
2

2 J ; HR5(
r

H 1

2
v r

2x̄r
21

p̄r
2

2 J ,

~8!

HMB5 (
l ,k,k8

1

2v l
2

Vl ,kVl ,k8x̄kx̄k82(
l ,k

Vl ,kx̄l x̄k

1 (
r ,k,k8

1

2v r
2

Vr ,kVr ,k8x̄kx̄k82(
r ,k

Vr ,kx̄r x̄k , ~9!

where the mass weighted bath coordinates are denotedx̄
and p̄. In Eq. ~9!, the sums overk and k8 go over theN
molecular normal modes, while the indicesl andr denote, as
before, the modes of theL and R solids, respectively. The
transformed molecule–baths coupling constants are give

Vl ,k[VlC1,k , where Vl5
g1,l

Am1ml

,

~10!

Vr ,k[VrCN,k , where Vr5
gN,r

AmNmr

.

The total Hamiltonian is the sum of the terms in Eqs.~6!, ~8!,
and ~9!. In this representation all the molecular informatio
is contained in its normal modes frequencies, the transfor
tion matrix C and the coupling constantsVl and Vr . It
should be evident that the same treatment can
done for three-dimensional molecule–bath coupling~see Ap-
pendix A!.

In the following section we use this harmonic model
calculate the heat transport properties of molecular junctio
This assumes that heat transport in such junctions is do
nated by the harmonic part of the molecular nuclear pot
tial. The extent to which this assumption holds will be e
amined later.

III. CALCULATION OF THE STEADY-STATE
HEAT FLUX

Here we use the model outlined in Sec. II to calculate
steady-state phonon energy transfer between the two the
baths through the molecular link. Starting from the coup
classical equations of motion for all~molecular and baths!
modes, we derive a set of classical Langevin equations
the molecular modes by projecting out the baths degree
freedom. Then, using the classical equations as a guide
construct the corresponding quantum Langevin equations
the molecular system. Transformation to the frequency
main makes it possible to extract steady-state informa
and finally yields the steady-state heat current from the tra
formed equations.

A. Equations of motion

The classical equations of motion for all modes are o
tained from the Hamilton equations of motion2]H/]q̄i

5pG i ; ]H/] p̄i5qG i . HereH is the sum of Eqs.~6!, ~8!, and
~9!. This leads after rearrangement to
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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xJ k52vk
2x̄k1(

l
Vl ,kx̄l1(

r
Vr ,kx̄r

2(
l ,k8

1

v1
2

Vl ,kVl ,k8x̄k82(
r ,k8

1

v r
2

Vr ,kVr ,k8x̄k8 ~11!

xJ l52v l
2x̄l1(

k
Vl ,kx̄k ,

~12!

xJ r52v r
2x̄r1(

k
Vr ,kx̄k .

Note that different molecular modes are coupled to e
other through their interaction with the baths.

B. Langevin equations

Next we follow a standard procedure25 in which Eqs.
~12! are formally integrated and used in~11! to yield a set of
generalized Langevin equations for the molecular modes
the resulting equations the effect of the thermal environme
appears in new driving forces and damping terms. This p
cedure~Appendix B! leads to

xJ k52vk
2x̄k1(

l
Vl ,kx̃l1(

r
Vr ,kx̃r

2(
l ,k8

Vl ,kVl ,k8

v1
2 E

t0

t

xG k8~t!cos~v l~ t2t!!dt

2(
r ,k8

Vr ,kVr ,k8

v r
2 E

t0

t

xG k8~t!cos~v r~ t2t!!dt, ~13!

wherex̃l and x̃r evolve according to

ẍ̃l52v l
2x̃l and ẍ̃r52v r

2x̃r ~14a!

or

x̃l~ t !5 x̃l~ t0!cos~v l~ t2t0!!1
ẋ̃l~ t0!

v l
sin~v l~ t2t0!!,

~14b!

where x̃l(t0)5 x̄l(t0) and ẋ̃l(t0)5 ẋ̄l(t0), and similarly for
the r modes.

Equation~13! is a generalized Langevin equation for th
molecular modek. The terms

ML~ t ![(
l ,k8

Vl ,kVl ,k8

v l
2 E

t0

t

xG k8~t!cos~v l~ t2t!!dt

5(
k8

E
2`

t

xG k8~t!gk,k8
L

~ t2t!dt ~15!

~we taket0→2` because we are interested in the long-tim
steady-state situation!, with the memory kernel or time
dependent friction

gk,k8
L

~ t !5(
l

Vl ,kVl ,k8

v l
2

cos~v l t !, ~16!
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and the similar terms withR and r replacingL and l are the
damping terms that result from eliminating the degrees
freedom of theL and R baths. The corresponding ‘‘random
forces’’ are

FL
~k!~ t !5(

l
Vl ,kx̃l ; FR

~k!~ t !5(
r

Vr ,kx̃r . ~17!

Their random character follows from the random distributi
of the initial conditions in Eq.~14!. These random forces an
memory kernels are related to each other by a fluctuatio
dissipation type relation,

^FL
~k!~ t !FL

~k8!~0!&5(
l ,l 8

Vl ,kVl 8,k8K F x̃l~0!cos~v l t !

1
xG l~0!

v l
sin~v l t !G x̃l 8~0!L . ~18!

Using the classical relationships ^x̃l(0)x̃l 8(0)&
5d l ,l 8kBTL /v l

2 and ^xG l(0)x̃l 8(0)&50 this becomes

^FL
(k)(t)FL

(k8)(0)&5kBTLgk,k8
L (t). Similar relations hold for

the R quantities.
The above procedure is a standard derivation of a g

eralized Langevin equation usually used to describe a sys
coupled to its thermal environment. In our case, when
system is driven by different environments out of equili
rium with each other, it is useful to look at the resultin
equations as describing a driven system. To this end we
that Eqs.~13! and ~14!, viewed as a set of deterministic lin
ear equations, describe a system$xk ;k51,...,N% of damped
harmonic oscillators, driven by a set of oscillators$xj ; j
PL,R% that move independently of the driven system@in our
case—according to Eq.~14! with initial conditions that will
be averaged on at the end of the calculation#. These oscilla-
tors act on the system additively, and the effect of each m
be considered separately. Our following derivation is fac
tated by considering a version of Eq.~13! with only one
driving modex0 of frequencyv0 ,

xJ k52vk
2x̄k1V0,kx̃02(

k8
E

2`

t

@gk,k8
L

~ t2t!

1gk,k8
R

~ t2t!#xG k8~t!dt; k51,...,N, ~19!

x̃0~ t !5 x̃0~ t0!cos~v0~ t2t0!!1
xG 0~ t0!

v0
sin~v0~ t2t0!!.

~20!

At long time a system described by these equations
proaches a steady state in which the external mode 0, w
may belong to either theL or the R bath, drives all other
system modes to oscillate at frequencyv0 with amplitude
derived from that of the driving mode.

