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Abstract 
Ion currents through the Gramicidin A channel are modeled and compared to experimental results. The 
proposed approach utilizes a modified version of Poisson-Nernst-Planck (PNP) theory, termed Potential of-
Mean-Force-Poisson-Nernst-Planck (PMFPNP) theory, to compute ion currents. As in standard PNP, ion 
permeation is modeled as a continuum drift-diffusion process in a self-consistent electrostatic potential. In 
PMFPNP, however, the free energy of inserting a single ion into the channel i.e., the potential of mean force 
(PMF) along the permeation pathway, is calculated using a combined molecular/continuum method using 
equilibrium molecular dynamics (MD) simulations of ions in the channel to sample dynamic protein 
configurations. Therefore, the dynamic flexibility of the channel environment is accounted for via the PMFPNP 
prescription. This approach reveals that equilibrium fluctuations of the channel molecule result in significant 
electrostatic stabilization of an ion inside the channel. The dielectric-self energy of the ion remains essentially 
unchanged in the course of the MD simulation, indicating that no substantial changes in the protein geometry 
occur as the ion passed through it. The diffusion coefficient of a potassium ion within the channel is also 
calculated using the MD trajectory. Therefore, no direct fitting parameters are required in our model. This 
model accounts for the experimentally observed saturation of ion current with increase of the electrolyte 
concentration, in contrast to the predictions of standard PNP theory. 
 

1 Introduction 

Ion permeation through narrow protein channels is a topic of considerable current interest 

(Andersen and KoeppeII, 1992;Eisenberg, 1999;Hille et al., 1999;Roux et al., 2000;Kuyucak et al., 

2001). The importance of ion transport for many vital cell functions is difficult to overestimate.  

Processes in which substantial ionic currents are generated in membrane channels include 

maintenance of ionic concentration gradients across the cell membrane, generation of action 

potentials in neurons and auto-waves in heart muscle to name just three. Moreover, many modern 

drugs target ionic channels to modify their action (Nilius and Droogmans, 2001;Lerche et al., 

2001;Antonov, 2001;Marban, 2002). Therefore, in addition to extensive experimental effort, there 
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is much theoretical interest in understanding mechanisms of ion channel function at the molecular 

level. Recent advances in solving 3D structures of membrane proteins in general and channel 

proteins in particular (Koprowski and Kubalski, 2001) have enabled attempts at detailed molecular 

level modeling of ion current through protein channels (Kurnikova et al., 1999;Allen et al., 

1999;Chung et al., 1999;Cardenas et al., 2000;Roux et al., 2000) (see also recent reviews of the 

subject (Kuyucak et al., 2001;Tieleman et al., 2001)). A first attempt to perform a full scale non-

equilibrium Molecular Dynamics (MD) simulation of ion current through a simplified model channel 

at very high ion concentrations and applied voltage has been reported recently (Crozier et al., 

2001). However, non-equilibrium MD simulations are too expensive for realistic biological ion 

channel systems at physiological conditions because of the many different time-scales and length-

scales involved. Instead, several Dynamic Monte-Carlo (DMC) (Graf et al., 2000;Graf et al., 2002) 

and Brownian Dynamics (BD) studies (Corry et al., 2001;Chung et al., 1999;Allen et al., 1999;Im 

et al., 2000;Burykin et al., 2002;Mashl et al., 2001) of current-voltage relations through different 

natural and model channels have been recently reported. A key conclusion drawn from these 

studies is that the dielectric self-energy (DSE) (Graf et al., 2000;Schuss et al., 2001;Graf et al., 

2002) which arises when an ion moves through a relatively narrow channel with diameter of up to 

ca.1 nm greatly affects the dynamics of ion permeation (Allen et al., 1999;Corry et al., 2000;Graf 

et al., 2000;Graf et al., 2002;Dieckmann et al., 1999;Graf et al., 2000;Graf et al., 2002;Roux and 

MacKinnon, 1999). A charged particle which moves from a highly polarizable medium such as 

water solution into a low polarity medium such as a protein surrounded by a lipid bilayer 

experiences a dielectric barrier or dielectric self-energy (DSE) (Dieckmann et al., 1999;Graf et al., 

2000;Graf et al., 2002;Schuss et al., 2001). Several studies have demonstrated that transport 

through a narrow channel is greatly reduced or even completely inhibited by the presence of a 

dielectric barrier (Corry et al., 2000;Graf et al., 2000;Graf et al., 2002;Chung et al., 1999). In 

contrast, experimentally observed currents through narrow channels such as Gramicidin A (GA) 

are not negligible but, on the contrary, quite substantial - measured in tens of millions of ions per 

second (Hille, 1992). Therefore, these relatively small and simple molecular structures act very 

efficiently as ion channels. One thus suspects that a rigid model of a narrow membrane channel is 

inadequate for describing its ionic permeability. What is obviously missing from this oversimplified 

model is the motion of the channel structure itself. The importance of this aspect of ion-channel 

operation has been clearly demonstrated in equilibrium simulations (Roux and Karplus, 1993). In 
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this paper we propose a modeling approach that takes into account the dynamic implication of this 

motion for the transport of ions under nonequilibrium conditions. The proposed approach can 

describe ion currents (a long-time scale process) while accounting for the molecular flexibility of 

the channel protein (fast conformational changes on a short time-scale) which forms the channel. 

We examine the possible mechanisms by which a functional channel overcomes the impediment 

of a dielectric barrier and devise a model of an ion channel that is free of fitting parameters and 

realistic enough to yield ion currents which are compatible with experimental observations. We 

employ a combination of modeling methods that span a range of molecular resolutions (particle 

dynamics, continuum electrostatics), thus enabling treatment of ion channel permeation from first 

principles.  
Ion permeation is slow on a molecular time scale. As an ion passes through the channel, the 

protein channel molecule has time to adjust its local geometry to the presence of the ion 

�instantaneously� on the time scale of the ion transport (Mackay et al., 1984;Partenskii and 

Jordan, 1992;Roux and Karplus, 1993;Tang et al., 2000;Berneche and Roux, 2000). We have 

performed an equilibrium MD study of protein channel relaxation with an ion placed at various 

positions inside the channel. Our simulations reveal that the introduction of an ion into the channel 

causes only small changes in the 3D structure of the protein (Woolf and Roux, 1997). These small 

structural changes, however, substantially alter the ion-protein electrostatic interaction energy, 

leading to the relative stabilization of the ion-channel complex. This observation forms the basis 

for the numerical approach proposed herein. 

The remainder of this paper is organized as follows. In Section 2 the theoretical formulation is 

discussed and the simulation methods used are outlined. Section 3 describes the system studied 

and provides details of the numerical modeling. Our results are presented and discussed in 

Section 4. Section 5 concludes. 

2 Theory and simulation methods 

2.1 Potential of Mean Force Poisson-Nernst-Plank (PMFPNP) approach to calculate ion 
currents through the channel. 

In continuum theory electrolyte ions are treated as a continuous electrically charged 

substance characterized by the concentrations { c )(ri
r } of the ionic species involved. The electric 
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charge of the ith ionic species is denoted qi. The distribution of these concentrations is governed 

by a set of drift-diffusion equations, also called Nernst-Planck equations, one for each ionic 

species i present in solution. In particular, ij
r

, the flux of species i at a given point in space is given 

by  
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and the concentration of species i  evolves in accordance with the continuity equation 

i
i jdiv

dt
dc r

−= . In Eq. 1a Di is the position dependent diffusion coefficient of species i,  is 

the inverse temperature,  is the Boltzmann constant and 

( ) 1−= kTβ

k T  is the absolute temperature. Finally, 

)(ri
rψ  is the free energy of ions of species i in solution. At steady-state, 

0 =ijdiv
r

,          1b 

and thus all quantities in Eq. 1 are time-independent. The second term on the right-hand side of 

Eq. 1a is the drift term due to the forces acting on a charged particle of species i from both ion-ion 

interactions and external sources. The latter include interactions with fixed charges on the protein 

system and the externally imposed electric field. Eq. 1 is supplemented by concentration boundary 

conditions that account for the external bulk ionic concentrations of species i (which may be 

different on different boundary �faces�, particularly if the bathing solution concentrations on the two 

sides of the membrane differ). 

