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Thermal conductance through molecular wires
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We consider phononic heat transport through molecular chains connecting two thermal reservoirs.
For relatively short molecules at normal temperatures we find, using classical stochastic simulations,
that heat conduction is dominated by the harmonic part of the molecular force-field. We develop a
general theory for the heat conduction through harmonic chains in three-dimensions. Our approach
uses the standard formalism that leads to the generaligehtum Langevin equation for a system
coupled to a harmonic heat bath, however the driving and relaxation terms are considered separately
in a way that leads directly to the steady-state response and the heat current under nonequilibrium
driving. A Landauer-type expression for the heat conduction is obtained, in agreement with other
recent studies. We used this general formalism to study the heat conduction properties of alkane. We
find that for relatively shor(1-30 carbon moleculgshe length and temperature dependence of the
molecular heat conduction results from the balance of three facipr§he molecular frequency
spectrum in relation to the frequency cutoff of the thermal reserviyghe degree of localization

of the molecular normal modes anii) the molecule—heat reservoirs coupling. The fact that
molecular modes at different frequency regimes have different localization properties gives rise to
intricate dependence of the heat conduction on molecular length at different temperature. For
example, the heat conduction increases with molecular length for short molecular chains at low
temperatures. Isotopically substituted disordered chains are also studied and their behavior can be
traced to the above factors together with the increased mode localization in disordered chain and the
increase in the density of low frequency modes associated with heavier mass substitution. Finally,
we compare the heat conduction obtained from this microscopic calculation to that estimated by
considering the molecule as a cylinder characterized by a macroscopic heat conduction typical to
organic solids. We find that this classical model overestimates the heat conduction of single alkane
molecules by about an order of magnitude at room temperature. Implications of the present study to
the problem of heating in electrically conducting molecular junctions are pointed ou2003
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I. INTRODUCTION mode of heat transfer in solids goes back to Peierls’ early

. _— . work.2 Recently it was found that thermal transport proper-
The investigation of the electrical conductance of . .

N . ies of nanowires can be very different from the correspond-
nanowires is in the focus of the quest for developing nove

submicron and nano-size electrical devices. Molecular de'—ng bulk properties. For example, Rego and Kirczehbawe

. . : X hown theoretically that in the low temperature ballistic re-
vices already demonstrated include molecular wires, field ef- . : .
. . : . ime, the phonon thermal conductance of a one-dimensional
fect transistors, single electron transistors, molecular diode S . .
- . . . 1D) quantum wire is quantized, and have obtaingd
rectifiers, and switche's> Localized Joule heating poses a 002 . .
. : T I =m“kgT/3nh as the universal quantum conductance unit,
crucial question over the functionality and reliability of such
: o . where kg and h are the Boltzmann and Planck constants,
devices. The combination of small molecular heat capacit . . .
P . espectively, and is the temperature. Also of considerable
and inefficient heat transfer away from it may cause a large . ) :
. : . . interest are attempts to derive the macroscopic Fourier law of
temperature increase that will affect the stability and integ- o . : .
) : . : . heat conduction in one-dimensional systems from micro-
rity of the molecular junction. The rate at which heat is trans- . : . : . : ;
L o scopic considerations. The Fourier law is a relationship be-
ported away from the conducting junction is, therefore, cru- .
: o . . tween the heat curredtper unit aread and the temperature
cial to the successful realization of nano electronics devices, .
. . ; . gradientVT
As in macroscopic solids conductors heat can be carrie
away from the junction by electrons and phonons. In metals JA=—KVT 1)

heat flow is dominated by electrons, while in insulators heat

is transmitted solely by phonons. This study focuses on thghere A is the cross-section area normal to the direction of
phononic mode of heat transfer. Theoretical interest in thig,q ¢ propagation arid is the thermal conductivitithe ther-
mal conductanc& is defined asK=J/AT). Perfect har-
dElectronic mail: nitzan@post.tau.ac.il monic chains were theoretically investigated by Rieder and
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conduction theory is expected to overestimate the heat flux

through a single molecule that has a discrete vibrational fre-

TL TR quency spectrum, and a molecular level treatment is needed
for a correct description of this process.

In the present paper we address this problem, focusing
on the steady-state phononic heat transfer through a mol-
ecule connecting two macroscopic thermal reservoirs of dif-
ferent temperatures. The calculation is based on the general-
ized Langevin equationGLE) approach?*-% which is
FIG. 1. A schematic representation of a molecular chain connecting twd€cast for a model of single molecule junction. The resulting
heat reservoirs. expression for the heat current through harmonic molecules
is analogous to the Landauer expression for electrical
conductancé® We apply our formalism to realistic models of
molecular systems: Alkane chains of varying lengths, using

Lebowit? and by Zitcher and Talknérwho found that heat the HYPERCHEM package to generate molecular structures
and obtain their vibrationa(normal mode¢ spectrum, and

flux in these systems is proportional to the temperature dif=" . : .
ference and not to the temperature gradient. Consequentf§>"9 @ Debye model for the thermal reservoirs. This enak_JIes
the thermal conductivity diverges with increasing chain S 1o study the dependence of the heat ransfer on the bridge

length. Anomalous heat conduction was also found in onel—ength’ the temperature and molecular composition, as well

dimensional models of colliding hard particle$ Different as on the spectral properties of the reservoirs.

models that potentially avoid this divergence and yield Fou- Section Il introduces ourf_ormal model for phonon!c heat
rier law conduction were discussed. Some invoke impuritie§ranSfer through molecular bridges, and Sec. Il describes our

and disorde?:*° otherd!'? consider anharmonicity as the theoretical approach that yields Langevin-type equations of

source of normal heat conduction. Numerical simulations formOtlon for the molecular sqbsystem and an expression for
chains with a random potential were performed bythe heat transfer rate. Section IV presents some numerical

Mokross!?® and the role of phonon—lattice interaction was results for the heat conduction by alkane and alkanelike
studies by Huet al* Still, there is yet no convincing and bridges connecting Debye solids, and discusses their impli-

conclusive result about the validity of Fourier law in 1D cations. Section V concludes.
systems.

Experimentally, remarkable progress has been achieved
in the last decade in nanoscale thermometry, and measure-
ments on the scale of the mean free path of phonons an
electrons are possible. Using scanning thermal microsco . . .
methods one cF:)an obtain thegspatial te?nperature distributigz We consider a molecule connecting two independent

of the sample surface, study local thermal properties of man 12croscopic solidsl. and R, which are held at fixed tem-

terials, and perform calorimetry at nanometric s¢af.The peraturesT, and T, respectively. In steady state there is a
' - . o constant heat flow between these two heat reservoirs through
thermal conductivity and thermoelectric power of single car-

bon nanotubes were studied both experimerfallgnd the molecule. A schematic representation of the model is
theoretically!®2° In a different experiment, Schwakt al2° depicted in Fig. 1. The Hamiltonian of this system is a sum