The formulation of our problem in terms of Eqs.~19!
and~20!, with Eq. ~20! representing one of the external ba
modes that drives the molecular system, makes it possib
address the system in nonequilibrium situations. For
ample, Eqs.~19! and~20! describe the physics of a system
which only external mode 0 is excited while the others are
T50. Moreover, the motion of mode 0, determined by t
choice ofx̃0(0) andxG (0) does not have to be thermal. Fu
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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thermore,this formulation makes it possible to calculate t
flux distribution into the different bath modes given that t
mode0 drives the system. To do this one needs to use th
solution of Eq.~19! @obtained under the driving~20!# in Eqs.
~12! to find the response of other bath modes to the driv
by mode 0. Such a calculation is facilitated by replacing E
~12! by their damped analogs:

xJ l52v l
2x̄l1(

k
Vl ,kx̄k2hxG l ; l PL

xJ r52v r
2x̄r1(

k
Vr ,kx̄k2hxG r ; r PR h→01. ~21!

The long time solution to Eqs.~19!–~21! is a steady state in
which energy flows from the driving mode 0 into the$l% and
$r% modes through the molecular modes$k%. In particular, the
steady-state heat flux channeled through, e.g., the moder is
given by the rate of energy dissipation out of this mode

J0→r5h^xG r
2& t . ~22!

The integrated fluxes,J0→L5( lJ0→ l and J0→R5( rJ0→r

from the driving mode 0 into the left and right baths shou
not depend onh. For the case where mode 0 belongs to
left bath,J0→R andJ0→L correspond to the transmitted an
reflected fluxes, respectively.27

The above formulation portrays in a somewhat new lig
the familiar double role, driving and damping, assumed
bath modes in such problems. In equilibrium these two
tions are balanced by the fluctuation–dissipation theorem
nonequilibrium situations it is sometime useful to consid
these two roles separately. Indeed, later below we will c
culate the energy~heat! flux induced by one driving mode
throughout the system. The net heat flux at frequencyv0 is
obtained as the difference between such fluxes originate
the two baths and weighted by the corresponding densit
modes. The total heat flux is obtained by integrating over
frequencies. Before that, however, we construct the quan
equations of motion equivalent to~19!–~20!.

C. Quantum equations of motion

For a system of harmonic oscillators the equations r
resenting the classical dynamics, Eqs.~11!–~20!, may be also
viewed as quantum EOMs for the Heisenberg position
momenta operators. The formal connection is made as u
by first defining linear transformation on the position a
momentum variables

x̄ j~ t !5A 1

2v j
~aj* ~ t !1aj~ t !!,

p̄ j~ t !5 iAv j

2
~aj* ~ t !2aj~ t !!, ~23!

j 50,$k%,$ l %,$r %,

where we use\51. Equation~20! then yields

a0~ t !5a0e2 iv0t; a0* ~ t !5a0* eiv0t, ~24!
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where a0 is the classical complex initial amplitude of th
driving mode, and Eq.~19! is equivalent to the following
coupled equations:

d2

dt2
~ak* ~ t !1ak~ t !!

52vk
2~ak* ~ t !1ak~ t !!1V0,kAvk

v0
~a0* ~ t !1a0~ t !!

2 i(
k8

Avkvk8E
2`

t

dt@gk,k8
L

~ t2t!1gk,k8
R

~ t2t!#

3~ak8
* ~t!2ak8~t!!, ~25!

d

dt
~ak* 1ak!5 ivk~ak* 2ak!. ~26!

Equations~25! and~26! constitute the classical EOMs for th
variables ak , ak* defined by ~23!. Quantization is now
achieved by replacingaj* by aj

† ( j 50,$k%) and regarding
Eqs. ~25! and ~26! as equations of motions for the Heise
berg representation of the creation and annihilation opera
aj (t) andaj

†(t). The thermal information then enters via

^a0
†a0&L5nL~v0!5~ebLv021!21,

~27!
^a0

†a0&R5nR~v0!5~ebRv021!21,

whereb51/kBT.
In what follows we will also require the quantum equ

tions of motions for the bath modes. Using Eq.~23! into ~21!
we obtain29

ȧr
†5 iv rar

†2 i(
k

Vr ,k

2Avkv r

~ak
†1ak!2~h/2!~ar

†2ar !,

~28!

and its complex conjugate, and similar equations for thl
modes.

D. Frequency domain equations

Because our system is linear, at steady-state all
modes oscillate with the driving frequencyv0 . Accordingly
we seek a solution of the form

~aj
†1aj !5Aje

iv0t1Bje
2 iv0t; j P$k%,$ l %,$r %, ~29!

which has to satisfyBj5Aj
† . Also, the need to satisfy

(d/dt)(aj
†1aj )5 iv j (aj

†2aj ) @same as Eq.~26!# implies

~aj
†2aj !5~Aje

iv0t2Bje
2 iv0t!

v0

v j
; j P$k%,$ l %,$r %

~30!

or
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



aj
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v j
D1

Bj

2
e2 iv0tS 12

v0

v j
D
; j P$k%,$ l %,$r %. ~31!
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Note that Eq.~31!, taken with j 50, is consistent with Eq
~24!. Inserting Eqs.~29! and ~30!, for j 5k, into ~25! and
equating separately the coefficients ofeiv0t ande2 iv0t leads
to

2v0
2Ak52vk

2Ak1V0,kAvk

v0
a0

†2 i(
k8

Avkvk8

v0

vk8
Ak8

3E
0

`

dte2 iv0t@gk,k8
L

~t!1gk,k8
R

~t!# ~32!

or

~vk
22v0

21 iv0@gk,k
L ~v0!1gk,k

R ~v0!# !Ak~v0!

1 iv0 (
k8Þk

Avk

vk8
@gk,k8

L
~v0!1gk,k8

R
~v0!#Ak8~v0!

5Avk

v0
V0,ka0

† , ~33!

where

gk,k8
L

~v!5E
0

`

e2 ivtgk,k8
L

~ t !dt

5(
l

Vl ,kVl ,k8

2v l
2 H pd~v l2v!1 iPS 1

v l2v D J , ~34!

and a similar expression forgk,k8
R (v), whereP denotes the

principal part. To obtain~34! we have used~16! and have
disregarded terms containing (v1v l)

21 factors. For sim-
plicity we further invoke a standard approximation by whi
we disregard the imaginary part ofg ~i.e., terms affecting
small frequency shifts!, representing it by its real part

gk,k8
L

~v!5
p

2

Vl ,kVl ,k8uv l5v

v2
rL~v!. ~35!

For future reference we also rewrite this function, using E
~10!, in the form

gk,k8
L

~v!5gL~v!C1,kC1,k8 , ~36!

where gL(v) is defined from this expression. Again, a
equivalent expression definesgR(v).