In a continuum model )(ri
rψ  depends on the electrostatic charge distribution in the system 

and on the (generally position dependent) dielectric response function )(rrε . It is convenient to 

separate the ion free energy into two contributions: 

)()()( rGrqr i
SIPmobileii

rrr ∆+= φψ , 2 

where )(rmobile
rφ  is the electrostatic potential due to all mobile ions and the applied electric field 

associated with external electrodes, and )(rSIP
r  is the potential of mean force (PMF) 

(McQuarrie, 1976) for a single test ion [hence �Single Ion Potential� (SIP)]. In an inhomogeneous 

dielectric medium )(rmobile
rφ  is determined by the Poisson equation: 

)(4))()(( rcqrr iiimobile
rrrrr

Σ−=∇⋅∇ πφε , 3  
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subject to Dirichlet boundary conditions, i.e., given values of the electrostatic potential are set on 

the boundaries of the computational box (Kurnikova et al., 1999). In reality these boundary 

conditions are imposed by the electrodes. In numerical models practical considerations often 

dictate the use of smaller subsystems, for which the computational boundary conditions need to 

be taken to reflect the effect of the actual ones using theoretical considerations (Graf et al., 2000). 

In the simplest approximation that was introduced in the field of channel modeling by Eisenberg 

and coworkers (Barcilon et al., 1992) the term )(rGi
SIP

r∆  is disregarded. In an obvious 

generalization )(rGi
SIP

r∆  may include the electrostatic potential due to partial charges fixed on the 

protein and lipid atoms, i.e. )r()( qrG proteini
i
SIP

rr φ=

mobile

∆  (Chen and Eisenberg, 1993a;Chen and 

Eisenberg, 1993b;Kurnikova et al., 1999;Cardenas et al., 2000). Equations (1) and (3) are coupled 

nonlinearly via the ci and φ  variables. In the general case of a protein of arbitrary geometry 

and distribution of partial charges on protein atoms, they have no analytical solution and must be 

solved numerically to self-consistency (Kurnikova et al., 1999). Equations 1-3 with 

 comprise the so-called Poisson-Nernst-Planck (PNP) theory. )(rprotein
r)( qrG i

i
SIP

r φ=∆

It was recognized recently (Roux et al., 2000;Schuss et al., 2001) that the change in solvation 

energy of a single ion when it moves in an inhomogeneous dielectric medium provides an 

important contribution to the drift flux term of Eq. 1 (Graf et al., 2002) but is missing from the PNP 

definition of )(rGi
SIP

r∆ (Schuss et al., 2001;Graf et al., 2002). This change in the free energy of a 

single ion defined with respect to the free energy of that ion in a bulk solvent was termed the 

dielectric-self energy (or dielectric barrier) )(rGi
DSE

r∆  (Graf et al., 2000;Graf et al., 2002). When the 

DSE is taken into account, )(rGi
SIP

r∆  is modified to 

)()()( rGrqrG i
DSEproteini

i
SIP

rrr ∆+=∆ φ . 4 

Recent studies have shown that  in a narrow channel strongly influences the resulting 

current (Graf et al., 2000;Graf et al., 2002). Therefore, a careful assessment of 

i
DSEG∆

)(rGi
SIP

r∆

Gi
SIP

 is 

essential for modeling realistic channel behavior. PNP-like theory that implements )(rr∆  as 

defined in Eq. 4 will be termed Dielectric-Self-Energy-Poisson-Nernst-Planck (DSEPNP) theory 

(Graf et al., 2002). Note that Eq. 4 still disregards a potentially important contribution to the free 
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energy of inserting an ion at some location in the channel that results from the corresponding 

change in the channel geometry. 

In general, calculating free energy differences in bio-molecular processes is a challenging task. 

Several approaches have been adopted for various problems in molecular modeling. These 

theoretical methodologies span a wide range of molecular resolution�from estimating 

electrostatic free energies on a continuum level by solving the Poisson equation (Sharp.K.A. and 

Honig B.H., 1990;Dieckmann et al., 1999;Luty et al., 2002) to full atomistic Molecular Dynamics 

simulations (Roux and Karplus, 1993;Kollman et al., 2000). In this paper we are primarily 

concerned with developing a methodology to calculate )(rGi
SIP

r∆  for an ion entering the channel 

which is both cost�effective in terms of computational power and can account for the most 

essential properties of the system (including efficient ion permeation!). Thus estimated )(rGi
SIP

r∆  is 

then utilized in a PNP like kinetic theory. The general approach of combining the precalculated 

PMF for single ion with the self-consistent PNP approach to estimate ion currents will be termed 

PMFPNP.  

A continuum electrostatic approach to calculate )(rGi
SIP

r∆  is outlined in the next subsection (2.2), 

and a combined MD/continuum approach is presented in Section 2.3. In subsequent sections we 

present results of applying both methodologies to simulating current through the Gramicidin A 

channel, and discuss the essential physical properties that should be included in the corresponding 

numerical model for a realistic description of this process. 

2.2 A Continuum approach to calculate the electrostatic free energy  

The electrostatic free energy of transferring an ion from the bulk solution into the channel is 

calculated as follows: 
ionproteincomplex

SIP GGrGrG −−=∆ )()( rr , 5 

where G  is the energy of an ion plus protein/membrane complex with the ion located at a  

point 

complex

rr  inside the channel, G is the energy of the protein/membrane in the absence of the ion 

and is the energy of the ion in bulk solvent. 

protein

ionG

The electrostatic energy G of a collection of point charges can be found as the ∑=
i

iiq φ
2
1G , 

where the summation is over all electrostatic charges  in the system and iq iφ  is the value of the 
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electrostatic potential at the position of charge i. The electrostatic potential )(rrφ  needed to 

calculate G can be found from the corresponding Poisson equation: 

)(4))()(( jjj
rrqrr rrrrrr

−Σ−=∇⋅∇ δπφε   6 

supplemented by Dirichlet boundary conditions with the boundary potential set to zero. In Eq.6 δ  

is the three-dimensional Dirac delta-function and rj
r is the position of charge qj. We have recently 

shown (Graf et al., 2000;Graf et al., 2002) that for channels as narrow as 4Å in radius, a 

continuum description of ion permeation described by DSEPNP, i.e. Eqs. 1-6, compares well with 

results of Dynamic Monte-Carlo (DMC) simulations in which ions are treated as charged particles 

that diffuse in an inhomogeneous dielectric medium with a prescribed diffusion coefficient (Graf et 

al., 2002). Such particle based simulation models of narrow channels (Allen et al., 1999;Graf et 

al., 2000) exhibit very small superlinear currents for voltages up to 200mV. The insignificance of 

these currents can be traced to the presence of a DSE barrier of several kT in such channels. In 

contrast, real biological channels of similar size and shape exhibit substantial ionic current at low 

voltages, with nearly linear or sublinear current-voltage characteristics. A detailed analysis of 

DSEPNP and DMC particle simulations suggests that the effective polarizability of the channel 

environment (loosely defined as the ability of the local environment to adjust in order to stabilize 

an extra electric charge) must be higher than implied by the �standard� model utilized in both DMC 

and DSEPNP studies reported previously. Both approaches for simulating ion motions across 

channels suffer from two major limitations, related to the insufficient flexibility assigned to the 

description of the channel. First, the solvent polarizability is accounted for by a single parameter (a 

dielectric constant), while in reality solvent response in the confined channel environment may 

vary with the position in the channel in a way that cannot be determined from the bulk solvent 

properties. Second, the protein structure is taken to be rigid (usually at its average NMR 

configuration), while in reality the protein structure responds to the ionic presence. Below we will 

investigate the influence of both limitations. 

2.3 A Combined Molecular Dynamics/Continuum Electrostatics approach to calculate free 
energy. 

 )(rGi
SIP

r∆  can in principle be found from an atomistic simulation in which all atoms on the 

protein, the lipid membrane and the solvent are treated explicitly. Several attempts to calculate the 
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free energy of an ion in a Gramicidin A channel by MD simulation have been reported (Roux and 

Karplus, 1993;Elber et al., 1995), but such calculations are very difficult because they require 

complete sampling of the system configuration space. Since a large portion of the configuration 

space required for quantitative calculation of the free energy of an ion in a solvent is due to the 

solvent itself, it was recently proposed (Kollman et al., 2000) that the computationally expensive 

sampling of solvent configurations may be replaced by considering solvent effects on the mean-

field level. In this approach the full-scale equilibrium Molecular Dynamics (MD) trajectory of a 

protein in an atomistic solvent is generated to sample the protein conformational space. The 

resulting sequence of protein/water configurations is used to obtain a corresponding sequence of 

dielectric continuum models of these systems, in which the fixed protein charges are embedded in 

their corresponding atomic positions. These continuum dielectric configurations, obtained with the 

ion fixed in a given position, are then used to compute the electrostatic free energy of inserting the 

ion at that position (Sharp.K.A. and Honig B.H., 1990). Following Kollman et al, 2000, the free 

energy of ion-protein complex formation is calculated as: 

∑
=

−−=∆
N

n
n

ionproteincomplex
SIP GGG

N
G

1

)(1 , 7 

where G ,  and G  have the same meaning  as in Eq. 5 and are calculated for each 

protein-ion complex configuration as described in section 2.2. The index n indicates a single 

configuration from the MD trajectory, with N being the total number of configurations considered. 