. of the molecular Hamiltoniantd,,, the Hamiltonian of the
have observed the quantum thermal conductance in 25iid bathsH= . and the molecule—bath interactief,
nano fabricated 1D structure, which behaves essentially T8 B
like a phonon waveguide. Their results agree with the pH—p 4+ Hg+H,5p. )
theoretical prediction$.These and other experimental and
theoretical developments in this field have been recently Even though the heat flow in our system is one-
reviewed?! dimensional, the thermal reservoirs and the molecular bridge
In a recent papéf we have estimated the rate of heat are three dimensional objects. The reservoirs are represented
generation in a model of a current carrying molecular junc-as systems of independent harmonic oscillators at thermal
tion. We have found that a substantial0.1-0.5 fraction of ~ equilibrium. In what follows we consider a harmonic mol-
the voltage drop across the junction is dissipated as heat agcule coupled linearly to these thermal environments. Anhar-
the molecule, implying that a power of the order ofi®v/s  monic effects will be discussed in Sec. IV where we show
may be released as heat on a molecular bridge carrying that for the relative short chains considered here and at room
current of 10 nA under a bias of 1 eV. This would cause atemperature they are relatively small. For simplicity we as-
substantial temperature rise in the molecule unless heat mume that only the end atoms; 1 andi =N, of the molecu-
effectively carried into the metal leads. This motivates alar chain are coupledinearly) to the solids. To simplify our
study of molecular heat conduction. In Ref. 22 we have usegresentation we write the molecule—bath coupling in one-
a simple classical continuum modéFig. 1) in which the  dimension(the analogous three-dimensional expressions that
molecular bridge is represented by a cylinder characterizedre used in the computations are given in Appendix#e
by a heat conduction coefficient o,=10 *call(s-cm-K), Hamiltonian associated with the environment and its cou-
typical to solid saturated alkanes. However, classical heailing to the molecule is then given By

MODEL
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where the mass weighted bath coordinates are denoted by
andp. In Eq. (9), the sums ovek andk’ go over theN
molecular normal modes, while the indidesndr denote, as
before, the modes of the and R solids, respectively. The
transformed molecule—baths coupling constants are given by

d1)
V|’kEV|C1'k, where V|: —
vmpm,
(10
gN r
Vik=V,Cyk, WhereV,= —.
ymym,

The total Hamiltonian is the sum of the terms in E@, (8),

and wherex;, pj, m;, andw; (j=I.r) are coordinates, mo- and(9). In this representation all the molecular information
menta, masses, and frequencies associated with the degreegontained in its normal modes frequencies, the transforma-
of freedom of the reservoirs, and where the subsctipt&dr  tion matrix C and the coupling constantg, and V,. It

are used for the leftL) and rightR reservoirs, respectively. should be evident that the same treatment can be

The molecule—solids COUp"ng is characterized by the CONgone for three-dimensional molecule—bath Coup(m Ap-

stantsg,, andgy ,, andx; andxy are the coordinates of the
molecule end atoms.

pendix A).
In the following section we use this harmonic model to

In what follows we use a generic description of the mo-cajculate the heat transport properties of molecular junctions.

lecular bridge, representing it as a set dfindependent-
collective harmonic oscillators

YK (6)

wherex, andp, are the(mass weighteddisplacement and
momentum associated with the normal méd&he normal
mode representatiof6) is obtained from the atomi@ocal)

coordinate representation by the standard procedure of first

transforming the local coordinates andp; (i=1,...N) into
mass weighted coordinatesm,—x; and p;/Jm;—p;,

then diagonalizing the molecular Hessian matrix. This de-

fines a linear transformation
x=CX, (7)

that relates theN-vector x of mass weighted local coordi-
nates to theN-vectorx of molecular normal modes. The

This assumes that heat transport in such junctions is domi-
nated by the harmonic part of the molecular nuclear poten-
tial. The extent to which this assumption holds will be ex-
amined later.

Ill. CALCULATION OF THE STEADY-STATE
HEAT FLUX

Here we use the model outlined in Sec. Il to calculate the
steady-state phonon energy transfer between the two thermal
baths through the molecular link. Starting from the coupled
classical equations of motion for alnolecular and baths
modes, we derive a set of classical Langevin equations for
the molecular modes by projecting out the baths degrees of
freedom. Then, using the classical equations as a guide, we
construct the corresponding quantum Langevin equations for
the molecular system. Transformation to the frequency do-

XN matrix C is assumed in what follows to be known. Note main makes it possible to extract steady-state information

that the coordinates, andxy that appear in3) and(5) are

and finally yields the steady-state heat current from the trans-

local, corresponding to the positions of the first and last atformed equations.

oms in the linear molecular chain, and when re-expressed in
terms of the molecular normal modes results in coupling

terms that connecall normal modesto the thermal reser-

A. Equations of motion

The classical equations of motion for all modes are ob-

voirs. A similar transformation to mass weighted representatained from the Hamilton equations of motiondH/dq;

tion is done also on the normal modes of the macroscopie=p;; dH/dp;=q; .

solids. The Hamiltonian term@)—(5) then become

HereH is the sum of Eqs(6), (8), and
(9). This leads after rearrangement to
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Note that different molecular modes are coupled to each

other through their interaction with the baths.

B. Langevin equations

Next we follow a standard proceddrein which Egs.
(12) are formally integrated and used(hl) to yield a set of

Thermal conductance through molecular wires 6843

and the similar terms witlR andr replacingL andl are the
damping terms that result from eliminating the degrees of
freedom of theL and R baths. The corresponding “random
forces” are

FOMO=2 Vs FRO=2 V& (17
Their random character follows from the random distribution
of the initial conditions in Eq(14). These random forces and

memory kernels are related to each other by a fluctuation—
dissipation type relation,

% (0)cog w;t)

(F(Lk>(t)F<Lk’>(0)): > Y k<
I’

(0
+ %)sin(w,t)

7<,,(0)>. (18)

Using the

classical  relationships (X;(0)x,/(0))
= 5|,|’kBTL /(.l)|2

and (x(0)x,,(0))=0 this becomes

(k) (k") — L imi i
generalized Langevin equations for the molecular modes. IfFL (DFL '(0))=kgTLy, . (t). Similar relations hold for
the resulting equations the effect of the thermal environmentil€ R quantities.

appears in new driving forces and damping terms. This pro-

cedure(Appendix B leads to
)'_('k: - wﬁfk—l— 2 Vl,kil + Zr Vr,k‘)‘(r

V V !
-> Lz"‘f % (T)cod @ (t—7))dr

Ik’ w7y to

AL ka,(f)coqwr(t—T))dT, (13)

r.k’ wr to

r er k’

whereX; andx, evolve according to

7(|: —w|2)2| and 7(,2 —wrz)?r

(14a

or

|( o)

Xi(t) =% (to)cog @ (t—to)) + sin(w(t—tp)),

(14b)

where X, (t) =x(to) and %(to) =x(to), and similarly for

ther modes.

Equation(13) is a generalized Langevin equation for the

molecular mode&k. The terms

ML= ——5—

1.k’ w|

—E

Ik I,k

f X (7)coq o (t—7))dT

Xk, T)ykk,(t 7)dr (15

(we taket,— — o because we are interested in the long-time
steady-state situatipn with the memory kernel or time-

dependent friction

Ik Ik’

Vi (D= 2 ——“cod wt), (16)

w|

The above procedure is a standard derivation of a gen-
eralized Langevin equation usually used to describe a system
coupled to its thermal environment. In our case, when the
system is driven by different environments out of equilib-
rium with each other, it is useful to look at the resulting
equations as describing a driven system. To this end we note
that Eqgs.(13) and(14), viewed as a set of deterministic lin-
ear equations, describe a systéxp;k=1,...N} of damped
harmonic oscillators, driven by a set of oscillatdrs; ;]

e L,R} that move independently of the driven systémour
case—according to Eq14) with initial conditions that will

be averaged on at the end of the calculatidhese oscilla-
tors act on the system additively, and the effect of each may
be considered separately. Our following derivation is facili-
tated by considering a version of E¢L3) with only one
driving modex, of frequencyw,,

t
o — ~ L
Xk:_kaK+V0,kXO_E j [yk'k,(t—r)
k’ — 00

— )X (r)d7; k=1,..N, (19

o( 0)

R
+ ')’k,kr(t

Xo(t) =Xo(tg)cOg wo(t—tg)) + Sin(wo(t—tp)).