Equation~33! can be solved to yield the set of operato
$Ak% associated with the Heisenberg operators for the m
lecular bridge modes according to Eq.~29!. In a similar way,
the amplitudes$Al% and$Ar% associated with the bath mode
according to Eq.~29! can be obtained. For this purpose w
use Eqs.~29!–~31! in ~28! and again consider separately c
efficients of exp(iv0t) and of exp(2iv0t). This leads to
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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Ar5
v r

~v r
22v0

21 ihv0!
(

k

Vr ,k

Av rvk

Ak ; Br5Ar
† , ~37!

with k going over all bridge modes. A similar equation
obtained for the operatorsAl of the left-side bath.

E. Calculation of the heat flux

Equations~37! and ~33! lead to linear relationships be
tween the operatorsAl ~or Ar) that describe the driven out
going bath modes and between the operatorsa0 anda0

† that
describe the driving mode. This can be used to compute
heat flux through a system subjected to such driving. Diff
ent approaches to calculating the heat flux through a sys
of linear oscillators can be found in the literature6,30–33and a
common method suitable in particular to one-dimensio
systems is based on calculating the work done by atomi on
its neighbori 21.6 For our model this leads to, e.g., at th
right side metal–bath contact

J5
gNr

2mr
^xNpr1prxN&, ~38!

where the coupling parametersg were introduced in Eq.~3!
and the symmetrized form is needed for quantum mechan
calculations.34 Obviously, at steady state the heat flux is i
dependent of the position along the chain. A more gene
systematic derivation of the energy flux operator, based
conservation laws and valid for all phases of matter, is giv
in Refs. 31 and 35. Our present approach is different and,
example, makes it possible to study the energy resolved fl
The equivalence between our approach and that based o
~38! is shown in Appendix C.

For definiteness we take the driving mode 0 to belong
the bathL. At steady state the energy flux into~and out of!
the moder of the bathR is given by the quantum analog o
~22!, i.e.,

J0→r5hv r^ar
†ar1arar

†2arar2ar
†ar

†& t/2 ~39!

is the flux transmitted through moder,36 where again̂ & t

denotes time average~in our application we also require av
eraging over the initial distribution of the driving mod
states!. Note that all operators here and below are Heisenb
representation operators at timet. Using Eq.~28! we obtain29

d

dt
~ar

†ar !52 i(
k

Vr ,k

2Avkv r

@~ak
†1ak!ar2ar

†~ak
†1ak!#

2h/2@~ar
†2ar !ar1ar

†~ar2ar
†!#, ~40a!
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d

dt
~arar

†!52 i(
k

Vr ,k

2Avkv r

@ar~ak
†1ak!2~ak

†1ak!ar
†#

2h/2@ar~ar
†2ar !1~ar2ar

†!ar
†#. ~40b!

At steady state, the time average of Eq.~40! vanishes. This
yields, using~39!

J0→r5 iv r(
k

Vr ,k

4Avkv r

^~ak
†1ak!~ar

†2ar !

1~ar
†2ar !~ak

†1ak!& t . ~41!

Note that the dependence on the driving mode 0, while
explicit in ~41!, enters through the forms of the Heisenbe
operatorsak andar that are solutions to Eqs.~33! and ~37!.
The energy flux carried by modes in the rangev0 . . . v0

1dv0 is given byJL→r(v0)dv0 where

JL→r~v0!5 iv rrL~v0!(
k

Vr ,k

4Avkv r

^~ak
†1ak!~ar

†2ar !

1~ar
†2ar !~ak

†1ak!&, ~42!

whererL(v0) is the density of modes of the left heat bath
frequencyv0 . Using Eqs.~29!–~31! this leads to

JL→r~v0!5v0rL~v0!Im (
k

Vr ,k

2Avkv r

@^BrAk&1^AkBr&#,

~43!

where terms such as^AkAr&e
2iv0t or ^BkBr&e

22iv0t that will
yield zero average flux were disregarded. Next, using~37! to
expressAr andBr in terms of the$Ak% and$Bk%5$Ak

†% op-
erators, and taking the damping termh there to zero, Eq.
~43! leads to

JL→r~v0!5
p

2
rL~v0!d~v r2v0!(

k,k8

Vr ,kVr ,k8

2Avkvk8

3@^Ak~v0!Ak8
†

~v0!&1^Ak8
†

~v0!Ak~v0!&#.

~44!

To obtain ~44! we have used the fact tha
(k,k8(vkvk8)

21/2Vr ,kVr ,k8^AkBk8& is real and have disre
garded a term that containsd(v r1v0). We have also noted
explicitly the fact that the$Ak% operators, obtained from
~33!, depend on the driving frequency.

Equation~44! shows, as expected in a linear system, t
a driving ~incoming! mode at frequencyv0 can excite out-
going modes only at this same frequency. The overall cur
per unit frequency range, transmitted fromL to R at fre-
quency v0 , is obtained by summing~44! over all final
levels$r %:
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JL→R~v0!5(
r

JL→r~v0!

5
p

2
rL~v0!rR~v0!(

k,k8

~Vr ,kVr ,k8!vr5v0

2Avkvk8

3@^Ak~v0!Ak8
†

~v0!&1^Ak8
†

~v0!Ak~v0!&#.

~45!

Note that the only attribute of this expression that makes
‘‘left-to-right’’ current is our initial designation of the driving
mode as belonging to the left heat reservoir. The expecta
values in~45!, therefore, depend on the temperatureTL of
the left bath. A similar expression withTR replacingTL ap-
plies for the right-to-left heat current.

From Eq.~33! it follows that one can write

Ak~v0!5Āk~v0!V0,ka0
†Avk

v0
, ~46!

whereĀk(v0) is a scalar function of the driving frequenc
that depends only on molecular parameters. The total h
current is obtained as the integral over all frequencies of
net currentJ[JR→L2JL→R . Denote

T~v!5
p

2
rL~v!rR~v!

3(
k,k8

~Vr ,kVr ,k8!vr5v~Vl ,kVl ,k8!v l5v

v2

3~Āk~v!Āk8
†

~v!1Āk8
†

~v!Āk~v!!/2. ~47!

Using the definition of the friction from~35!, we get

T~v!5
2v2

p (
k,k8

gk,k8
R

~v!gk,k8
L

~v!@Āk~v!Āk8
†

~v!

1Āk8
†

~v!Āk~v!#/2. ~48!

The directional heat currents are, therefore,

JL→R5E T~v!~nL~v!11/2!vdv,

~49!

JR→L5E T~v!~nR~v!11/2!vdv,

and the net heat flux is

J5E T~v!@nR~v!2nL~v!#vdv. ~50!

Which is our final result, similar to results recently derived
Refs. 4 and 30. The advantage of the present derivation~to
be explored elsewhere! is that it can be easily generalize
to any kind of initial boson distribution in the two bath
including driving by an external photon field. Expressio
~50! is similar to the Landauer resultJel5*T(E)@ f R(E)
2 f L(E)#dE for the electrical current in a junction connec
ing two electron reservoirs characterized by Fermi distrib
tions f R(E) and f L(E) and a transmission functionT(E).
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We conclude this section with two remarks: First, as
ready noted, the same result as given by Eqs.~45!–~50! can
be obtained from the more conventional approach based
Eq. ~38! ~see Appendix C!. Second, even though our trea
ment was described in the framework of a one-dimensio
molecule–bath coupling, the results are valid for a thr
dimensional coupling model: The needed input are the c
pling elements between all the molecular normal-modes$k%
and the phonons of the thermal baths$ l % and $r %. See Ap-
pendix A for details.