This approach allows us to account for solvent effects on average, i.e. mean field level, and to 

reduce the noise in the free energy calculations due to insufficient sampling of solvent 

configurations. The procedure described above, in which the potential of mean force  is 

calculated via Eq. 7 and then inputted into the PNP formalism, will be termed Potential of-Mean-

Force-Poisson-Nernst-Planck (PMFPNP). 

complex proteinG ion

SIPG∆

3 The simulation procedure  

3.1 The model system.  
The ideas outlined above were implemented in a series of calculations performed for a 

model Gramicidin A (GA) channel. GA is an antibiotic peptide widely used in single-channel 

experiments on passive ion-current permeation through a lipid membrane. It is a robust narrow 

channel with a relatively rigid structure. It reconstructs into a lipid bilayer by forming head-to-head 
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dimers of alpha-helical polypeptides. Due to its unusual primary sequence of alternating L and D 

amino acids it forms an alpha helix with all the amino acid side-groups extending away from the 

backbone helix, which forms the channel. Therefore, the channel is lined with backbone carbonyl 

and amino groups, generating a hydrophilic environment inside the channel.  Figure 1 shows a 3D 

GA ion channel structure incorporated into a crude model of a lipid bilayer membrane, with the 

membrane/protein channel system solvated in water. This snapshot is taken from an MD 

simulation performed as described in the next section. As has been noted by several workers 

(Dieckmann et al., 1999;Roux and MacKinnon, 1999;Graf et al., 2000) the dielectric self-energy is 

very large for channels less than 5 Å in radius, implying the conundrum discussed above in 

modeling their permeability.  We have chosen to work with GA, the narrowest known ion channel, 

to emphasize our goal of understanding the permeability of such narrow channels. It has also 

been pointed out (Doyle et al., 1998;Tieleman et al., 2001) that the selectivity filter of the 

potassium channel possesses certain similarities to the GA channel and thus our study of GA may 

help to understand the energetics of the potassium channel selectivity filter as well as other 

narrow channels. 

3.2 MD/continuum simulation of an ion in the GA channel 

We have performed a set of Molecular Dynamics (MD) simulations of a single potassium 

ion and a single chloride ion located at various positions in a Gramicidin A channel. GA was 

incorporated into a slab of heavy (mass=100au) spheres with Lennard-Jones parameters ε=0.05 

kcal/mol and RM=2.5 Å, and no partial charge. The slab of these dummy spheres represents a 

lipid bilayer by providing a non-polar environment for the channel molecule. This channel-

membrane model system was then immersed in a box of 738 SPC/E water molecules. Eight water 

molecules in random configurations were placed inside the GA pore. This system was subjected 

to energy minimization followed by a 200 ps constant pressure MD equilibration run at 300 K. 

Positions of the dummy atoms and GA atoms were constrained in space with 200 kcal/mol/Å2 

harmonic spring forces. After the GA-water equilibration was completed, an ion (K+ or Cl-) was 

introduced into the channel. A force constant of 200 kcal/mol/Å2 was again applied to the positions 

of the dummy atoms and a 10 kcal/mol/Å2 force constant was applied to the backbone atoms of 

the GA. The energy of each system thus prepared was minimized, followed by a 30 ps 

equilibration period when the harmonic constraints on the GA backbone atoms were gradually 
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reduced from 10 kcal/mol/Å2 to 0.5 kcal/mol/Å2. Subsequently, 300 ps production runs were 

performed with constant volume dynamics at 300 kT. 0.5 kcal/mol/Å2 harmonic constraints were 

maintained on each of the backbone C and N atoms of GA. The coordinate of the ion along the 

channel axis (z-axis) was held fixed, while its x,y coordinates were allowed to fluctuate. The 

coordinates of the protein atoms were collected every 2 ps. For every such time point along the 

MD trajectory the coordinates of the protein molecule and the ion were used to calculate the 

appropriate electrostatic free energy by solving the Poisson equation as described in Section 2.2. 

An MD trajectory of GA without K+ was also generated as described above. All MD simulations 

were performed using the AMBER 6 software package and amber96 force field (Cornell et al., 

1996). The potential parameters for the potassium ion were taken from work of Aqvist (Aquist, 

1990). Bonds involving hydrogen atoms were constrained via the SHAKE algorithm. A 12 Å cut-off 

distance was used for all non-bonded interactions. The MD time step was set to 2 fs. 

For the continuum electrostatics calculations, partial charges on the GA atoms were taken from 

the amber96 force field (Cornell et al., 1996). The dielectric function profile )(rrε  and the positions 

of the partial charges represent the molecular system in a continuum representation. In the 

numerical solution of Eq. 6, these functions are discretized on a uniform 3D grid as described in 

(Kurnikova et al., 1999). The radii of potassium and chlorine ions, estimated by fitting experimental 

enthalpies of hydration, were chosen to be RK
+=2.17 Å (Dieckmann et al., 1999) and RCl

-=1.81 Å 

(Dasent, 1982) The electrostatic energy was calculated using our 3D PNP program (Kurnikova et 

al., 1999), modified to allow the assignment of several arbitrary values of dielectric constant 

parameters to different regions of space. For all results reported in the following sections, the grid 

dimensions of the simulation box were 1513 with a linear scale of 3 grid points per Å. The width of 

the membrane was set to 33Å to mimic a glycerilmonoolein (GMO) bilayer. In Figure 2, a two-

dimensional slice of ε( rr ) shows how different dielectric constants are assigned to membrane (εm), 

protein (εp), bulk (εw), and channel (εw
ch) regions. The set of calculations described above was 

repeated with the potassium ion fixed at 18 different positions along one GA monomer at spatial 

increments of 1Å, and the chloride ion fixed at 7 different positions at spatial increments of 3Å. 

All calculations were performed on a set of IBM RS6000 workstations. It took ~12.5 hours to 

complete a 300 ps MD simulation and ~27 hours to solve a set of Poisson equations as 

prescribed by Eq. 7 for N=150. 
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3.3 MD calculation of the diffusion coefficients 

The diffusion coefficients of the ion were calculated from the force-force autocorrelation 

function (McQuarrie, 1976). According to the fluctuation-dissipation theorem for a Brownian 

particle moving in thermal equilibrium, the 1D friction coefficient is: 

∫
∞

∞−

>⋅<= dttrFrFr zzz ),()0,(
2

)( rrr βγ  , 8 

where  is the random force on the particle at position ),( trFz
r rr  along the channel axis. The space-

dependent diffusion coefficient )(rD r for the ion can then be extracted using the Stokes-Einstein 

relation . ( ) 1)( −rrβγ)( =rD r

The input needed for Eq. 8 was obtained from equilibrium MD simulations with the potassium ion 

fixed in space. Starting with equilibrated systems of K+ fixed in the GA channel at a particular 

position along the channel axis, a 1 ns trajectory was generated and the forces acting on the ion 

were collected. This calculation was repeated at 18 K+ ion positions selected as indicated above. 

A similar MD simulation of a potassium ion in bulk water was also performed. In the latter 

simulation the K+ ion was immersed in a box of 735 SPC/E water molecules, the system was 

equilibrated, and finally, a 1 ns constant volume equilibrium trajectory was generated. 

4 Results and discussion 

4.1 Continuum dielectric theory: the role of the dielectric response  

In continuum modeling of biological channels the position dependent dielectric response 

function plays a prominent role. The most common choice for the dielectric constant of the 

membrane and the protein molecule is εm=εp=2-5. Water is usually represented as a dielectric 

medium with dielectric constant εw=80. The choice of these parameters for calculating electrostatic 

free energies of binding in solution has been intensively scrutinized in recent literature on globular 

proteins and organic molecules (Nosjean et al., 1997;Simonson and Brooks, 1996;Sharp.K.A. and 

Honig B.H., 1990;Warshel and Russell, 1984). However, the appropriate choice of dielectric 

constants for membrane proteins and membrane environments is relatively unexplored. We have 

examined the dependence of the electrostatic binding free energy  in the GA channel, 

calculated as described in Sec. 2.2, on the choice of the dielectric constant values of the channel 

+

∆ K
SIPG
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environment (as in Fig. 2). Indeed, the two-ε model predicts a huge solvation barrier for an ion in a 

narrow channel. Figure 3 shows via the solid line with filled circles ∆  for a potassium ion in a 

GA channel, as a function of the ion position along the channel axis, for a set of ε values in the 

range indicated above, namely, ε

+K
SIPG

w=εw
ch=80, εm=εp=4. The 3D channel structure reported by 

(Arsen�ev et al., 1986) was employed in these calculations. Note the high barrier of ~14kT to bring 

the ion into the center of the channel which results from this choice of parameters. Such a barrier 

would completely block ion current (Graf et al., 2002) in contrast to experimental observation. 