(20

At long time a system described by these equations ap-
proaches a steady state in which the external mode 0, which
may belong to either thé& or the R bath, drives all other
system modes to oscillate at frequenoy with amplitude
derived from that of the driving mode.

The formulation of our problem in terms of Eq&l9)
and(20), with Eq. (20) representing one of the external bath

'modes that drives the molecular system, makes it possible to

address the system in nonequilibrium situations. For ex-
ample, Eqs(19) and(20) describe the physics of a system in
which only external mode 0 is excited while the others are at
T=0. Moreover, the motion of mode 0, determined by the
choice ofXy(0) andx(0) does not have to be thermal. Fur-
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thermore this formulation makes it possible to calculate the where a; is the classical complex initial amplitude of the
flux distribution into the different bath modes given that thedriving mode, and Eq(19) is equivalent to the following
modeO drives the systenilo do this one needs to use the coupled equations:

solution of Eq.(19) [obtained under the drivingR0)] in Egs.

(12) to find the response of other bath modes to the drivingg?

by mode 0. Such a calculation is facilitated by replacing Eqs.— (& (1) +a(t))

(12) by their damped analogs: dt

Wk
K= — B+ > Vi % lel = —wy(ag (1) +ak(t))+vo,k\/w—0(a3(t)+ao(t))
K
t
Xp = —w,ZZ-I-E Vr’kyk— 7%, reR n—0+. (21 _iE \/‘Ukwk'j dT[?’t,k/(t_ ™)+ YEkr(t_ 7]
K & —o
The long time solution to Eq$19)—(21) is a steady state in X (ag, (1) —ae (7)), (25

which energy flows from the driving mode 0 into tfi¢ and
{r} modes through the molecular modés In particular, the
steady-state heat flux channeled through, e.g., the masle &(aic +a) =iw(ay —ay). (26)
given by the rate of energy dissipation out of this mode

Jor= (X2, (220  Equationg25) and(26) constitute the classical EOMs for the
variables a,, a; defined by (23). Quantization is now
The integrated fluxes)o . ==Jo; and Jo_r==rJo.r  achieved by replacing by a/(j=0{k}) and regarding
from the driving mode 0 into the left and right baths should Egs. (25 and (26) as equations of motions for the Heisen-
not depend ony. For the case where mode 0 belongs to theperg representation of the creation and annihilation operators

left bath, Jo_.r andJ, ., correspond to the transmitted and ;(t) anda(t). The thermal information then enters via
reflected fluxes, respectivedy.

The.altbove formulation pqrtrays ina somewhat new light <agaO>L: N (wg)=(efLeo—1)1
the familiar double role, driving and damping, assumed by
bath modes in such problems. In equilibrium these two ac-
tions are balanced by the fluctuation—dissipation theorem. In

nonequilibrium situations it is sometime useful to consider _
\ where 8= 1/kgT.
these two roles separately. Indeed, later below we will cal- . .
In what follows we will also require the quantum equa-

culate the energyheaj flux induced by one driving mode . . . .
throughout the system. The net heat flux at frequengys :tllvoenzg)t;régtlons for the bath modes. Using £23) into (21)

obtained as the difference between such fluxes originated in
the two baths and weighted by the corresponding density of
modes. The total heat flux is obtained by integrating over all atmimal—i Vik
- r = o, |E (
frequencies. Before that, however, we construct the quantum k 2Joo

k
equations of motion equivalent {49)—(20). r (28

(27)

(adag)r=ngr(wg) = (eProo—1)"1

al+a)—(n2)(al—a,),

and its complex conjugate, and similar equations for Ithe
C. Quantum equations of motion modes.
For a system of harmonic oscillators the equations rep-
resenting the classical dynamics, E@sl)—(20), may be also
viewed as quantum EOMs for the Heisenberg position an
momenta operators. The formal connection is made as usual Because our system is linear, at steady-state all the
by first defining linear transformation on the position andmodes oscillate with the driving frequenay, . Accordingly

(P. Frequency domain equations

momentum variables we seek a solution of the form
— 1 T _ iwpt —iwqt- H
Xj(D=\ 5~ (& (D +a(1), (ajta)=Ajeo+Bje o jelkp{l}{r}, (29
i
which has to satisfyB;=Al. Also, the need to satisfy
B ()= 7 /%(aj*(t)—aj(t)), 23) (drdt)(a/+a))=iwj(a/—a;) [same as Eq26)] implies
. . . w
j =04k} {1} {r}, (a}—aj)=(A,-e""°t—B;e"”’ot)w—c_’: je{kh{I}h{r}
i
where we uséi=1. Equation(20) then yields (30
ag(t)=age '@  ak(t)=aje o, 24 o
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afr:ﬁeiwot 1422 +Ee‘i“’0t 1- 20
B _. wo| A o)’ jel{kh{l}.{r}. (31)
aj=—e 'l 1+ —|+ et 1-—
[
Note that Eq.(31), taken withj=0, is consistent with Eq. © Vi
(24). Inserting Egs.(29) and (30), for j=k, into (25 and A= 4 " A B=Al (37

equating separately the coefficientsefo' ande™'“d! leads
to

w w
_ngk: _wEAk+VO,k \/ _kag_lz \/wkwkr—OAk,
wo K’ wk,
:KJ;dTe*wwqy;w<Ty+y§w(ﬂ] (32
or
(wﬁ_ wé‘*’ Fwol Vk,k(wo) + )’E,k(wo)])Ak(wo)
. Wy R
Fi0g 2\ [V (@) + Vi (00) JAw (o)
k' #k k’
I T
Vo, Voxd@o (33
where
ﬁmm=Le“wnmmt
-> M(ms(w —w)+iP ! )] (34)
I 2w|2 ! w—w/|’

and a similar expression wak,(w), whereP denotes the
principal part. To obtain34) we have used16) and have
disregarded terms containings f- ;) ! factors. For sim-

plicity we further invoke a standard approximation by which

we disregard the imaginary part of (i.e., terms affecting
small frequency shifys representing it by its real part

L a ViV
yk,k,(w) = 2

loy=w

TPL(w)- (39

2_ 2. .
(0r —wpt+inwg) k Vorwg

with k going over all bridge modes. A similar equation is
obtained for the operatow; of the left-side bath.

E. Calculation of the heat flux

Equations(37) and (33) lead to linear relationships be-
tween the operatora, (or A,) that describe the driven out-
going bath modes and between the operasgrand ag that
describe the driving mode. This can be used to compute the
heat flux through a system subjected to such driving. Differ-
ent approaches to calculating the heat flux through a system
of linear oscillators can be found in the literattif&33and a
common method suitable in particular to one-dimensional
systems is based on calculating the work done by datom
its neighbori —1.% For our model this leads to, e.g., at the
right side metal—bath contact

In
J= Z_mrr<XNpr+ erN>v

(38)
where the coupling parametegswere introduced in Eq(3)
and the symmetrized form is needed for quantum mechanical
calculations®* Obviously, at steady state the heat flux is in-
dependent of the position along the chain. A more general
systematic derivation of the energy flux operator, based on
conservation laws and valid for all phases of matter, is given
in Refs. 31 and 35. Our present approach is different and, for
example, makes it possible to study the energy resolved flux.
The equivalence between our approach and that based on Eq.
(38) is shown in Appendix C.