IV. RESULTS AND DISCUSSION

We next apply the formalism described above to the c
culation of phonon induced heat transfer thermal cond
tance of a molecular bridge connecting two identical therm
reservoirs at different temperatures. We study alkane ch
of variable length, and compare their heat transport pro
ties to other ordered and disordered chains. The informa
needed for any given molecular bridge is the normal mo
spectrum of the molecular system and the correspond
transformation matrixC @cf. Eq. ~7!#. These were obtained
using theHYPERCHEM6 computer package, with the isolate
molecular geometry optimized using the Restricted Hartre
Fock method with the semiempirical PM3 parameterizat
method. The indexN that denotes the molecule length is t
number of backbone atoms, i.e., the carbones for the alk
systems. The parameters that characterize the reservoir
the Debye cut-off frequencyvc , which is taken in the range
vc5200– 800 cm21, and the temperaturesTL and TR5TL

1DT which are studied in the range 10–1000 K. Unle
otherwise stated,DT itself is taken small, typicallyDT
51023 K, soT represents the average temperature of the
reservoirs.

Next consider the molecule–reservoirs coupling. We
sume, as in Eq.~5!, that it is affected by the extreme end
atoms on the two molecular edges. This coupling is co
monly characterized by the spectral density function, e
between atom 1 and the left reservoir

dL~v!5
p

2 (
l

g1,l
2

mlv l
d~v2v l !5

p

2

gL
2~v!rL~v!

vmL~v!
, ~51!

where rL(v) is the mode density. The spectral dens
dL(v) is related to the frequency dependent friction on at
1, Eq. ~34!, by

gL~v!5
dL~v!

m1v
, ~52!

wheregL(v) was defined by Eq.~36!. In what follows we
will assume that the spectral properties and coupl
strengths are the same on left and right contacts and omi
indicesL andR from g(v), g~v!, r~v!, andm(v). We use a
Debye-type model defined by

r~v!5NB

v2

2vc
3

e2v/vc, ~53!

whereNB is the number of reservoir modes. This leads to

d~v!5am1ve2v/vc; g~v!5ae2v/vc, ~54!
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where@from ~53! and ~51!#

a5
pg2~v!NB

4m1m~v!vc
3

. ~55!

Herem15mN is the mass of the end atom on the molecu
chain. Further simplification is achieved by consideri
atomic baths for whichm(v)5mB and by assuming tha
g(v)5g does not depend onv. The magnitude ofg mea-
sures the strength of the molecule–bath coupling. In a mo
where we take the coupling between the molecular chain
the thermal reservoirs to be dominated~or gated! by the cou-
pling between the end chain atoms~1 andN! and their near-
est neighbor atoms~L andR, say! in the corresponding res
ervoirs, we may write this coupling@in correspondence with
Eqs.~3! and~5!# as~focusing for definiteness of notation o
the left reservoir!

HML52g1,Lx1xL52(
l

g1,lx1xl . ~56!

The second equality results from expanding the local coo
natexL of the reservoir atom in the reservoir normal mode
xL5( la lxl (( l ua l u251). This implies

g1,l5g1,La l , ~57!

so that( lg1,l
2 5g1,L

2 , or, if g1,l5g,

g5
g1,L

ANB

. ~58!

With these simplifications Eq.~55! takes the form

a5
p

4

g1,L
2

m1mLvc
3

. ~59!

In the calculations described below this constant is ta
in the range 104– 105 cm21.

Once the normal mode spectrum and the transforma
matrixC @Eq. ~7!# have been calculated, Eqs.~10!, ~33!, ~35!,
~47!, and~50! are used to calculate the heat flux and the h
conductance. The latter is defined by

K5 lim
DT→0

J/DT. ~60!

The thermal conductivity of one-dimensional atom
chains and its dependence on the chain length was stu
before by several groups.5,6,30It was found5,6 that in a perfect
harmonic chain the heat flux is not proportional to the te
perature gradient (TR2TL)/N, as inferred from Fourier law
but to the temperature differenceTR2TL . The thermal con-
ductance,J/DT, was predicted to be independent of th
chain length, and the thermal conductivity for unit cros
sectional area,J/¹T, therefore, diverges as the chain leng
goes to infinity. Motion in our molecular chains is not r
stricted to one dimension, still the proximity of these cha
to the one-dimensional models suggests perhaps a sim
behavior.

Figure 2 shows the dependence of the calculated h
conductance on chain length for linear alkanes of 2–25 c
bon atoms at different temperatures. The molecule–reser
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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coupling parameter was takena58000 cm21. The conduc-
tance becomes length independent forN.15, while for short
chains,N52 – 4, we see an unexpected rise of the cond
tance with chain length. The inset shows a similar result
the strong coupling case,a51.2•105 cm21, and T
51000 K. Here the heat conductance appears to decr
like K}1/N for largeN.

The asymptotic dependence of the heat conductanc
the chain length is of particular interest. Fourier’s law of he
conductance would imply a 1/N dependence on chain lengt
while simple arguments based on Eq.~47! suggest that the
conductance should be length independent for long cha
The argument is that the phononic transmissionT~v! de-
pends on the coupling strength with a fourth power, contr
uting the factor 1/N2, while the double sum in~47! yields the
factor rM(v)2, where rM(v), the molecular density o
states, increases linearly with the molecule length. If the p
sibility that the factor (Āk(v)Āk8

† (v)) in ~47! may depend on
this length is disregarded, the heat fluxJ is expected to be
length independent. The actual answer to this issue dep
on the density and the localization properties of the mole
lar normal modes.

Figures 3 and 4 display some properties of the norm
modes in alkane chains. Figure 3 depicts the density
modes for chains withN515 andN530 atoms. Three do
mains, separated by gaps, are seen in the spectrum. A g
of low-frequency modes in the range below 600 cm21, inter-
mediate frequency modes withv5700–1500 cm21 and
high-frequency modes ofv52950–3200 cm21. Note that the
modes in the intermediate region have the highest densit
states, and that the mode density increases linearly with
molecular size.

In order to gain a better understanding of these nor
modes we follow previous work on heat transfer in dis
dered harmonic media.35,37 In particular, the ability of any

FIG. 2. The thermal conductance calculated as a function of chain lengt
alkane molecules at different temperatures, usingvc5400 cm21 and a
58000 cm21. Full line: T550 K; dotted line:T5300 K; dashed line:T
51000 K. The inset shows theT51000 K result in the case of stron
molecule–reservoirs couplinga51.2•105 cm21 ~and samevc5400 cm21).
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mode to transfer energy across the molecule depends o
spatial extent, which may be characterized by the partici
tion ratioPk . In the present application we use a variation
the measure suggested by Ref. 38. Define the weight as
ated with normal modek on the carbon segmentn as the sum

pk,n5(
an

u~C21!k,an
u2, ~61!

wherean goes over all atoms~hydrogens and carbon! asso-
ciated with a given carbon atom. Note that(npk,n51. The
participation ratio is given by

Pk5F(
n

pk,n
2 G21

. ~62!

or
FIG. 3. The spectral distribution of normal modes of alkane chains
lengthsN515 andN530.