Since the GA channel is very efficient in passing simple cations, one should ask what other 

properties of the channel and its environment must be incorporated into the model to describe its 

interaction with the ion at least qualitatively correctly. It is widely believed that the environment 

around a biological channel is highly inhomogeneous in its electrostatic properties and therefore 

cannot be described adequately by just two dielectric constant regions. One possibility is that 

simply employing a better description of the dielectric response function may yield a more realistic 

permeability model. A protein is a polarizable medium and εp values between 4 and 20 have 

recently been suggested to represent a protein molecule* (King et al., 1991;Gilson and Honig 

B.H., 1986;Schutz and Warshel, 2001). Therefore, the dielectric constant εp was increased in 

several increments up to εp=30, keeping εw=εw
ch and εm as 80 and 4, respectively. Fig. 3 shows 

results for obtained under these conditions. We see that even for ε
+

∆ K
SIPG

                                                

p as high as 30 the barrier 

 is still ~2.5kT. Note that the mobility of water inside the channel is highly restricted and its 

dielectric response is probably substantially lower than that of bulk water. Still, we find that the ion 

penetration free energy is rather insensitive to the water dielectric constant value in this region. 

This is shown in Table 1, in which ε

+

∆ K
SIPG

w
ch was varied between 40 and 200. It appears that for a 

narrow channel confined within a low dielectric constant (ε<6) membrane, a substantial dielectric 

 
* It should be emphasized that this separation of the single ion potential into two contributions, one associated with 
explicit charges in the environment (in this case the protein) and the other arising from the dielectric self energy, is to 
some extent arbitrary and reflects our choice of the electrostatic model for the protein. When partial charges on the 
protein are treated explicitly the background environment is characterized by a low (2-4) dielectric constant. 
Alternatively the protein is sometimes treated as a high dielectric constant environment thus accounting for partial 
charges that are not treated explicitly. In the latter case the term will not appear in Eq. 4. 
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barrier exists even if the protein and/or the channel region are assigned unphysically high 

dielectric constants. Our recent DMC studies of ion current in a model cylindrical channel (Graf et 

al., 2000) indicate that an energetic barrier as low as 2 kT effectively inhibits any appreciable ionic 

current at low applied voltages (Graf et al., 2000;Graf et al., 2002). Therefore, other mechanisms 

by which the environment can polarize in response to the presence of a permeating ion must 

exist. As outlined in Section 1, a likely mechanism entails local conformational changes in the 

protein as the ion moves through the channel. The next sub-section considers this possibility. 

4.2 Free energy of Ion-Channel association from combined MD simulations and continuum 
electrostatics method: The role of channel relaxation 

In order to elucidate the influence of the protein molecule itself on the passage of an ion 

through the channel, the free energy ∆  associated with transferring a K
+K

SIPG + ion from the bulk 

electrolyte solution to a particular point rr  inside the GA channel was calculated as described in 

sections 2.3 and 3.1, i.e., a sample of GA configurations was obtained from equilibrium MD 

simulations with a K+ ion at various positions along the channel, followed by continuum dielectric 

model calculations of the free energy associated with transferring the potassium ion into the 

channel. The results obtained from these simulations are shown in Figures 4-7. Figure 4 shows 

 as a function of time calculated along the MD trajectory for the complex with the ion 

positioned in the center of the channel as in Fig. 1, starting from an initial protein structure taken 

as the NMR geometry. The values of the dielectric constants used in the electrostatic part of this 

calculation are ε

+

∆ K
SIPG

p=2, εm=4, εw
ch=40 and εw=80. The initial relaxation of energy at the onset of the 

simulation is shown in Figure 4a. The free energy drops below zero on average in a fraction of a 

pico-second. This result clearly demonstrates the short time-scale required for the protein to 

adjust to the insertion of the ion. The equilibrium state is reached after a longer time. Electrostatic 

calculations in the equilibrated part of the trajectory, presented in Figure 4b, were performed using 

εp=4 (solid line) and εp=2 (dashed line), keeping εm and εw
ch as above: note that  is 

characterized by large fluctuations between positive and negative values. That is, the protein 

fluctuates between �permeable� and �non-permeable� structures in rapid succession. On average, 

however, more configurations that favor ion binding inside the channel occur and the resulting 

average energy is negative, i.e. favorable for ion permeation into the channel. Another important 

+

∆ K
SIPG
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observation that can be drawn from Fig. 4b is that the dependence of the calculated energy on the 

value of εp is different for different configurations. For some structures e.g. the initial NMR 

structure,  increases as ε
+

∆ K
SIPG p decreases in the same manner as observed in Fig. 3. For others, 

however, the energy decreases with decreasing εp, resulting in tighter binding of a complex. This 

is somewhat counterintuitive and demonstrates that for any particular spatial distribution of the 

dielectric response function ε® it is impossible to predict a priori how the polarization of the media 

around the charge will influence the calculated electrostatic energy in the system. The 

dependence of  on the choice of ε
+

∆ K
SIPG w

ch and εm is shown in Figures 5a and 5b respectively for 

several snapshots from the MD simulation.  depends very weakly on ε
+

∆ K
SIPG

+K
SIPG

w
ch (see Fig. 5a) and 

varies monotonically with εm (Fig. 5b). 
+

∆ K
SIPG  was shown for individual channel configurations in Figures 3-5, in what follows we consider 

the corresponding free energy averages over the entire equilibrium MD trajectory according to Eq. 

7. The following values of dielectric parameters were used in the remainder of the paper: εm=εp=4, 

and εw =εw
ch=80. Figure 6 shows this trajectory-averaged free energy as a function of ion position 

along the channel axis. Deep wells in the  profile indicate cation stabilization (and thus 

possible ion binding sites). The energy minima located closer to the entrance to the channel are 

deeper than the two energy minima near the center of the channel. It is important to emphasize 

the large difference between the free energy for ion insertion calculated for the relaxed channel 

and for the NMR configuration. In Figure 7a the averaged 

∆

)(rGK
SIP

r+

∆  in the relaxed channel is 

shown (again) along with )(rG K
DSE

r+

∆

)(rGK
SIP

. The electrostatic free energy of transferring an ion from the 

bulk solution into the channel for the NMR channel geometry, calculated in the same manner, is 

shown in Figure 7b. It is clearly seen that the relaxation of the channel environment during the MD 

simulation leads to a huge decrease in the cost of introducing an ion into the channel. If the 

channel is kept in its NMR geometry, an ion entering the channel experiences an energetic 

barrier. Thus, it is favorable for the ion to bind into the channel if the channel is allowed to relax in 

response to the ion�s presence. This relaxation evidently leads to a dramatic decrease of the 

electrostatic free energy, which may become negative. Further inspection of the DSE term in Fig. 

7 (diamonds) and the total r+

∆  (circles) reveals that when channel flexibility is allowed (Fig. 
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7a) only minor changes in the dielectric-self-energy (DSE) term occur, whereas the total complex 

association energy )(rGK
SIP

r+

∆  decreases significantly. The latter observation indicates that for our 

choice of the electrostatic model of the protein (see Footnote *) the main effect of the small 

structural changes in the channel molecule is to modify the direct electrostatic interactions of the 

permeating ion with the partial charges on the protein groups. The effect of protein relaxation on 

)(rGK
DSE

r+

∆  is small. The direct ion-protein electrostatic interactions become significantly stronger in 

a flexible channel and can compensate the large DSE, thus rendering the channel permeable. 