For definiteness we take the driving mode 0 to belong to
the bathL. At steady state the energy flux intand out of
the moder of the bathR is given by the quantum analog of
(22), i.e.,

For future reference we also rewrite this function, using Eq.

(10), in the form

Vt,kr(w)= Y (@)CqyCoyr (36)

where y (w) is defined from this expression. Again, an

equivalent expression defineg(w).

Jo_r=nwala,+a,al—aa,—ala)/2 (39)
is the flux transmitted through mode®® where agairy )
denotes time averag@ our application we also require av-
eraging over the initial distribution of the driving mode

Equation(33) can be solved to yield the set of operators state$. Note that all operators here and below are Heisenberg

{A,} associated with the Heisenberg operators for the mo

lecular bridge modes according to Eg9). In a similar way,

representation operators at timéJsing Eq.(28) we obtairt®

the amplitudegA,} and{A,} associated with the bath modes E ta v Vik T _atiat+
according to Eq(29) can be obtained. For this purpose we gt (@) I% 2~/wkwr[(ak )8~ ar (8t ay]

use Eqs(29)—(31) in (28) and again consider separately co-
efficients of expiwgt) and of exp(iwgt). This leads to

(403

—pl2[(al —a,)a,+a(a,—a))],
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d V
Ty r.k t T t
qrlaaD=-i> [a(af+aw — (al+aoal]
k 2Voow,

—pl2a,(al—a,)+(a,—aha]. (40b)

At steady state, the time average of E40) vanishes. This
yields, using(39)

Vrk
Jo=iw : a*+a)a*—a)
0—r rEk 4W<( k k( r r

+(al—a,)(al+ay). (42)

Segal, Nitzan, and Hanggi

JLHR(wo>=2 Ji_r(wo)

E (Vr,kvr,k’)wr:wo

k,k’ 2\/(Dk(l)kr
X[(Awo) A (@0)) + (AL (o) A wp))].
(45)

Note that the only attribute of this expression that makes it a
“left-to-right” current is our initial designation of the driving
mode as belonging to the left heat reservoir. The expectation
values in(45), therefore, depend on the temperatilie of

the left bath. A similar expression withg replacingT, ap-

T
= EPL(‘UO)PR(‘UO)

Note that the dependence on the driving mode 0, while nolies for the right-to-left heat current.

explicit in (41), enters through the forms of the Heisenberg

operatorsa, anda, that are solutions to Eq$33) and (37).
The energy flux carried by modes in the rangg. . . wg
+dwg is given byJ, _,,(wg)dwy where

Vi,
I-(wo)=iwipL(wo) ﬁ«ahakxal—ar)

+(al—a,)(a)+ay), (42)

wherep, (wg) is the density of modes of the left heat bath at

frequencyw,. Using Eqs.(29)—(31) this leads to

Vr,k

2\ wyw,

[(BrAW +(AB],
(43

Ji_r(wo) = wop (wg)IM Ek

where terms such g#\A, )e? “ot or (B,B, e 2“0 that will
yield zero average flux were disregarded. Next, u$¥j to
expressA, andB, in terms of the{A,} and{B,}={A]} op-
erators, and taking the damping termthere to zero, Eq.
(43) leads to

ar Vr er K’
‘]H = 5 — PR S A,
-r(00) = g L) o= wg) 2 =t
X[(A @0) Ay (00)) + (Al (w0) A o)) .
(44)
To obtain (44 we have wused the fact that

Ekykr(wkwk,)_1/2\/rkarykr<AkBkr) iS real and haVe diSI’e-

From Eq.(33) it follows that one can write

_ o
Ay(wp) =Ak(wo)Vo,ka$ \
o

where Ay (wp) is a scalar function of the driving frequency
that depends only on molecular parameters. The total heat
current is obtained as the integral over all frequencies of the
net currenti=Jg_, —J,_r. Denote

(46)

'
Tw)= EPL((U)PR(‘U)

(VikVik) o =oVikVik) o=
XE r r r _ |

K,k w

X (Al )AL (0)+ AL (o)A w)2.  (47)

Using the definition of the friction froni35), we get
2w — —
Tw)= "2 Yoo (@) Ve (@)[Ad @) Ay ()
k,k'

+Al (0)Adw)]/2. (48)

The directional heat currents are, therefore,
JL—>R=f Tw)(n (o) +12)wdw,

(49
JroL= j Tw)(ng(w)+1/2)wdw,

and the net heat flux is

3= f To)[Np(w) ~ () Jodo. (50

garded a term that contair o, + wy). We have also noted Which is our final result, similar to results recently derived in
explicitly the fact that the{A,} operators, obtained from Refs. 4 and 30. The advantage of the present derivdtmn

(33), depend on the driving frequency.

be explored elsewheras that it can be easily generalized

Equation(44) shows, as expected in a linear system, thato any kind of initial boson distribution in the two baths,

a driving (incoming mode at frequencyw, can excite out-

including driving by an external photon field. Expression

going modes only at this same frequency. The overall curren50) is similar to the Landauer resull,;=[7(E)[fr(E)

per unit frequency range, transmitted frdmto R at fre-
guency wg, is obtained by summing44) over all final
levels{r}:

—f_(E)]dE for the electrical current in a junction connect-
ing two electron reservoirs characterized by Fermi distribu-
tions fx(E) andf, (E) and a transmission functioi(E).
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We conclude this section with two remarks: First, as al-where[from (53) and (51)]
ready noted, the same result as given by E45)—(50) can 5
be obtained from the more conventional approach based on __ 79 (0)Ng
Eqg. (38) (see Appendix € Second, even though our treat- 4m1m(w)w§'
ment was described in the framework of a one-dimensional )
molecule—bath coupling, the results are valid for a threef€rémy=my is the mass of the end atom on the molecular

dimensional coupling model: The needed input are the couchain. Further simplification is achieved by considering
pling elements between all the molecular normal-madgs ~ &tomic baths for whicim(w) =ms and by assuming that

and the phonons of the thermal bati} and{r}. See Ap- 9(@)=g does not depend on. The magnitude of mea-
pendix A for details. sures the strength of the molecule—bath coupling. In a model

where we take the coupling between the molecular chain and
the thermal reservoirs to be dominaied gated by the cou-
IV. RESULTS AND DISCUSSION pling between the end chain atorfisandN) and their near-

We next apply the formalism described above to the cal€st neighbor atomél andR, say in the corresponding res-
culation of phonon induced heat transfer thermal conduc€rvoirs, we may write this couplingn correspondence with
tance of a molecular bridge connecting two identical thermaFds-(3) and(5)] as(focusing for definiteness of notation on
reservoirs at different temperatures. We study alkane chairf§e left reservoir
of variable length, and compare their heat transport proper-
ties to other ordered and disordered chains. The information Hy=—05 X;X = —2 01)%1X; - (56)
needed for any given molecular bridge is the normal mode !
spectrum of the molecular system and the correspondinghe second equality results from expanding the local coordi-
transformation matrixC [cf. Eq. (7)]. These were obtained natex, of the reservoir atom in the reservoir normal modes,
using theHYPERCHEM6 computer package, with the isolated x, ==, a,x, (2| ay|?=1). This implies
molecular geometry optimized using the Restricted Hartree—

Fock method with the semiempirical PM3 parameterization 9117011, (57)
method. The indeX that denqtes the molecule length is the 5o tha@lgi:giu or, if g1,=g,
number of backbone atoms, i.e., the carbones for the alkane

systems. The parameters that characterize the reservoirs are g1,

(55

the Debye cut-off frequency., which is taken in the range 9 N (58)
w,=200-800cm?, and the temperatureB, and Tg=T, ®

+ AT which are studied in the range 10—1000 K. UnlessWith these simplifications E(55) takes the form
otherwise statedAT itself is taken small, typicallyAT B

=10 3K, soT represents the average temperature of the two a= 79 _ (59)
reservoirs. 4 mm ?