FIG. 4. Measures of mode localization in alkanes plotted as function
molecular length.~a! The functioneS whereS is the information entropy,
Eq. ~63!, averaged over a group of modes as indicated below.~b! The
average participation ratio, Eq.~62!, for the same groups. Dashed line: Low
frequency modes~v,600 cm21!; full line: Intermediate frequency
modes, 700<v<1500 cm21; dotted line: High-frequency modes
v52950<v<3200 cm21.
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This is a good measure for the number of carbon sites
which the collective modek has a significant amplitude. Fo
a chain ofN carbon atoms,Pk5N for a ballistic mode that
extends over the entire molecule, and it decreases as lo
ization becomes more significant. An alternative measur
the information entropy39

Sk52 (
n51

N

pk,n ln~pk,n!, ~63!

which satisfiesSk5 ln(N) for a completely delocalized mode
andSk50 for a mode localized on a single site.

Figure 4 depicts the average participation ratio^P& and
the average function̂exp(S)& for each group of modes plot
ted against the chain length. Both measures increase line
with chain length in all cases, indicating some ballistic n
ture for at least some modes in each group, yet the h
frequency modes are, on the average, more localized. In
trast, the low-frequency modes show a substan
delocalized character.

The interplay between the number of modes in each
quency group, their ability to transfer energy as derived fr
their localization property, and the frequency dependenc
the mode population in the thermal reservoirs combine
affect the chain-length dependence of heat transport in
model junction. This can be seen by studying separately
heat conduction behavior of the three frequency groups
should be emphasized that the contributions of differ
modes to the heat conduction is not additive, as can be
from the presence of cross terms in Eq.~47!. Still, looking at
these separate contributions provides useful insight, an
fact describing the overall heat conduction as an addi
combination of contributions from the three frequen
groups defined above is found~see below! to be a good ap-
proximation for long enough chains.

Figures 5 and 6 show the heat conductance versus al
chain-length for the low and intermediate frequency mo
respectively, at different temperatures, usingvc5400 cm21

FIG. 5. Thermal conductance vs chain length for alkane chains in w
only the low-frequency modes~v,600 cm21! are taken into account.vc

5400 cm21, a51.2•105 cm21. Dashed line: T510 K; Full line: T
5100 K; dotted line:T5300 K; dash–dotted lineT53000 K.
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and a51.2•105 cm21 ~same parameters as in the inset
Fig. 2!. The following observations can be made:

~1! The conductance associated with the low frequen
modes~Fig. 5! does not depend on the chain length
low temperatures~T!, however, it decreases with cha
length in the high temperature regime.

~2! The intermediate frequency modes~Fig. 6! show a very
different behavior: For low temperature the conductan
decreases exponentially, while for high temperature
becomes length independent.

~3! The high-frequency modes~figure not shown! basically
show the same behavior as that of the intermediate
quency group, with stronger variations about the syste
atic trend. However, the absolute contribution of the
modes to the heat transfer is negligible as compared
the other two groups.

These different modes of behavior can be understood
transitions between two modes of transport: tunnelingl
and resonant. Consider, for example, Fig. 6. At very lo
temperatures modes of the thermal reservoirs that are in r
nance with the intermediate molecular modes conside
here are not populated. Only low-frequency modes of
reservoirs are excited, and the transmission of the ene
between these reservoirs through the molecule is a transf
low-frequency phonons through a bridge of relatively hig
frequency vibrations. This leads to a tunneling type behav
with an exponential decrease of the transmission with bri
length, in analogy with the super-exchange mechanism
electron transfer.40 When the temperature increases, high
frequency modes of the reservoirs, which are in resona
with the intermediate molecular modes are excited and c
tribute to resonance transmission which is distance indep
dent. Similar considerations apply in principle to the hig
frequency modes, but the contribution of these modes to
heat transfer is small because the Debye cut-offvc of the
reservoir spectra is considerably below these modes.

Consider now Fig. 5, which shows the chain-length d
pendence of the heat conduction by the low frequency m

hFIG. 6. Same as Fig. 5, except that only the intermediate-frequency m
~700<v<1500 cm21! are taken into account.
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lecular mode. Here we see an opposite behavior, where
heat conductance does not depend on chain-length at loT,
while it decreases with chain length at highT. The same
arguments as before apply also in this case. At low temp
tures heat transfer involves low-frequency reservoir mo
that are in resonance with the molecular frequencies of
group, hence the length independence of the transmiss
For highT, the high-frequency reservoir modes are activat
however, transmission involving these modes is a nonre
nance process that decreases with chain length. The de
dence on length in this case is weaker than exponential
cause the thermal shift of population from low- to hig
frequency reservoir modes is very gradual.

We emphasize these observations by comparing the
conductance from the low and intermediate frequency m
lecular modes, calculated at the unphysical temperaturT
53000 K where their relative contributions are comparab
see the dashed–dotted lines in Figs. 5 and 6.~The contribu-
tion of the high-frequency molecular modes is small even
this unphysically high temperature.! In this temperature
range the conductance due to the low-frequency modes~Fig.
5! decreases with chain-length, that of the intermedi
modes~Fig. 6! is length independent and their superpositi
is, therefore, expected to show a relatively weak length
pendence. We have verified numerically that taking a sim
superposition of these two contributions is indeed a go
approximation to the full calculation for chains longer than
to 7 carbon atoms, and therefore this analysis holds. For
long chains the nonresonant contributions die out and h
transmission becomes length independent, though bec
only a few modes may be extended enough it may be sm
The turnover to length dependence at smaller chain-len
and the actual length dependence of the overall conduc
for relatively short chains depends on the molecule–reser
coupling strength, on the temperature and on phonon spe
of both molecule and reservoirs.

The dependence of the heat conductance on the
perature is depicted in Fig. 7. The system parameters u
here area58000 cm21 and vc5800 cm21. At the high-
temperature limit, shown in the inset, the conductance s
rates to the valuekB* T(v)dv, that corresponds to the high
temperature limit of Eq.~50!. In this limit the conductance
decreases with the chain lengthN. At the very low tempera-
tures, main graph, the trend is reversed: The conducta
increases with chain lengths for short chains.

The conductance increase with longer chain length, s
in Fig. 7 and also on the short chain~left! sides of Figs. 2 and
5, seems at first counter intuitive, however, Fig. 8 reveals
origin. Here we show the thermal conductance as a func
of chain length at several temperatures. Variation of the ch
length affects the molecular normal mode spectrum in t
ways. First, the overall density of states is increased linea
Secondly, the lower bound on this density is shifted to low
values. For example, for a pentane (N55) the lowest vibra-
tional frequency mode isv584 cm21, for decane (N510) it
is v528 cm21, while for N520 it is v57 cm21. At low
temperatures the heat current is carried mostly by low
quency phonons, and when the chain becomes longer, m
molecular modes come into resonance with these incom
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
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phonons. This causes an increase in the heat flux. Obviou
this effect should be significant only at very low temper
tures, as indeed seen in Fig. 8.