Next, we investigate how the structure of the protein is on average affected by the ion�s presence 

in the protein channel. The central part of the GA channel is formed when two alpha-helical 

monomers are stacked on top of each other in the membrane. They are held together only by 

hydrogen bonds, and therefore the center is the most flexible part of the channel, which is fairly 

rigid in other parts (Woolf and Roux, 1997). We have found that deviations from the average atom 

positions due to the ion presence are fairly small even in the center of the channel. Therefore, we 

report only the results corresponding to the ion position in the center of the channel to 

demonstrate that the influence of the ion on the channel structure is small even in this case. In 

Figure 8 the root mean square deviation (RMSD) from the average equilibrium geometry of the 

backbone carbonyl oxygen atoms lining the channel pore, accumulated over the course of the MD 

simulation, is shown. By comparing the RMSD for channels simulated with and in the absence of 

K+ ion one can also conclude that the average geometry of the protein molecule remains 

unchanged as the ion is introduced into the channel. Direct comparison of the NMR and average 

MD structures indeed reveals only small changes in the average positions of the protein atoms. 

This is further illustrated in Figure 9, where we have superimposed the average MD coordinates of 

the GA-K+ system with the average MD coordinates of the GA system. It can be seen from this 

figure that the largest changes in atomic positions between the two structures occur for carbonyl 

oxygen atoms closest to the ion. In particular, carbonyl groups near the ion have tilted towards it, 

as indicated by arrows. Other workers studying narrow channels, e.g. GA and K+ channels 

(Mackay et al., 1984;Roux and Karplus, 1993;Shobana et al., 2000;Nina et al., 2000;Tang et al., 

2000) have observed that ions distorted the positions of the carbonyl oxygens to achieve proper 

solvation. The average positions of most other GA atoms have not changed significantly. Table 2 

reports the largest average distances and magnitudes of distortion between the potassium ion and 
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the nearest carbonyl oxygens when the ion is in the center of the GA channel. There are four 

carbonyl oxygens whose distances from the ion decrease substantially when the ion is introduced 

into the center of the GA. Even for the largest distortions reported here, it can be seen that the 

hydrogen bonds among the backbone atoms of GA remain intact, i.e. the additional tilt angle of 

carbonyl groups involved remains small (see Fig.9). 

The shape of the free energy profile in Fig. 6 suggests that there are four energy wells in the GA 

channel. Two of them, represented by the deeper minima, are located at a distance of ~9 Å from 

the center of the channel. This observation agrees well with previous experimental and theoretical 

studies of GA binding sites (Woolf and Roux, 1997;Kurnikova et al., 1999;Im et al., 2000). Two 

other, energetically shallower, energy minima reside approximately 3Å from the center of the 

channel (Kurnikova et al., 1999). 

Finally we consider the free energy profile for a chloride ion in the GA channel. As in the K+ case, 

when the GA channel is allowed to relax as described above the free energy barrier calculated for 

a Cl- ion decreases (see Fig. 10). However, the magnitude of the net barrier in the center of the 

channel is still much too large to expect any significant Cl- current through the channel. 

4.3 Calculation of diffusion constants 

Current calculations using PMFPNP or Brownian Dynamics techniques crucially depend on 

the magnitude of the diffusion coefficients that characterize the motion of ions in the channel. In 

the narrow pore of Gramicidin the permeant ion is largely desolvated and is instead coordinated 

by backbone carbonyl groups. The mobility of the permeating ion is suppressed not only by the 

restrictions inherent in its lateral confinement but also by strong electrostatic interactions with 

these carbonyl oxygens. Moreover, due to the single file arrangement of the ion and water 

molecules, the motion of the ion is coupled to the motion of surrounding water. The mobility of 

water is also inhibited inside the channel (Elber et al., 1995;Hinsen and Roux, 1997).  

There are no direct experimental measurements of diffusion coefficients of ions inside Gramicidin 

or other channels. The diffusion coefficient of a potassium ion in bulk water  calculated as 

described in section 3.3 and indicated in Figure 11 is only 13% smaller than the experimentally 

measured value (Lide 1994). The calculated diffusion coefficient of a K+ ion inside the channel is 

~8.5 times less than in the bulk solution (again, cf. Fig. 11). Several model MD studies of ion 

diffusion coefficients inside various model channels have been reported recently. All of them find 
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reduction by a factor of 3-10 in the diffusion coefficient when the ion is moved from bulk water into 

a channel environment (Lynden-Bell and Rasaiah, 1996;Nina et al., 1999;Smith and Sansom, 

1999). Furthermore, the ion�s mobility is expected to be position dependent. Figure 11 shows the 

dependence of on the position of the ion in the channel (distance is measured with respect to 

the channel center). One can see that when an ion leaves the channel (at about 17Å from the 

channel center) its diffusion coefficient abruptly increases by a factor of four. At this distance the 

ion is completely solvated by reservoir water and spatial correlation with the channel is very weak. 

The small size of the simulation box did not allow us to move the ion to a distance from the 

channel at which the value of the bulk is completely recovered. Based on the numerical 

results shown in Fig. 11 we have used =1.75x10

+K
chD

+K
wD

+K
wD -5 cm2/s in the bulk region and 0.25x10-5 

cm2/s in the channel with a linear interpolation function connecting bulk and channel diffusion 

constant at the ends of the GA. 

4.4 Ion current  

With the calculated diffusion coefficients and free energies for ion�channel interaction in 

hand we can now apply the PMFPNP procedure, as prescribed by Eqs. 1-7, to evaluate ion 

currents in the GA channel. The 1D potential along the (z) channel axis extracted from 

MD/continuum calculation was simply extended in the lateral (x,y) directions. Within the narrow 

channel, variation in the lateral direction is expected to be minor, and likewise in the bulk solution 

regions. Near the channel entrances, the SIP will not be strictly independent of x,y position, but 

again, we expect the error in the I-V curves resulting from the simplified SIP profile employed here 

to be negligible. The SIP profiles shown in Figures 6 and 10 were used for the K+ and Cl- ions, 

respectively. The dielectric constants were set to εm=εp=4, and εw=εw
ch=80. In Figure 12 the 

current-voltage characteristic of a GA channel in a GMO membrane is shown for two values of 

reservoir electrolyte concentrations. The inset to Figure 12 displays experimental measurements 

of single ion channel currents for this system (Busath et al., 1998). Our calculated currents 

compare rather well with the experimental curves. At 200 mV applied voltage the theory 

underestimates measured currents for the low bath electrolyte concentration (0.1M) by about a 

factor of two. Given that no fitting parameters were employed in our analysis, the agreement with 

experiment is respectable. We note that one possible source of error is underestimating the 
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diffusion constant values, and further studies regarding the validity of the procedure that uses Eq. 

8 in the restricted channel environment are required. 

In Figure 13 ion current is plotted as a function of the reservoir electrolyte concentration (IC 

characteristic) at an applied voltage of 100mV. At V=100mV the experimental current data points 

shown in Fig. 12 at concentrations up to 2M are consistently 2-3 times larger than the prediction of 

our PMFPNP calculations, thus implying a similar trend towards saturation. As noted above, we 

have chosen not to scale our results, although the diffusion coefficients calculated from MD might 

be underestimated. The saturation of IC curves is not observed in simple PNP theory, i.e. with 

 and a rigid channel (as demonstrated by the line with diamonds in Fig. 13). In order to 

understand the mechanism of saturation in PMFPNP we have plotted the free energy 

0=∆
+K

DSEG

)(ri
rψ  along 

the channel axis that results from PNP (Fig. 14a, c) and PMFPNP (Fig. 14b, d) for several bulk 

electrolyte concentrations. By comparing Figs. 14a and 14b we observe that the potential profile 

features several barriers for the positive ion in PMFPNP. The height of the barriers increases as 

the bulk electrolyte concentration increases. In standard PNP, however, such barriers are not 

observed (Fig. 14a). In PMFPNP (see Figs. 14b, d) negative ions experience a much larger barrier 

than positive ions in the channel. As indicated in Figure 15, when the bulk ion concentration 

increases, the positive ion density in the channel also increases and cannot be compensated by 

negative ions. The resulting effective positive charge in the channel creates a larger effective 

barrier for the transfer of positive ions and leads to current saturation with increased salt 

concentration. However, since PMFPNP does not account for the direct ion-ion dynamic 

correlations, it may only partially account for correlation-dependent phenomena such as currents 

at large bath electrolyte concentrations at high voltages. Clearly, the nature of direct ion-ion 

correlations in a channel environment is not completely understood and requires further study. 

5 Conclusions 

The passage of ions through narrow membrane channels is affected by a combination of 

interconnected energetic and kinetic factors including the local electric field resulting from the 

response of the membrane and the channel protein to the externally imposed potential, the 

energetics (electrostatic and short range interactions) of the ion accommodation in different parts 

of the channel, the electrostatic interaction between mobile ions in and near the channel and the 
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ions mobilities in the channel environment. Full-scale MD simulations of this phenomenon are not 

yet practical because of the vastly different time and length-scales involved. 