Next consider the molecule—reservoirs coupling. We as-
sume, as in Eq(5), that it is affected by the extreme end- . h 1516 om- L
atoms on the two molecular edges. This coupling is com/!" the range cm =

; ; ; Once the normal mode spectrum and the transformation
monly characterized by the spectral density function, e.g., -
between atom 1 and the left reservoir matrix C [Eqg. (7)] have been calculated, Eq40), (33), (35),

) , (47), and(50) are used to calculate the heat flux and the heat
T 91 7 g (w)pL(w) conductance. The latter is defined by
dL(w)=§2 m—5(w—w|)=§T, (59)
LA LA K= lim J/AT. (60)
where p, (w) is the mode density. The spectral density AT=0

d () is related to the frequency dependent friction on atom  The thermal conductivity of one-dimensional atomic

In the calculations described below this constant is taken

1, Eq.(34), by chains and its dependence on the chain length was studied
d, (o) before by several group$:*°It was found®that in a perfect
y(w)=—— (52 harmonic chain the heat flux is not proportional to the tem-

M perature gradientTz— T, )/N, as inferred from Fourier law,

where y (w) was defined by Eq(36). In what follows we  but to the temperature differendg,— T, . The thermal con-

will assume that the spectral properties and couplingductance,J/AT, was predicted to be independent of the
strengths are the same on left and right contacts and omit trehain length, and the thermal conductivity for unit cross-
indicesL andR from g(w), Y(w), p(w), andm(w). We use a  sectional area)/VT, therefore, diverges as the chain length

Debye-type model defined by goes to infinity. Motion in our molecular chains is not re-
5 stricted to one dimension, still the proximity of these chains
p(w):NB%e—w/wc' (53) to the. one-dimensional models suggests perhaps a similar
w; behavior.

Figure 2 shows the dependence of the calculated heat
conductance on chain length for linear alkanes of 2—25 car-
d(w)=amwe ““; y(w)=ae “/, (54  bon atoms at different temperatures. The molecule—reservoir

whereNg is the number of reservoir modes. This leads to
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FIG. 3. The spectral distribution of normal modes of alkane chains of
FIG. 2. The thermal conductance calculated as a function of chain length folengthsN=15 andN=30.
alkane molecules at different temperatures, using=400cn! and a
=8000cm . Full line: T=50K; dotted line:T=300K; dashed lineT
=1000 K. The inset shows th&=1000K result in the case of strong
molecule—-reservoirs couplirg=1.2-10°cm™* (and samen.=400cnT*).  mode to transfer energy across the molecule depends on its

spatial extent, which may be characterized by the participa-
tion ratioP,.. In the present application we use a variation of
the measure suggested by Ref. 38. Define the weight associ-

coupling parameter was taker=8000cm . The conduc- .
Ping p ated with normal mod& on the carbon segmentas the sum

tance becomes length independentNor 15, while for short
chains,N=2-4, we see an unexpected rise of the conduc- B 1 )
tance with chain length. The inset shows a similar result for pk,n_;ﬂ (€ )k*“n| ' (62)

the strong coupling casea=1.210°cm !, and T
—1000K. Here the heat conductance appears to decrea¥€rea, goes over all atomghydrogens and carbpmsso-

like K1/N for large N. ciated with a given carbon atom. Note tha{p, ,=1. The
The asymptotic dependence of the heat conductance di@rticipation ratio is given by
the chain length is of particular interest. Fourier’s law of heat -1
conductance would imply a l/dependence on chain length, Py= > pi,n
while simple arguments based on H47) suggest that the "
conductance should be length independent for long chains.
The argument is that the phononic transmissifim) de-
pends on the coupling strength with a fourth power, contrib- 20 o r
uting the factor 12, while the double sum i47) yields the sl @
factor py(w)?, where py(w), the molecular density of
states, increases linearly with the molecule length. If the pos-"¢ 10f

(62

sibility that the factorAk(w)Al,(w)) in (47) may depend on 5

this length is disregarded, the heat flixs expected to be

length independent. The actual answer to this issue depend % 5 10 15 20 25
on the density and the localization properties of the molecu- N

lar normal modes. 20

Figures 3 and 4 display some properties of the normal 4 ®)

modes in alkane chains. Figure 3 depicts the density of
modes for chains wittN=15 andN=30 atoms. Three do-
mains, separated by gaps, are seen in the spectrum. Agrou 4
of low-frequency modes in the range below 600 ¢pinter-

mediate frequency modes witb=700-1500 cm! and 0
high-frequency modes @5=2950—-3200 cm'. Note that the

modes in the intermediate region have the highest density quG. 4. Measures of mode localization in alkanes plotted as functions of

states, and that the mode density increases linearly with th@olecular length(a) The functioneS where S is the information entropy,
molecular size. Eqg. (63), averaged over a group of modes as indicated belby.The
In order to gain a better understanding of these norma?verage participation ratio, E(ﬁ%), for the same groups. D_ashed line: Low-

. . . requency modes(w<600 cmil); full line: Intermediate frequency

modes we follow previous work on heat transfer in disor-modes, 708:w<1500 cm® dotted line: High-frequency modes,

dered harmonic medi&:*" In particular, the ability of any  w=2950<w<3200 cm*.
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FIG. 5. Thermal conductance vs chain length for alkane chains in whicHIG. 6. Same as Fig. 5, except that only the intermediate-frequency modes
only the low-frequency modegv<600 cn?) are taken into accounto, (700<w=1500 cm ') are taken into account.

=400cni!, a=1.210°cm !. Dashed line:T=10K; Full line: T

=100 K; dotted line:T=300 K; dash—dotted lind=3000 K.

anda=1.2-10°cm ! (same parameters as in the inset of

Fig. 2). The following observations can be made:
This is a good measure for the number of carbon sites on

which the collective mod has a significant amplitude. For (1) The conductance associated with the low frequency
a chain ofN carbon atomsP, =N for a ballistic mode that modes(Fig. 5 does not depend on the chain length at
extends over the entire molecule, and it decreases as local- low temperaturesT), however, it decreases with chain

ization becomes more significant. An alternative measure is Iengt.h in the h|gh temperature regime.
the information entrop}y (2) The intermediate frequency mod@sg. 6) show a very

different behavior: For low temperature the conductance
decreases exponentially, while for high temperature, it
becomes length independent.