A. Disordered chains

Figure 9 compares the heat conduction of pure alk
chains to similar chains with a random distribution of tw
masses with 1:1 component ratio.vc5400 cm21, a
58000 cm21, andT5300 K were used in these calculation
The chains are normal alkanes in which the atomic masse
half the carbon atoms have been set artificially to 28. We
that for a long enough chain, the heavy atom chains w
smaller normal mode frequencies conduct less effectiv
than their light atom analogs. This results from the balan
of three effects. First, the contributions of modes of differe

FIG. 7. Thermal conductance calculated as a function of temperature
alkane chains usingvc5800 cm21 and a58000 cm21. Dashed line:N
52; Dotted line:N55; Full line: N514. Inset shows the high-temperatu
regime.

FIG. 8. Thermal conductance calculated as a function of length for alk
chains, usingvc5400 cm21 and a58000 cm21. Dashed line:T50.1 K;
dotted line:T51 K; full line: T510 K; dash–dotted line:T5100 K; line
with filled circles:T51000 K.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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frequencies depend on the corresponding reservoirs de
of mode spectra. Secondly, it depends on the thermal po
lations of these modes. Finally, the energy carried by a m
of frequencyv is proportional tov. The effect of disorder
also involves balancing factors: Starting from, e.g., the28C
chain and replacing some of these heavy atoms with the12C
isotope would reduce heat conduction because of localiza
@for example, in a 20 carbon chain the localization meas
^expS&, Eq. ~63! averaged over all modes, is 14.1 for a pu
12C chain, 12.5 for28C system, and only 7.5 for the rando
12C–28C chain#. This is partly balanced by the shift of th
mixed structures spectrum into frequencies above thos
the pure28C chain. In Fig. 9 this results in little difference i
the heat conduction of a pure28C chain and a12C/28C mixed
chain.

Finally we note that a similar behavior is seen for t
realistic 12C–14C chains, however, the difference betwe
the heat conductions of the pure and the mixed chains in
case is quite small and are hardly resolved on the scal
Fig. 9 ~see inset!.

B. Anharmonic effects

In macroscopic systems and in fact whenever the sys
size is larger than the localization length and/or mean f
path ~determined by disorder and scattering by anharmo
interactions! heat conduction is dominated by anharmon
coupling. In our short molecular chains such effects are
pected to play a much lesser role, at least at low tempera
To examine this issue we have carried out classical num
cal simulations of heat conduction through a on
dimensional model of alkane chains without invoking t
harmonic approximation. Details of the model and the cal
lation are provided in Appendix D.

Figure 10 shows the heat current obtained from suc
calculation. For a long harmonic chain the heat flux is b
listic and does not depend on chain length. The result for

FIG. 9. Thermal conductance vs alkane chain length.vc5400 cm21, T
5300 K, a58000 cm21. Dashed line:12C chains; full line: 28C chains;
dotted line: Disordered12C–28C chains with 1:1 component ratio. The ins
depicts similar results for the case where14C replaces28C.
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full alkane model~dashed line! and the corresponding har
monic approximation~full line! are seen to behave in thi
way and to be very close to each other. Only when the m
lecular anharmonicity is taken unphysically large~dashed–
dotted line! we see deviation from this behavior and a d
crease of the current with chain length. Similar deviatio
from the harmonic behavior~not shown! are seen at elevate
temperatures, but only whenT is unphysically high, sayT
>2000 K.

C. Comparison to classical heat transfer

Finally, we compare the heat conduction propert
of the harmonic chains considered in this paper with
continuum heat transport model used in Ref. 22. In t
paper the molecule was represented by a cylinder con
ting the two heat reservoirs~Fig. 1! and a continuum mode
was employed to estimate the heat conduction, using
the thermal conductivity coefficient the valuesh53.5
•1024 cal/~s•cm•K) typical of bulk organic solids. For a
model in which the molecular cylinder of length 60 Å
suspended in vacuum between the two heat reservoirs at
K a modest temperature rise of a few degrees was fo
when heat was deposited uniformly on the cylinder at a r
of 1010eV/s ~corresponding to about 1 nA electron curre
flowing across a potential bias of 1 V!. Clearly, however,
macroscopic heat conduction, dominated by impurity scat
ing and anharmonic interactions cannot reliably repres
heat conduction of molecular junctions that is characteri
by harmonic~ballistic! transport on one hand, and by re
stricted geometry and the availability of conducting mod
on the other.

For definiteness we assume that the coupling betw
the molecular chain and the thermal reservoirs is domina
~or gated! by the coupling between two nearest-neighbor

FIG. 10. Heat current vs chain length obtained from a classical simula
of heat transport through one-dimensional model alkane chains chara
ized by different anharmonic interactions. Full line: Harmonic chain; das
line: Anharmonic chain using the alkane force field parameters; dash–do
line: anharmonic chain with unphysically large anharmonicity@j of Eq. ~D2!
taken 36 times the alkane value#. g510 ps21 ~g is the friction coefficient
defined in Appendix D!, TR5300 K, TL50 K were used in this simulation
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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kane carbon atoms. This is expected to overestimate the
tual thermal coupling in most molecular junctions. This im
plies that in Eq.~59! we takeg1,L5gCC[g ~similarly we
takegN,R5g). Also for definiteness we assign carbon mas
to the baths, i.e., takemL5mR5mC . The corresponding nu
merical values areg57.2•1023 dyne/Å ~from the Hyper-
chem force field! and mC52•10226kg. This implies@from
Eq. ~59!# a52•107 cm21 for vc5400 cm21, a52.5
•106 cm21 for vc5800 cm21 and a55•105 cm21 for vc

51400 cm21. The lattervc is the order of the Debye fre
quency of diamond.

Numerical results obtained from this model are co
pared to the classical cylinder model of Ref. 22 are sho
in Fig. 11. The classical calculation was done usingK̃
53.5 1024 cal/~s cm °K) @51.5 10211W/~Å °K)] for the
heat conductivity coefficient, and a cross-sectional a
A53.5 Å2 for the ‘‘molecular’’ cylinder. The length of
the cylinder that corresponds to an alkane chain withN
carbon atoms was takenL51.2N Å. Note that the heat
conductance of this classical objectK5K̃A/L decreases a
N21 with chain length. ForN55 – 20 we get thatK
510211– 10212W/°K.

The results displayed in Fig. 11 show that the heat c
duction of the macroscopic cylinder overestimates that of
molecular model by about an order of magnitude at ro
temperature, while they are very similar atT51000 K.
These observations are not very sensitive to details of
chosen coupling and reservoir cutoff parameters within a
sonable range. In view of the different mechanisms involv
one should not take the similar transport properties at 100
as an approach to the classical limit at highT. More signifi-
cant is the finding that at room temperature the class
model strongly overestimates the heat conduction prope
of the individual molecule, an observation of important p
tential consequences for estimating heating in conjunc
with electrical conduction in molecular junctions.