Alternative simplified coarse-grained models have tried to capture the essential physics of the 

process. The Poisson-Nernst-Planck (PNP) approach focuses on the electrostatic interaction 

between permeant ions and between one such ion and its rigid inhomogeneous dielectric 

environment as the main factors that control the channel operation. Calculations of ion transport 

through the Gramicidin A (GA) channel based on this approach have shown a remarkable 

agreement with experimental results(Kurnikova et al., 1999;Cardenas et al., 2000;Hollerbach et 

al., 2000). The present calculations together with several recent works show, however, that this 

apparent success is an artifact resulting from the cancellation of two errors that are big for narrow 

channels such as GA. First, the PNP approach strongly underestimates the dielectric barrier 

associated with transferring an ion from bulk water into the channel. This would lead to a strong 

overestimate of the ion current. Second, the PNP model considers the channel protein and the 

membrane as rigid dielectric environments, disregarding the channel structural response to the 

presence of the ion and thus implying a relatively small ability of the channel to accommodate the 

ion and to facilitate its transfer. This alone would lead to the opposite effect of underestimating the 

ion current. These two errors compensate each other in the final result for ion transport through 

the GA channel. 

In the present paper we have described a hybrid molecular dynamics-continuum electrostatic 

methodology that makes it possible to combine the convenience and numerical efficiency of a 

PNP-based calculation with correct accounting for dielectric barrier and channel relaxation effects. 

This methodology contains several ingredients: 

(1) The water, membrane, protein and channel environments are modeled as dielectric 

continua. Uncertainties regarding the dielectric constant of the protein are avoided by explicitly 

describing the partial charges on the protein backbone. The remaining protein then responds as a 

low dielectric constant (hydrocarbon-type) environment, as does the peptide membrane. 

(2) The standard PNP approach is corrected by adding the gradient of a suitable single-ion 

potential to the drift term in the drift-diffusion equation 1. In another work (Graf et al., 2002), in 

which this potential has been derived from the dielectric response of a rigid membrane-protein 

complex to the presence of a single ion, we have shown that this approach provides a good 

approximation for the dielectric barrier. 
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(3) This electrostatic single-ion potential is further augmented by a contribution arising from 

the channel structural response to the ion. This is done by using atomistic MD simulations to 

compute this response, while still maintaining numerical simplicity by representing the resulting 

responsive structure as a dielectric continuum for the purpose of computing the local electrostatic 

energy. 

(4) The local diffusion coefficient of the ion is obtained from a first-principle calculation 

based on MD evaluation of the force-force autocorrelation function associated with the ion 

positioned at different locations along the channel. 

(5) The modified PNP equations, including all the above ingredients, now referred to as the 

Potential of-Mean-Force-Poisson-Nernst-Planck (PMFPNP) model, are used to calculate the ionic 

current for the imposed potential and concentration biases.  

We have seen that this calculation yields results that agree well with available experiments on ion 

transport through the GA channel, without employing any arbitrary adjustable parameters. This 

suggests that the present modeling indeed accounts for all essential factors that potentially affect 

ion transport through open membrane channels. Still, one must view this success with some 

caution. The use of continuum dielectric models for the protein and water with the inevitable 

introduction of ill-defined dielectric constants and the neglect of restrictions on water mobility in the 

channel is obviously a serious approximation. Also, dynamic correlations between ions in the 

channel that possibly affect the dynamics of ion permeation, especially at higher concentrations, 

are only partially accounted for by this model. Further experimental and computational work is 

needed to fully assess the model reliability. 
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Figures 

 
 
 
Figure 1. Snapshot of the GA channel with a K+ ion embedded in a model membrane and 
solvated with water after a 300 ps MD simulation as described in text. The model lipid bilayer is 
represented by violet spheres (the radius of the violet sphere in a picture does not reflect its 
Lennard-Jones parameters). The K+ ion is shown as the blue sphere in the center of the channel. 
Only backbone atoms of the peptide chains are shown.  
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Figure 2. 2D center-cut of the 3D space-dependent dielectric constant function used for numerical 
solution of the Poisson equation. The simulation system is divided into four regions: the protein 
and the ion (εp), the bulk water (εw), the membrane (εm) and the channel water (εw

ch). 
 
 

 
Figure 3. Electrostatic free energy of the K+-GA binding  plotted as a function of the ion 
displacement from the center of the GA channel along the channel axis. The energy is calculated 
by numerical solution of the Poisson equation for a configuration of GA taken from the PDB data 
bank (Arsen�ev et al., 1986) (Eq. 5-6). The dielectric constant of the bulk water is ε

+

∆ K
SIPG

w=80, the 
membrane εm=4 and the channel water εw

ch= 80. The dielectric constant of the protein was taken 
to be εp=4 (●), 10 (■) and 30 (♦). See Fig. 2 for the assignment of regions with different dielectric 
constants. 
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Figure 4.  calculated for different protein structures which are collected during the MD 
simulation. Note how the energy fluctuates between positive and negative values, indicating ion-
permeable and impermeable structural conformations of the protein (see explanation in text). In 
both panels ε

+

∆ K
SIPG

w
ch=40, εw=80, εm=4 a) Initial relaxation. εp=2. b) A portion of the equilibrium 

trajectory. Solid line shows the calculations with εp=4 and dashed line is for εp=2. 
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Figure 5. a) Dependence of  on ε

+

∆ K
SIPG

+

∆ K
SIPG

w
ch plotted for several snapshots taken from the MD 

trajectory. n is the index labeling snapshots along the MD trajectory. The following set of dielectric 
parameters was used εp=εm=4, εw=80. The dielectric constant of the channel water was set to 
εw

ch=20 (♦), 40 (■) and 80 (●). See Fig. 2 for the assignment of regions with different dielectric 
constants. b) Dependence of  on εm plotted for several snapshots taken from the MD 
trajectory. The following set of dielectric parameters was used εp=2, εw=80, εw

ch=40. The dielectric 
constant of the membrane was set to εm=2 (♦) and 4 (●). 
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Figure 6. Average  for a flexible protein. Each point in the plot is the average of N=150 
calculations along the 300 ps MD trajectory as prescribed by Eq 7. The following set of dielectric 
parameters was used: ε

+

∆ K
SIPG

p=εm= 4, εw=εw
ch=80. 
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Figure 7. a) Average free energy of K+-flexible GA binding ∆ , i.e. with partial charges on GA 

atoms (●), and , i.e. without partial charges on the GA atoms (♦). Each point is the average 
of N=150 calculations along the 300 ps MD trajectory as prescribed by Eq. 7. b)The same as in 
(a) but for the rigid NMR geometry of GA as prescribed by Eq. 5. 
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Figure 8. Root Mean Square Deviation (RMSD) of GA backbone carbonyl oxygen atoms in the 
MD simulation. The numbers of the residues in the protein sequence are indicated on the 
abscissa. Circles correspond to the simulation with a K+ ion placed in the center of the channel 
(●). The curve with the squares is for the GA channel without K+ (■). Each RMSD curve is 
calculated along the 300 ps MD trajectory relative to the corresponding average MD structure. 
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Figure 9. Two GA protein structures are superimposed. Orange peptide is the structure calculated 
as an average over the MD trajectory of the flexible GA channel without K+. The second structure 
is for the K+-flexible GA complex with coordinates averaged over the MD trajectory. Only the 
backbone atoms of the GA peptide are shown. K+ is represented by the blue sphere in the 
channel center. Arrows indicate the carbonyl oxygens that bend toward the K+ ion due to 
favorable electrostatic interactions. 
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Figure 10. Average  for a flexible GA (●) and for a rigid one (♦). For the flexible protein each 
point in the plot is the average of N=150 calculations along the 300 ps MD trajectory as prescribed 
by Eq 7. The NMR geometry of the GA was used for the rigid channel. The following set of 
dielectric parameters was used for both calculations: ε