(3) The high-frequency modedigure not showh basically
show the same behavior as that of the intermediate fre-
quency group, with stronger variations about the system-

Figure 4 depicts the average participation rdf® and atic trend. However, the absolute contribution of these

the average functiogexp(S)) for each group of modes plot- modes to the heat transfer is negligible as compared to
ted against the chain length. Both measures increase linearly the other two groups.

with chain length in all cases, indicating some ballistic na-
ture for at least some modes in each group, yet the high- These different modes of behavior can be understood as
frequency modes are, on the average, more localized. In cotransitions between two modes of transport: tunnelinglike
trast, the low-frequency modes show a substantiabnd resonant. Consider, for example, Fig. 6. At very low
delocalized character. temperatures modes of the thermal reservoirs that are in reso-
The interplay between the number of modes in each frenance with the intermediate molecular modes considered
quency group, their ability to transfer energy as derived fromhere are not populated. Only low-frequency modes of the
their localization property, and the frequency dependence afeservoirs are excited, and the transmission of the energy
the mode population in the thermal reservoirs combine tdetween these reservoirs through the molecule is a transfer of
affect the chain-length dependence of heat transport in odow-frequency phonons through a bridge of relatively high-
model junction. This can be seen by studying separately thiequency vibrations. This leads to a tunneling type behavior
heat conduction behavior of the three frequency groups. lwith an exponential decrease of the transmission with bridge
should be emphasized that the contributions of differentength, in analogy with the super-exchange mechanism of
modes to the heat conduction is not additive, as can be seatectron transfel? When the temperature increases, higher
from the presence of cross terms in E4j7). Still, looking at  frequency modes of the reservoirs, which are in resonance
these separate contributions provides useful insight, and iwith the intermediate molecular modes are excited and con-
fact describing the overall heat conduction as an additiveribute to resonance transmission which is distance indepen-
combination of contributions from the three frequencydent. Similar considerations apply in principle to the high-
groups defined above is fouridee belowto be a good ap- frequency modes, but the contribution of these modes to the
proximation for long enough chains. heat transfer is small because the Debye cutaffof the
Figures 5 and 6 show the heat conductance versus alkameservoir spectra is considerably below these modes.
chain-length for the low and intermediate frequency modes Consider now Fig. 5, which shows the chain-length de-
respectively, at different temperatures, using=400cm ! pendence of the heat conduction by the low frequency mo-

N
S= —n; Pcn IN(Pn)s (63)

which satisfiesS,=In(N) for a completely delocalized mode,
and S,=0 for a mode localized on a single site.
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lecular mode. Here we see an opposite behavior, where thi 497"
heat conductance does not depend on chain-length aTJow

while it decreases with chain length at high The same 3 x10 )
arguments as before apply also in this case. At low tempera jammmT

tures heat transfer involves low-frequency reservoir modes T4 (‘f\ﬁfu

that are in resonance with the molecular frequencies of this °§ o

group, hence the length independence of the transmissior x2p &/

For highT, the high-frequency reservoir modes are activated,o\g 2 o ///__—

however, transmission involving these modes is a nonreso 3, 0 1000 2000
nance process that decreases with chain length. The depel ¥ 7K
dence on length in this case is weaker than exponential be
cause the thermal shift of population from low- to high-
frequency reservoir modes is very gradual.

We emphasize these observations by comparing the hee
conductance from the low and intermediate frequency mo- ol e e medccecmmemmmm——n-
lecular modes, calculated at the unphysical temperature
=3000 K where their relative contributions are comparable, 7oK
see the dashed—dotted lines in Figs. 5 an(lGe contribu-
tion of the high-frequency molecular modes is small even aFIG. 7. Thgrmal gonductance Ealculated as a furlction of temperature for
this unphysically high temperatufeln this temperature alkane chaln_s usmgoc=809 cm! and a=8000 cm 2. Dqshed line:N

) =2; Dotted line:N=5; Full line: N=14. Inset shows the high-temperature
range the conductance due to the low-frequency miéigs  regime.
5) decreases with chain-length, that of the intermediate
modes(Fig. 6) is length independent and their superposition
is, therefore, expected to show a relatively weak length dephonons. This causes an increase in the heat flux. Obviously,
pendence. We have verified numerically that taking a simpldhis effect should be significant only at very low tempera-
superposition of these two contributions is indeed a goodUres, as indeed seen in Fig. 8.
approximation to the full calculation for chains longer than 6
to 7 carbon atoms, and therefore this analysis holds. For verf. Disordered chains
long chains the nonresonant contributions die out and heat Figure 9 compares the heat conduction of pure alkane
transmission becomes length independent, though becausgains to similar chains with a random distribution of two
only a few modes may be extended enough it may be smalljasses with 1:1 component ratiaw,=400cm !, a
The turnover to length dependence at smaller chain-lengths gnog cni?, andT =300 K were used in these calculations.
and the actual length dependence of the overall conductiofihe chains are normal alkanes in which the atomic masses of
for relatively short chains depends on the molecule—reservoliaif the carbon atoms have been set artificially to 28. We see
coupling strength, on the temperature and on phonon spectfiat for a long enough chain, the heavy atom chains with
of both molecule and reservoirs. smaller normal mode frequencies conduct less effectively

The dependence of the heat conductance on the temhan their light atom analogs. This results from the balance

perature is depicted in Fig. 7. The system parameters uses three effects. First, the contributions of modes of different
here area=8000cm ! and w,=800cm ®. At the high-

temperature limit, shown in the inset, the conductance satu-
rates to the valu&g [ 7{w)dw, that corresponds to the high-
temperature limit of Eq(50). In this limit the conductance 107}
decreases with the chain lendth At the very low tempera-
tures, main graph, the trend is reversed: The conductanci
increases with chain lengths for short chains.

The conductance increase with longer chain length, seer 3
in Fig. 7 and also on the short chdieft) sides of Figs. 2and <% 197°}
5, seems at first counter intuitive, however, Fig. 8 reveals its <

origin. Here we show the thermal conductance as a function : K - T=04K

of chain length at several temperatures. Variation of the chain 1 T=1K

length affects the molecular normal mode spectrum in two '.' — T=10K

ways. First, the overall density of states is increased linearly. 102% o E}ggg}(
Secondly, the lower bound on this density is shifted to lower ’ -

values. For example, for a pentarié=5) the lowest vibra- m o 15 20 25
tional frequency mode i®=84 cm %, for decane K= 10) it N

is =28 cm !, while for N=20 it is w=7 cm L. At low _

temperatures the heat current is carried mostlv by low freFIG. 8. Thermal conductance calculated as a function of length for alkane
P . y by chains, usingw.=400cm ! and a=8000 cm . Dashed lineT=0.1K;

quency phonons, and when the chain becomes longer, MOggited line:T=1 K; full line: T=10K; dash—dotted lineT =100 K; line

molecular modes come into resonance with these incomingith filled circles: T=1000 K.
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FIG. 10. Heat current vs chain length obtained from a classical simulation
of heat transport through one-dimensional model alkane chains character-
ized by different anharmonic interactions. Full line: Harmonic chain; dashed
line: Anharmonic chain using the alkane force field parameters; dash—dotted
line: anharmonic chain with unphysically large anharmonigitef Eq. (D2)

taken 36 times the alkane value/=10 ps* (y is the friction coefficient
defined in Appendix D Tg=300 K, T, =0 K were used in this simulation.

frequencies depend on the corresponding reservoirs density

of mode spectra. Secondly, it depends on the thermal popu-

lations of these modes. Finally, the energy carried by a mod&ll alkane model(dashed ling and the corresponding har-
of frequencyw is proportional tow. The effect of disorder monic approximationfull line) are seen to behave in this
also involves balancing factors: Starting from, e.g., #f@  way and to be very close to each other. Only when the mo-
chain and replacing some of these heavy atoms witH4Be lecular anharmonicity is taken unphysically larggashed—
isotope would reduce heat conduction because of localizatiodotted ling we see deviation from this behavior and a de-
[for example, in a 20 carbon chain the localization measurerease of the current with chain length. Similar deviations
(expS), Eq. (63) averaged over all modes, is 14.1 for a purefrom the harmonic behavidgnot shown are seen at elevated
12C chain, 12.5 for®C system, and only 7.5 for the random temperatures, but only wheh is unphysically high, say
12C_28C chainl. This is partly balanced by the shift of the =2000K.