FIG. 11. Heat conduction vs alkane chain length. Full line:vc

5400 cm21, a52•107 cm21, T5300 K. Dashed line:vc5400 cm21, a
52•107 cm21, T51000 K. Dashed–dotted line:vc5800 cm21, a52.5
•106 cm21, T5300 K. Dotted line:vc5800 cm21, a52.5•106 cm21, T
51000 K. Line with circles: Results of the classical continuum calculat
~see text!.
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V. CONCLUSIONS

The heat conduction properties of molecular cha
connecting two thermal reservoirs were investigated t
oretically and numerically, focusing on saturated alka
chains as a primary example. It was found that heat c
duction in relatively short chain is dominated by harmon
interactions. The harmonic approximation utilized yields
Landauer-type expression@Eq. ~50!# for the heat current,
where energy is carried ballistically through the wire. T
principal factors that determine heat conduction in such m
lecular junctions are the molecular vibrational spectral d
sity, the localization properties of molecular normal mod
in the different spectral regimes, the coupling of the m
ecule to the reservoirs and the cut-off frequency that cha
terizes the reservoirs spectral densities. The dependenc
the heat conduction on molecular length varies with tempe
ture and reflects the different localization properties
different molecular spectral regimes. Mode localizati
also causes disordered chains to be less effective heat
ductors. A classical heat conduction model was found
overestimate the microscopic result by about one orde
magnitude, an observation of potential importance for
estimate of heating associated with electrical conduction
molecular junction.
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APPENDIX A: THE THREE-DIMENSIONAL CASE

Generalization of the formulation presented in Sec.
and III into three dimensions is trivial. Since both molecu
and reservoirs are described in terms of their normal mod
the dimensionality enters explicitly only in the form of th
molecule–reservoir coupling. In three dimensions the Ham
tonian, Eq.~3!, takes the form

HB1HMB5(
l

H 1

2
mlv l

2S r l2
g1,lr1

mlv l
2D 2

1
pl

2

2ml
J

1(
r

H 1

2
mrv r

2S r r2
gN,rrN

mrv r
2 D 2

1
pr

2

2mr
J ,

~A1!

wherer andp are three components vectors. For simplic
we take the coupling strengthg to be the same for the thre
directions. The transformation matrixC @Eq. ~7!# in this case
is a 3N33N matrix, r5Cr̄ , where any consecutive thre
components of the vectorr represent thex,y, andz coordi-
nates of an atom in the molecule. The coupling terms
defined similarly to Eq.~10! as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Vl ,k
x [

g1,lC1,k

Am1ml

, Vl ,k
y [

g1,lC2,k

Am1ml

, Vl ,k
z [

g1,lC3,k

Am1ml

,

Vr ,k
x [

gN,rC3N22,k

AmNmr

, Vr ,k
y [

gN,rC3N21,k

AmNmr

, ~A2!

Vr ,k
z [

gN,rC3N,k

AmNmr

.

The real parts of the damping terms, Eq.~34!, are given by

gk,k8
L

~v!5
p

2
(

l

~Vl ,k
x Vl ,k8

x
1Vl ,k

y Vl ,k8
y

1Vl ,k
z Vl ,k8

z
!

v l
2

3d~v2v l !,
~A3!

gk,k8
R

~v!5
p

2 (
r

~Vr ,k
x Vr ,k8

x
1Vr ,k

y Vr ,k8
y

1Vr ,k
z Vr ,k8

z
!

v r
2

3d~v2v r !,

and the operatorsAk satisfy the equation

~vk
22v0

21 i @gk,k
L ~v0!1gk,k

R ~v0!#v0!Ak~v0!

1 i (
k8Þk

~gk,k8
L

~v0!1gk,k8
R

~v0!!v0Avk

vk8
Ak8~v0!

5@V0,k
x a0,x

† 1V0,k
y a0,y

† 1V0,k
z a0,z

† #Avk

v0
, ~A4!

where the average of the driving operators, the analog of
~27!, is given by

^a0,j
† a0,j 8&L5nL~v0!d j , j 8 ,

~A5!
^a0,j

† a0,j 8&R5nR~v0!d j , j 8 j , j 85$x,y,z%.

Finally the transmission is given by summing the coupling
the reservoirs in Eq.~47! over the three spatial dimensions

T~v!5
p

2
rL~v!rR~v!

3(
j , j 8

(
k,k8

~Vr ,k
j Vr ,k8

j
!vr5v~Vl ,k

j 8 Vl ,k8
j 8 !v l5v

v2

3~Āk~v!Āk8
†

~v!1Āk8
†

~v!Āk~v!!/2, ~A6!

and the net heat current is given by the same expressio
Eq. ~50!.

APPENDIX B: THE GENERALIZED
LANGEVIN EQUATION

The derivation of the generalized Langevin equat
~GLE! starts with Eq.~12!. Laplace transforming witht0 as
the initial time yields

~s21v l
2!x̄l~s!5xG l~ t0!1sx̄l~ t0!1(

k
Vl ,kx̄k~s!, ~B1!

where
Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
q.

as

x̄~s!5E
t0

`

e2s~ t2t0!x̄~ t !dt. ~B2!

Rearrangement of~B1! leads to

x̄l~s!5
sx̄l~ t0!

s21v l
2

1
xG l~ t0!

s21v l
2

1(
k

Vl ,k

s21v l
2

x̄k~s!, ~B3!

and transforming back into the time domain produces

x̄l5 x̄l~ t0!cos~v l~ t2t0!!1
xG l~ t0!sin~v l~ t2t0!!

v l

1(
k

Vl ,k

v l
E

t0

t

x̄k~t!sin~v l~ t2t!!dt. ~B4!

The last equation was derived using the convolution relat

E
t5t0

`

e2s~ t2t0!dtE
t5t0

t

g~t! f ~ t2t!dt5g~s! f ~s!. ~B5!

Integrating Eq.~B4! by parts leads to

x̄l5 x̄l~ t0!cos~v l~ t2t0!!1
xG l~ t0!sin~v l~ t2t0!!

v l

1(
k

Vl ,k

v l
2

x̄k~ t !2(
k

Vl ,k

v l
2

x̄k~ t0!cos~v l~ t2t0!!

2(
k

Vl ,k

v l
2 E

t0

t

xG k~t!cos~v l~ t2t!!dt. ~B6!

Now insert~B6! into Eq. ~11!. For clarity we ignore for the
moment the coupling to the right reservoir. This yields

xJ k52vk
2x̄k1(

l
Vl ,kF x̄l~ t0!cos~v l~ t2t0!!

1
xG l~ t0!sin~v l~ t2t0!!

v l
G

2(
l

Vl ,kH (
k8

Vl ,k8

v l
2

x̄k8~ t0!cos~v l~ t2t0!!