−

∆ Cl
SIPG

p=εm=4, εw=εw
ch=80. 
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Figure 11. Calculated diffusion coefficient for K+ ion inside of the GA channel (●), and in bulk 
SPC/E water (solid line). Only the Dz component of the diffusion coefficient of the ion in the 
channel is calculated. 
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Figure 12. Current-voltage relations predicted by PMFPNP model are compared to experimental 
results (Busath et al., 1998) (upper left inset). Bulk KCl concentrations of 0.1 (shaded square) and 
1.0 M (open circle) were used in the simulations. The experimental curves in the inset correspond 
to the following concentrations of bulk KCl solutions: shaded square-0.1M, filled circle-0.2M, open 
square-0.5M, open circle-1.0M and filled square-2.0M. The analogous experimental and 
calculated curves are labeled with the same symbols. 
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Figure 13. Current-Concentration relations as predicted by PNP (♦ ) and PMFPNP (• ) models. 
The external potential difference was set to 100mV.  
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Figure 14. )(ri

rψ  profile along the channel axes for K+ and Cl- is plotted for several bulk electrolyte 
concentrations and 100mV applied voltage: a), c) calculated using PNP; b), d) calculated using 
PMFPNP. The curve with circles is for 0M, the curve with squares is for 0.5M and the curve with 
diamonds is for 10M electrolyte concentrations. The dashed line is the result of the calculation in 
which protein molecule had no partial charges on the atoms. It corresponds to the linear ramp 
potential caused by the high resistivity of the membrane. 
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Figure 15. Ion concentration profile along the channel axis for K+ and Cl- is plotted for several bulk 
electrolyte concentrations: a), c) calculated using PNP; b), d) calculated using PMFPNP. The 
curves with diamonds and circles are for 0.5M, the curves with squares and triangles are for 10M 
electrolyte concentrations. 
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Tables 
Table 1. The value of the  barrier calculated by numerical solution of the Poisson equation 
for a rigid NMR configuration of GA (as prescribed by Eq. 5). The dielectric constant of the 
channel water is varied while dielectric constants of other parts of the system are kept fixed with 
epsilon of bulk water ε

+

∆ K
SIPG

w=80, membrane εm=4, and protein εm=10.  
 

εw
ch +

∆ K
SIPG  (kT) 

40 7.2 
80 6.4 
200 5.4 
 
Table 2. Distances between K+ and carbonyl oxygen atoms nearest to it are reported for NMR, 
GA equilibrated with only water inside (MD_GA), i.e. taken from the MD simulation of the GA 
channel in the absence of an ion, and GA equilibrated with water and K+ (MD_GA_K+) in the 
course of the MD simulation. To calculate inter-atomic distances, K+ was placed in the center of 
the channel for the NMR configuration. For the MD_GA configuration K+ was placed in the center 
of the average trajectory configuration after MD simulation. For MD_GA_K+ configuration K+ was 
placed in the center of the NMR configuration and allowed to move in the lateral direction in the 
course of MD simulation and then the average MD trajectory configuration was used for distance 
calculations. The changes in K+-carbonyl oxygen distances between NMR and MD_GA_K+ 
(∆RNMR) configurations and between MD_GA and MD_GA_K+ (∆RMD) configurations are also 
reported. In the first column the backbone carbonyl oxygen atoms to which the distance from K+ 
ion is measured are referred to by the name and number of the residue in the amino acid 
sequence of the GA protein. 

 
 Name and # of the 

residue NMR MD_GA MD_GA_K+ ∆RNMR ∆RMD 
FOR2:O 3.951 4.3 4.25 0.299 -0.05 
VAL3:O 4.026 4.014 3.298 -0.728 -0.716 
ALA5:O 3.069 3.352 2.87 -0.199 -0.482 
ALA7:O 5.142 4.65 4.775 -0.367 0.125 
FOR19:O 3.946 3.987 4.031 0.085 0.044 
VAL20:O 4.038 4.114 3.126 -0.912 -0.988 
ALA22:O 3.087 3.349 2.89 -0.197 -0.459 
ALA24:O 5.129 4.718 4.719 -0.41 0.001 
 
 

 

 31



Reference List 
 

  Allen,T.W., M.Hoyles, S.Kuyucak, and S.H.Chung. 1999. Molecular and Brownian dynamics 
study of ion selectivity and conductivity in the potassium channel. Chem. Phys. Let. 313:358-
365. 

   Andersen,O.S. and R.E.KoeppeII. 1992. Molecular determinants of channel function. Physiol. 
Rev. 72:S89-S158. 

        Antonov,S.M. 2001. Transporters of neurotransmitters: receptive, transport, and channel 
functions. J. Evol.   Biochem. Physiol. 37:328-334. 

   Aquist,J. 1990. Ion water interaction potentials derived from free-energy perturbation 
simulations. J. Phys. Chem. 94:8021-8024. 

   Arsen�ev,A.S., A.L.Lomize, I.L.Barsukov, and V.F.Bystrov. 1986. Gramicidin A 
transmembrane ion-channel. Three-dimensional structure reconstruction based on NMR 
spectroscopy and energy refinement. Biol. Membr. 3:1077-1104. 

   Barcilon,V., D.P.Chen, and R.S.Eisenberg. 1992. Ion flow through narrow membrane 
channels: Part II. SIAM J. Appl. Math. 53:1405-1425. 

   Berneche,S. and B.Roux. 2000. Molecular dynamics of the KcsA K+ channel in a bilayer 
membrane. Biophys. J. 78:2900-2917. 

   Burykin,A., C.N.Schutz, J.Villá, and A.Warshel. 2002. Simulations of ion current in realistic 
models of ion channels: the KcsA potassium channel. Proteins: Structure, Function, and 
Genetics 43:265-280. 

   Busath,D.D., C.D.Thulin, R.W.Hendershot, L.R.Phillips, P.Maughan, C.D.Cole, 
N.C.Bingham, S.Morrison, L.C.Baird, R.J.Hendershot, M.Cotten, and T.A.Cross. 1998. 
Noncontact dipole effects on channel permeation. I. Experiments with (5F-Indole)Trp(13) 
gramicidin A channels. Biophys. J. 75:2830-2844. 

   Cardenas,A.E., R.D.Coalson, and M.G.Kurnikova. 2000. Three-dimensional Poisson-Nernst-
Planck theory studies: Influence of membrane electrostatics on gramicidin A channel 
conductance. Biophys. J. 79:80-93. 

   Chen,D.P. and R.S.Eisenberg. 1993a. Charges, currents, and potentials in ionic channels of 
one conformation. Biophys. J. 64:1405-1421. 

   Chen,D.P. and R.S.Eisenberg. 1993b. Flux, coupling, and selectivity in ionic channels of one 
conformation. Biophys. J. 65:727-746. 

   Chung,S.H., T.W.Allen, M.Hoyles, and S.Kuyucak. 1999. Permeation of ions across the 
potassium channel: Brownian dynamics studies. Biophys. J. 77:2517-2533. 

 32



   Cornell,W.D., P.Cieplak, C.I.Bayly, I.R.Gould, K.M.Merz, D.M.Ferguson, D.C.Spellmeyer, 
T.Fox, J.W.Caldwell, and P.A.Kollman. 1996. A second generation force field for the 
simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 118:2309. 

   Corry,B., T.W.Allen, S.Kuyucak, and S.H.Chung. 2001. Mechanisms of permeation and 
selectivity in calcium channels. Biophys. J. 80:195-214. 

   Corry,B., S.Kuyucak, and S.H.Chung. 2000. Tests of continuum theories as models of ion 
channels. II. Poisson-Nernst-Planck theory versus Brownian dynamics. Biophys. J. 78:2364-
2381. 

   Crozier,P.S., R.L.Rowley, N.B.Holladay, D.Henderson, and D.D.Busath. 2001. Molecular 
dynamics simulation of continuous current flow through a model biological membrane 
channel. Phys. Rev. Lett. 86:2467-2470. 

   Dasent,W.E. 1982. Inorganic energetics. Cambridge University Press, NY 

   Dieckmann,G.R., J.D.Lear, Q.F.Zhong, M.L.Klein, W.F.DeGrado, and K.A.Sharp. 1999. 
Exploration of the structural features defining the conduction properties of a synthetic ion 
channel. Biophys. J. 76:618-630. 

   Doyle,D.A., J.M.Cabral, R.A.Pfuetzner, u., A., J.M.Gulbis, S.L.Cohen, B.T.Chait, and 
R.MacKinnon. 1998. The structure of the potassium channel: Molecular basis of K+ 
conduction and selectivity. Science 280:69-77. 

   Eisenberg,R.S. 1999. From structure to function in open ionic channels. J. Membrane Biol. 
171:1-24. 

   Elber,R., D.Rojewska, D.P.Chen, and R.S.Eisenberg. 1995. Sodium in Gramicidin - an 
example of a permion. Biophys. J. 68:906-924. 