mixed structures spectrum into frequencies above those of

the pure?®C chain. In Fig. 9 this results in little difference in

the heat conduction of a puféC chain and &%C/?®C mixed
chain. Finally, we compare the heat conduction properties

Finally we note that a similar behavior is seen for theof the harmonic chains considered in this paper with the
realistic 2C=4C chains, however, the difference betweencontinuum heat transport model used in Ref. 22. In that
the heat conductions of the pure and the mixed chains in thiBaper the molecule was represented by a cylinder connec-

case is quite small and are hardly resolved on the scale ¢ing the two heat reservoir&ig. 1) and a continuum model
Fig. 9 (see inset was employed to estimate the heat conduction, using for

the thermal conductivity coefficient the value,=3.5
.10 4 call(s-cm-K) typical of bulk organic solids. For a
model in which the molecular cylinder of length 60 A is

In macroscopic systems and in fact whenever the systersuspended in vacuum between the two heat reservoirs at 300
size is larger than the localization length and/or mean fre&k a modest temperature rise of a few degrees was found
path (determined by disorder and scattering by anharmonievhen heat was deposited uniformly on the cylinder at a rate
interaction$ heat conduction is dominated by anharmonicof 10'°eV/s (corresponding to about 1 nA electron current
coupling. In our short molecular chains such effects are exflowing across a potential bias of 1)VClearly, however,
pected to play a much lesser role, at least at low temperatureacroscopic heat conduction, dominated by impurity scatter-
To examine this issue we have carried out classical numering and anharmonic interactions cannot reliably represent
cal simulations of heat conduction through a one-heat conduction of molecular junctions that is characterized
dimensional model of alkane chains without invoking theby harmonic(ballistic) transport on one hand, and by re-
harmonic approximation. Details of the model and the calcustricted geometry and the availability of conducting modes
lation are provided in Appendix D. on the other.

Figure 10 shows the heat current obtained from such a For definiteness we assume that the coupling between
calculation. For a long harmonic chain the heat flux is balthe molecular chain and the thermal reservoirs is dominated
listic and does not depend on chain length. The result for théor gated by the coupling between two nearest-neighbor al-

FIG. 9. Thermal conductance vs alkane chain lengtp=400cn?, T
=300 K, a=8000 cm!. Dashed line:¥2C chains; full line:?C chains;
dotted line: Disordered?C—26C chains with 1:1 component ratio. The inset
depicts similar results for the case whéf€ replaces®C.

C. Comparison to classical heat transfer

B. Anharmonic effects
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V. CONCLUSIONS

The heat conduction properties of molecular chains
connecting two thermal reservoirs were investigated the-
oretically and numerically, focusing on saturated alkane
chains as a primary example. It was found that heat con-
duction in relatively short chain is dominated by harmonic
interactions. The harmonic approximation utilized yields a
Landauer-type expressioiiEq. (50)] for the heat current,
where energy is carried ballistically through the wire. The
principal factors that determine heat conduction in such mo-
lecular junctions are the molecular vibrational spectral den-
sity, the localization properties of molecular normal modes
in the different spectral regimes, the coupling of the mol-

5 10 15 20 ecule to the reservoirs and the cut-off frequency that charac-

N terizes the reservoirs spectral densities. The dependence of

FIG. 11. Heat conduction vs alkane chain length. Full line,  the heatconduction on molecular length varies with tempera-
=400cm?, a=2-10’ cm, T=300K. Dashed linew,=400cm’®, a  ture and reflects the different localization properties of
=2.10'cm™*, T=1000K. Dashed—dotted linen,=800cm*, a=25  different molecular spectral regimes. Mode localization

1P cm *, T=300K. Dotted line: ;=800 cmt, a=251Fcm ™, T 5150 causes disordered chains to be less effective heat con-
(Zélé)(ig);. Line with circles: Results of the classical continuum calculatlonductors_ A classical heat conduction model was found to
overestimate the microscopic result by about one order of
magnitude, an observation of potential importance for the

K b N This i ted t timate th estimate of heating associated with electrical conduction in
ane carbon atoms. This is expected to overestimate the ag: . oy junction.

tual thermal coupling in most molecular junctions. This im-
plies that in Eq.(59) we takeg; =gcc=9 (similarly we
takegy r=0). Also for definiteness we assign carbon masses
to the baths, i.e., take,=mz=m¢c. The corresponding nu- ACKNOWLEDGMENTS
merical values argg=7.2-10 3dyne/A (from the Hyper-
chem force fielsl and me=2-10"2kg. This implies[from
Eq. (59] a=2-10'cm ! for w,=400cm!, a=25
-10°cm™?! for w.=800cm ! and a=5-10°cm ™ for w,
=1400cm L. The latterw, is the order of the Debye fre-
quency of diamond.

Numerical results obtained from this model are com-APPENDIX A: THE THREE-DIMENSIONAL CASE
pared to the classical cylinder model of Ref. 22 are shown o _ _
in Fig. 11. The classical calculation was done usifg Generalization of the formulation presented in Sec. Il
=3.510 *cal(scm°K) [=1.510W/(A°K)] for the and Il into three dimensions is trivial. Since both molecule
and reservoirs are described in terms of their normal modes,
the dimensionality enters explicitly only in the form of the
molecule—reservoir coupling. In three dimensions the Hamil-
tonian, Eq.(3), takes the form

This work was supported by the USA-Israel Binational
Science Foundation, by the Israel Academy of Science and
by the Volkswagen-Stiftung under Grant No. I/77 217.

heat conductivity coefficient, and a cross-sectional are
A=3.5 A? for the “molecular” cylinder. The length of
the cylinder that corresponds to an alkane chain with
carbon atoms was takeh=1.2NA. Note that the heat
conductance of this classical obje€t=K.A/L decreases as )
N~! with chain length. ForN=5-20 we get thatK 1 5 g1l p|2
=107 110" 22W/°K. He+Hus=2 | 5 Moj ] o
The results displayed in Fig. 11 show that the heat con- i

duction of the macroscopic cylinder overestimates that of the 2 5
molecular model by about an order of magnitude at room +> Em o2 r.— Inr + L
temperature, while they are very similar @t=1000K. 27T me? 2m, |’
These observations are not very sensitive to details of the

chosen coupling and reservoir cutoff parameters within a rea- (A1)

sonable range. In view of the different mechanisms involved,

one should not take the similar transport properties at 1000 Kvherer andp are three components vectors. For simplicity
as an approach to the classical limit at hiphMore signifi-  we take the coupling strengthto be the same for the three
cant is the finding that at room temperature the classicallirections. The transformation matr&[Eq. (7)] in this case
model strongly overestimates the heat conduction propertieis a 3Nx 3N matrix, r=Cr, where any consecutive three
of the individual molecule, an observation of important po-components of the vectarrepresent the,y, andz coordi-
tential consequences for estimating heating in conjunctiomates of an atom in the molecule. The coupling terms are
with electrical conduction in molecular junctions. defined similarly to Eq(10) as

Downloaded 28 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 13, 1 October 2003 Thermal conductance through molecular wires 6853
Ve = 91,|C1,k, W= 91,|C2,k, V7 = 91,|C3,k7 X(s)= f e sty (1) dt. (B2)
Cooymmy Cooymim Tooymm fo
Rearrangement dB1) leads to
« _ OnrCan-2k VY In,rCan-1k A2)
rk= T —— k=T ——— 1 — -
Vmym, vmym, — sX(to)  Xi(to) Vik —
X(8)=5——F+5—> 2 Xk(S), (B3)
S +(1)| S +w| k S +w