1(
k8

Vl ,k8

v l
2 E

t0

t

xG k8~t!cos~v l~ t2t!!dtJ . ~B7!

Because we will be interested in the steady state of a lin
system affected by damping interactions the term involv
x̄k8(t0) can be ignored, since the initial conditions of th
system are not relevant, see also Refs. 41 and 42. The t
containingx̄l(t0) andxG l(t0) are recognized a harmonic driv
ing force

x̃l~ t ![ x̄l~ t0!cos~v l~ t2t0!!1
xG l~ t0!sin~v l~ t2t0!!

v l
,

~B8!

that obeys the harmonic oscillator equation of motionẍ̃l

52v l
2x̃l . Similar contributions are obtained for the righ

reservoir, yielding finally
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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xJ k52vk
2x̄k1(

l
Vl ,kx̃l1(

r
Vr ,kx̃r

2(
l ,k8

Vl ,kVl ,k8

v l
2 E

t0

t

xG k8~t!cos~v l~ t2t!!dt

2(
r ,k8

Vr ,kVr ,k8

v r
2 E

t0

t

xG k8~t!cos~v r~ t2t!!dt, ~B9!

where

x̃r~ t ![ x̄r~ t0!cos~v r~ t2t0!!1
xG r~ t0!sin~v r~ t2t0!!

v r
,

~B10!

obeysẍ̃r52v r
2x̃r .

The procedure outlined above is a standard derivatio
a generalized Langevin equation to be used in the long t
limit of the system–bath interaction where initial system
formation can be neglected. A different approach can be u
to get directly the steady-state equations for a driven qu
tum system. This formulation uses the ideas of Sec. II
III: The quantization of the momentum and displaceme
Eqs. ~23!–~27!, driven steady-state dynamics, Eq.~29! and
working in the frequency domain. We focus on the left re
ervoir and start again from Eq.~12!, but replaced by its
damped analog, Eq.~21!: xJ l52v l

2x̄l1SkVl ,kx̄k2hxG l . Us-
ing Eqs.~23! and~29! leads to an equation for the~left! bath
amplitudesAl in the frequency domain

Al5
v l

~v l
22v0

21 ihv0!
(

k

Vl ,k

Av lvk

Ak . ~B11!

Repeating the same procedure on Eq.~11! for the molecule
normal modes, and disregarding for clarity the right reserv
we get

~vk
22v0

2!Ak5(
l

Vl ,kAvk

v l
Al1V0,kAvk

v0
a0

†

2(
l ,k8

Vl ,kVl ,k8

v l
2

Avk

vk8
Ak8 . ~B12!

Here, the driving mode (a0 ,v0) appears explicitly. Substi
tute next~B11! into ~B12! yields

~vk
22v0

2!Ak5(
l ,k8

Vl ,kVl ,k8

v l
2

Avk

vk8
Ak8S v0

22 ihv0

v l
22v0

21 ihv0
D

1V0,kAvk

v0
a0

† . ~B13!

Note that~ignoring terms containing 1/(v01v l))

(
l

Vl ,kVl ,k8

v l
2 S v0

22 ihv0

v l
22v0

21 ihv0
D

5
v0

2 (
l

Vl ,kVl ,k8

v l
2 F2 ipd~v02v l !1PS 1

v l2v0
D G .

~B14!
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Thus, Eq.~B13! is ~after supplementing similar terms arisin
from the right reservoir! the same as Eq.~33!.

APPENDIX C: CALCULATING THE HEAT FLUX
FROM EQ. „38…

The classical power transfer through harmonic chain
given in Ref. 6 is calculated here between the last~N! atom
of the molecular chain and the atoms of the right reservo

J0→r5
gN,r

mr
^xNpr&, ~C1!

where 0 is a driving mode in the left reservoir and the v
locity and displacement are calculated at this driving f
quencyv0 . The analogous quantum expression is deriv
from the symmetric form

J0→r5
gN,r

2mr
^xNpr1prxN&. ~C2!

Transforming the coordinates into their mass weighted a
logs, then expressing the local molecular coordinate in te
of molecular normal modes@Eq. ~7!# yields

J0→r5
gN,r

2AmNmr
(

k
CN,k^x̄kp̄r1 p̄r x̄k&. ~C3!

Using Eq.~10! and transforming~C3! into its second quan-
tized form using~23!, leads to

J0→r5 i(
k

Vr ,kv r

4Avkv r

^~ak
†1ak!~ar

†2ar !

1~ar
†2ar !~ak

†1ak!&, ~C4!

which is the same as Eq.~41!.

APPENDIX D: MOLECULAR CHAIN MODEL

The procedure for calculating the heat conducti
through one-dimensional model of alkane chains without
voking the harmonic approximation is presented here. T
model consists of a one-dimensional anharmonic car
chain of lengthN linking two reservoirs whose temperature
are denoted byTL andTR . The model Hamiltonian is given
by

H5Hchain1Hcontact,

Hchain5 (
i 51

N21

Hi 21,i5D~e2a~xi 112xi2 x̃!21!21(
i 51

N
1

2
mẋi

2,

~D1!

Hcontact5D~e2a~x12x02 x̃!21!21D~e2a~xN112xN2 x̃!21!2,

where the atoms indexed by 0 andN11 are the left and right
reservoirs atoms, respectively. In the classical simulation
positions of these atoms are taken constants, and the dyn
cal effect of the reservoir is represented by Langevin for
and damping terms as described below. The Morse par
etersa andD and the equilibrium bond lengthsx̃ are taken to
characterize the alkane C–C stretch motion~implying that in
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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our classical model calculation the first bath atoms are ta
to be carbons!: x̃51.538 Å, D588 kcal/mole, anda51.876
Å21.43 These force field parameters imply the spectrosco
anharmonicity coefficient~that enters in the oscillator level
En5(n1 1

2)\v2(n1 1
2)

2\jv)

j5Aa2/8Dm50.009, ~D2!

wherem5(1/2)mC is the reduced mass. The classical eq
tions of motions for this system are given by

ẍi52
1

m

]H

]xi
; i 52,3,...N21,

ẍ152
1

m

]H

]x1
2gLẋ11FL~ t !, ~D3!

ẍN52
1

m

]H

]xN
2gRẋN1FR~ t !,

wherem5mC . In ~D3! gL andgR are friction constants and
FL and FR are fluctuating random forces that represent
effect of the thermal reservoirs. In the anharmonic calcu
tions described in Sec. IV we have used white reservoirs
which the damping and noise terms satisfy^FB(t)FB(0)&
52gBmkTBd(t); B5R,L. The set of equations~D3! is in-
tegrated using the fourth order Runge–Kutta method, and
local heat flux is calculated fromJi5^2 ẋi(]Hi 11,i /]xi)&

14

where the average is done over long enough time such
the heat current is the same at all sites. Note that the exp
sion for the heat flux is reduced in the harmonic limit in
~C1!, where the force constant between adjacent atom
given by 2Da2.
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