   Gilson,M.K. and Honig B.H. 1986. The dielectric constant of a folded protein. Biopolymers 
25:2097-2119. 

   Graf,P., M.G.Kurnikova, R.D.Coalson, and A.Nitzan. 2002. Comparison of dynamic Monte-
Carlo simulations and dielectric self-energy Poisson Nernst-Plank continuum theory for 
model ion-channels. manuscript in preparation. 

   Graf,P., A.Nitzan, M.G.Kurnikova, and R.D.Coalson. 2000. A dynamic lattice Monte Carlo 
model of ion transport in inhomogeneous dielectric environments: Method and 
implementation. J. Phys. Chem. B 104:12324-12338. 

   Hille,B. 1992. Ionic channels of excitable membranes. Sinauer Associates Inc., 

   Hille,B., C.M.Armstrong, and R.MacKinnon. 1999. Ion channels: From idea to reality. Nature 
Med. 5:1105-1109. 

 33



   Hinsen,K. and B.Roux. 1997. Potential of mean force and reaction rates for proton transfer in 
acetylacetone. J. Chem. Phys. 106:3567-3577. 

   Hollerbach,U., D.P.Chen, D.D.Busath, and B.Eisenberg. 2000. Predicting function from 
structure using the Poisson-Nernst- Planck equations: Sodium current in the gramicidin A 
channel. Langmuir 16:5509-5514. 

   Im,W., S.Seefeld, and B.Roux. 2000. A grand canonical Monte Carlo-Brownian dynamics 
algorithm for simulating ion channels. Biophys. J. 79:788-801. 

   King,G., F.S.Lee, and A.Warshel. 1991. Microscopic simulations of macroscopic dielectric-
constants of solvated proteins. J. Chem. Phys. 95:4366-4377. 

   Kollman,P.A., I.Massova, C.Reyes, B.Kuhn, S.H.Huo, L.Chong, M.Lee, T.Lee, Y.Duan, 
W.Wang, O.Donini, P.Cieplak, J.Srinivasan, D.A.Case, and T.E.Cheatham. 2000. Calculating 
structures and free energies of complex molecules: Combining molecular mechanics and 
continuum models. Acc. Chem. Res. 33:889-897. 

   Koprowski,P. and A.Kubalski. 2001. Bacterial ion channels and their eukaryotic homologues. 
Bioessays 23:1148-1158. 

   Kurnikova,M.G., R.D.Coalson, P.Graf, and A.Nitzan. 1999. A lattice relaxation algorithm for 
three-dimensional Poisson- Nernst-Planck theory with application to ion transport through the 
gramicidin A channel. Biophys. J. 76:642-656. 

   Kuyucak,S., O.S.Andersen, and S.H.Chung. 2001. Models of permeation in ion channels. 
Rep. Progr. Phys. 64:1427-1472. 

   Lide, D.R. 1994. CRC handbook of chemistry and physics. CRC Press. 

   Lerche,H., K.Jurkat-Rott, and F.Lehmann-Horn. 2001. Ion channels and epilepsy. Amer. J. 
Med. Genet. 106:146-159. 

   Luty,B.A., M.E.Davis, and J.A.McCammon. 2002. Solving the finite-difference non-linear 
Poisson-Boltzmann equation. J. Comp. Chem. 13:1114-1118. 

   Lynden-Bell,R.M. and J.C.Rasaiah. 1996. Mobility and solvation of ions in channels. J. 
Chem. Phys. 105:9266-9280. 

   Mackay,D.H.J., P.H.Berens, K.R.Wilson, and A.T.Hagler. 1984. Structure and dynamics of 
ion-transport through Gramicidin A. Biophys. J. 46:229-248. 

   Marban,E. 2002. Cardiac channelopathies. Nature 415:213-218. 

   Mashl,R.J., Y.Z.Tang, and J.Schnitzer. 2001. Hierarchical approach to predicting permeation 
in ion channels. Biophys. J. 81:2473-2483. 

   McQuarrie,D.A. 1976. Statistical Mechanics. Harper Collins Publishers, New York 

 34



   Nilius,B. and G.Droogmans. 2001. Ion channels and their functional role in vascular 
endothelium. Physiol. Rev.  81:1415-1459. 

   Nina,M., S.Berneche, and B.Roux. 2000. Anchoring of a monotopic membrane protein: The 
binding of prostaglandin H-2 synthase-1 to the surface of a phospholipid bilayer. Eur. 
Biophys. J. Biophys. Lett. 29:439-454. 

   Nina,M., W.Im, and B.Roux. 1999. Optimized atomic radii for protein continuum electrostatics 
solvation forces. Biophys. Chem. 78:89-96. 

   Nosjean,O., A.Briolay, and B.Roux. 1997. Mammalian GPI proteins: Sorting, membrane 
residence and functions. BBA-Rev. Biomembranes 1331:153-186. 

   Partenskii,M.B. and P.C.Jordan. 1992. Theoretical perspectives of ion-channel electrostatics, 
continuum and microscopic approach. Quat. Rev. Biophysics 91:477. 

   Roux,B., S.Berneche, and W.Im. 2000. Ion channels, permeation, and electrostatics: Insight 
into the function of KcsA. Biochemistry 39:13295-13306. 

   Roux,B. and M.Karplus. 1993. Ion-transport in the gramicidin channel - free-energy of the 
solvated right-handed dimer in a model membrane. J. Amer. Chem. Soc. 115:3250-3262. 

   Roux,B. and R.MacKinnon. 1999. The cavity and pore helices the KcsA K+ channel: 
Electrostatic stabilization of monovalent cations. Science 285:100-102. 

   Schuss,Z., B.Nadler, and R.S.Eisenberg. 2001. Derivation of Poisson and Nernst-Planck 
equations in a bath and channel from a molecular model - art. no. 036116. Phys. Rev. E 
6403:6116-6123. 

   Schutz,C.N. and A.Warshel. 2001. What axe the dielectric �constants� of proteins and how to 
validate electrostatic models? Proteins-Struct. Funct. Genet. 44:400-417. 

   Sharp.K.A. and Honig B.H. 1990. Electrostatic interactions in macromolecules - theory and 
applications. Ann. Rev. Biophys. and Biophys. Chem. 19:301-332. 

   Shobana,S., B.Roux, and O.S.Andersen. 2000. Free energy simulations: Thermodynamic 
reversibility and variability. J. Phys. Chem. B 104:5179-5190. 

   Simonson,T. and C.L.Brooks. 1996. Charge screening and the dielectric constant of proteins: 
Insights from molecular dynamics. J. Am. Chem. Soc. 118:8452-8458. 

   Smith,G.R. and M.S.P.Sansom. 1999. Effective diffusion coefficients of K+ and Cl- ions in ion 
channel models. Biophys. Chem. 79:129-151. 

   Tang,Y.Z., W.Z.Chen, and C.X.Wang. 2000. Molecular dynamics simulations of the 
gramicidin A- dimyristoylphosphatidylcholine system with an ion in the channel pore region. 
Eur. Biophys. J. Biophys. Lett. 29:523-534. 

 35



   Tieleman,D.P., P.C.Biggin, G.R.Smith, and M.S.P.Sansom. 2001. Simulation approaches to 
ion channel structure-function relationships. Quat. Rev. Biophys. 34:473-561. 

   Warshel,A. and S.T.Russell. 1984. Calculations of electrostatic interactions in biological- 
systems and in solutions. Quat. Rev. Biophys. 17:283-422. 

  Woolf,T.B. and B.Roux. 1997. The binding site of sodium in the gramicidin A channel: 
Comparison of molecular dynamics with solid-state NMR data. Biophys. J. 72:1930-1945. 

 

 36


	The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single channel currents.
	
	
	
	
	
	Abstract





	1 Introduction
	2 Theory and simulation methods
	2.1 Potential of Mean Force Poisson-Nernst-Plank (PMFPNP) approach to calculate ion currents through the channel.
	2.2 A Continuum approach to calculate the electrostatic free energy
	2.3 A Combined Molecular Dynamics/Continuum Electrostatics approach to calculate free energy.

	3 The simulation procedure
	3.2 MD/continuum simulation of an ion in the GA channel
	3.3 MD calculation of the diffusion coefficients

	4 Results and discussion
	4.1 Continuum dielectric theory: the role of the dielectric response
	4.2 Free energy of Ion-Channel association from combined MD simulations and continuum electrostatics method: The role of channel relaxation
	4.3 Calculation of diffusion constants
	4.4 Ion current

	5 Conclusions
	
	
	
	Acknowledgements





	Figures
	Tables
	
	
	Reference List