, _ InrCank

rke and transforming back into the time domain produces

X (to)sin(w(t—tp))

mMym;

The real parts of the damping terms, E84), are given by _
Xi=X(to)cog w|(t—tq)) +

L (@) == (Vi VM e T VEVE0) !
Tk AT 4 w? Vik (t— .
+> Tf X(T)sinw(t—7))d7. (B4)
X 6(w—w)), K It
" v , .z . (A3)  The last equation was derived using the convolution relation
E (VEVE ot VY VY G+ VE VT )
Yk, k/(‘“) 2 * —s(t—tg) !
r @y e odt g(n)f(t—7)dr=g(s)f(s). (B5)
t=t =t
X 80— ), ’ ’

Integrating Eq.(B4) by parts leads to

X (to)sin(w(t—1to))
)

and the operatord, satisfy the equation

(wﬁ— w?ﬁ' if Yk,k(wo) + YEk(a’o)]wo)Ak(wo)

. Wk
1 2 (Yo (@0)+ ¥ (@0)) wo \[ = A (o)
k' #k k’

=[VX.al +V¥al +VZal ] Ok
- 0,k“0x 0k“0y 0,k“0,z wO’

where the average of the driving operators, the analog of Eq.

(27), is given by Now insert(B6) into Eq. (11). For clarity we ignore for the
<agjaoj,>L:nL(w0)5j i moment the coupling to the right reservoir. This yields

X=X (tp)cog w|(t—tg)) +

V. V.
+3 Jka—Ek %xk(twcoiw'(t—to))
|

(A4)
(B6)

V
-y Y
k )

t)_ik(T)COS{aq(t— 7))dT.
to

<a8,ja0,j'>R:nR(w0)5j,j’ i"={x,y,z}. (AS)

Finally the transmission is given by summing the coupling to
the reservoirs in Eq47) over the three spatial dimensions

X)(tg)cog w(t—tp))

2 r—
Xk_ - wkxk+ 2| Vl,k

. )?|(to)5in(w|(t_t0))}
[Q]]

v
Tlw)= gpumpR(w)

)

Vv
= Vil 2 5 X (to) cog @y (t—to))
r, k’)w —w(VI kV| kf)w, I k'
X2, Z .

P kK 1)
T o +3 [N (neosant-nydr )
X (A @) A (@) + Al (0)A(0))/2,

(AB) K w| to ] &7

and the net heat current is given by the same expression gecause we will be interested in the steady state of a linear

Eqg. (50). system affected by damping interactions the term involving
X (to) can be ignored, since the initial conditions of the
system are not relevant, see also Refs. 41 and 42. The terms

APPENDIX B: THE GENERALIZED containingx, (to) andx;(t,) are recognized a harmonic driv-

The derivgtion of the generalized Langevin. equation . %, (to)sin( @ (t—1to))
(GLE) starts with Eq.(12). Laplace transforming withy, as X|(1)=x(tg)coq w|(t—tp)) + ° ;
[

the initial time yields
(824 @ )X(8)=Xi(t) +%(to) + 2 Vi ,(s),  (BD)

where

(B8)

that obeys the harmonic oscillator equation of mot"ﬁqn
=— 0%
reservoir, yielding finally
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Thus, Eq.(B13) is (after supplementing similar terms arising

= —wﬁx_k"'2 V|,k7<|"'2r Vi X from the right reservojrthe same as Ed33).
VikVik )
Lt xk,(r)cos(w|(t— m))dr APPENDIX C: CALCULATING THE HEAT FLUX
1k’ w| FROM EQ. (38)
Vi, er K’ The classical power transfer through harmonic chain as
- % (7)coq w,(t— 7)) (B9) o -
o . k! given in Ref. 6 is calculated here between the (&btatom
of the molecular chain and the atoms of the right reservoir.
where
. ONr
%(to)Sin(; (t—1o)) Jo—r =T = (XNPr), €Y

ir(t)EXr(to)Coiwr(t_to))+
' where 0 is a dnvmg mode in the left reservoir and the ve-
(B10) ) . . o
locity and displacement are calculated at this driving fre-
obeys;fir:—wrzir. quency wg. The analogous quantum expression is derived
The procedure outlined above is a standard derivation ofrom the symmetric form
a generalized Langevin equation to be used in the long time g
limit of the system—bath interaction where initial system in- J0_>r=¥<prr+ PrXN)- (C2
formation can be neglected. A different approach can be used m,
to get directly the steady-state equations for a driven quarifransforming the coordinates into their mass weighted ana-
tum system. This formulation uses the ideas of Sec. Il andogs, then expressing the local molecular coordinate in terms
[ll: The quantization of the momentum and displacementof molecular normal modd<q. (7)] yields
Egs. (23)—(27), driven steady-state dynamics, E9) and
working in the frequency domain. We focus on the left res- __ Onr —— =
ervoir and start again from Eq12), but replaced by its Jor 2\/mNmr; et P €3
damped analog, Eq21): X;= — X+ 3V} i X— 7% . Us-
ing Egs.(23) and(29) leads to an equation for th&eft) bath
amplitudesA, in the frequency domain

Using Eq.(10) and transformingC3) into its second quan-
tized form using(23), leads to

) \V/ _ rk r + t
A= 5 2' . 2 Ik Ay. (B11) Jor= |2 \/—<(ak+ak)(ar a)
(0f —wgtinw) k ooy

Repeating the same procedure on Ed) for the molecule + (a7 —a)(@ta), (C4
normal modes, and disregarding for clarity the right reservoifwhich is the same as E¢1).

we get
@k @k APPENDIX D: MOLECULAR CHAIN MODEL
(wﬁ_w(z))Ak:El Vik \/aAﬁVo,k Vw_oag
The procedure for calculating the heat conduction
ViVie ok through one-dimensional model of alkane chains without in-
—2 - 5 ,Ak’ (B12) voking the harmonic approximation is presented here. The

4 w Wy . . . .
Lk ' model consists of a one-dimensional anharmonic carbon

Here, the driving moded(,,w,) appears explicitly. Substi- chain of lengthN linking two reservoirs whose temperatures
tute next(B11) into (B12) yields are denoted by, andTg. The model Hamiltonian is given

VvV / 5 o
1L kV1 k! Wy W™ 1 W
(wﬁ—wg)AKZZ R — w—k,Akr(z—,> H=H chaint Heontact

w;— wS-H nwo

LK @i N-1
H L= H. _,.=D e_ll(xi+1_xi_x 1 2+ m
+Vo,k /ﬂag (B13) chain izl i—1, ( ) 2 )(12
Note that(ignoring terms containing lé{y+ w,)) Heone= D (€ a(xXg—Xg—X) _ 1)2+D(e" a(Xn41—XN—X) _ 1)2,
> VKV ke wé—i nWo where the atoms indexed by 0 aNd&-1 are the left and right
, w|2 w|2_ wS+i 760 resgr_voirs atoms, respectively. In the classical simulation the_
positions of these atoms are taken constants, and the dynami-
wo ViVl 1 cal effect of the reservoir is represented by Langevin forces
= 72 o2 —imé(wo—w)+P — o and damping terms as described below. The Morse param-
[

eterse andD and the equilibrium bond lengthsare taken to
(B14)  characterize the alkane C—C stretch motionplying that in
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