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Chemically nonreactive and reactive systems (closed and homogeneous) are shown to become unstable
to inhomogeneous perturbations beyond given critical intensities of uniform illumination, so that
macroscopic inhomogeneities (spatial patterns) arise. We classify symmetry-breaking instabilities into
two types: extrinsic length scaling, in which the characteristic length of the developing spatial pattern
is determined by the dimensions of the system; and intrinsic length scaling, in which that
characteristic length is determined by the dynamics of the system (reaction rates and transport
relations). We analyze a variety of nonlinear systems by means of a linear stability analysis. In an
illuminated, isothermal, isobaric, two-species system, only extrinsic length scaling is possible; more
degrees of freedom, either with increasing number of species or other state variables, are required for
intrinsic scaling in the closed system. Next we consider a two-component nonreactive illuminated
gaseous system in which diffusion, thermal conduction, and thermal diffusion may occur. We show
that if only one component in a thermal diffusion experiment tends towards the hotter region, then
extrinsic symmetry-breaking instability is possible. If, in addition, the two species are coupled by
reaction (interconversion), then the spatial patterns at the onset of instability are of the intrinsic type.
We then include pressure fluctuations in an analysis of a one-component system under steady
illumination at a wavelength that is absorbed by the molecules and then converted into heat. We
show that such a system may generate and amplify sound waves; that is, the system becomes
unstable to spatially periodic pressure (acoustic) variation. This process may be used for the

measurement of vibration-translation relaxation rates.

I. INTRODUCTION

We study the instability of uniformly illuminated,
closed, homogeneous, nonreactive and reactive systems
to the spontaneous onset of macroscopic inhomogene-
ities, that is to spatial patterning. Instabilities in
chemically reacting systems open to mass flux have been
analyzed for a variety of problems and from a number
of points of view.!™® The systems considered here are
open only to fluxes of light and heat and are thus closed
but nonisolated.

Instability phenomena in illuminated systems have
been shown to exist under various conditions. The most
familiar examples are maser and laser systems where
a positive feedback mechanism is provided by the “auto-
catalytic” nature of stimulated emission.” Other feed-
back mechanisms in optical systems of this type may be
provided by a nonlinear medium; laser oscillations have
been interpreted as limit cycles arising from the non-
linear interaction of such a medium with the photon
field.® Inthese systems, the essential feedback mech-
anism and the accompanying nonlinearity are explicitly
involved in the interaction of light with matter. In ad-
dition, instabilities may occur in systems interacting
linearly with light if essential nonlinearities arise from
nonoptical processes. This is the case in certain photo-
conductors, where light is used to produce a nonequilib-
rium concentration of carriers while feedback and ac-
companying nonlinearity arise from the electric field
dependence of the rate of capture of these carriers. 9
For closed chemical systems, the absorption of light
by one component of a chemically reacting system may
lead to various instability phenomena.?® Here again, the
interaction of light with the system is linear;_the feed-
back arises from nonlinear rate processes due to, e.g.,
temperature dependent rate coefficients.
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In this work, we study a variety of closed systems
that are driven far from equilibrium by composition de-
pendent absorption of homogeneous illumination and that
may, as a result, exhibit various instabilities. We
demonstrate the onset of instability for the various sys-
tems by considering the linearized dynamics describing
the evolution of small perturbations from a homogeneous
steady state. Some general remarks are made in Sec.
II on the classification of symmetry-breaking instabili-
ties into two types, according to whether the length as-
sociated with the onset of spatial patterning is fixed by
the dimensions of the container, extrinsic length scaling,
or is imbedded in the transport and reaction kinetics it-
self, intrinsic length scaling. 1In Sec. III, we show that
in a closed isothermal, isobaric illuminated two-species
reacting —diffusing system, symmetry breaking can oc-
cur only with extrinsic length scaling. Intrinsic sym-
metry breaking requires three or more species in such
systems. In Sec. IV, we consider a two-component,
nonisothermal illuminated system. The radiation wave-
length is chosen so that light is absorbed by one of the
components and is converted into heat by a fast radia-
tionless relaxation process. Spatial structure of the ex-
trinsic type may be spontaneously generated in this sys-
tem provided that the absorber tends, by thermal dif-
fusion, towards hotter regions. When the two compo-
nents may be converted into each other by a chemical
reaction, an intrinsically scaled spatial structure may
result. In Sec.V, we consider a single-component
gaseous system that absorbs light by optical (electronic
or vibrational) excitation and converts it into heat by
radiationless relaxation. We show that under stated
conditions such a system may become unstable to spati-
ally periodic pressure variations in the form of sound
waves. Sound may be thus amplified or spontaneously
generated in this system. We conclude with some re-
marks and note some possible applications.
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11. EXTRINSIC AND INTRINSIC LENGTH SCALING

A gualitative distinction may be made between two
types of symmetry breaking based on the pattern length
of perturbations to which the system becomes unstable.
As the system subject to instability is driven out of equi-
librium, symmetry breaking first occurs on a given
length scale. If that length is fixed by the dimensions of
a given system of arbitrary length, then the symmetry
breaking is classified as extrinsic length scaling. In
contrast, however, there are systems for which the pat-
tern length, at which symmetry breaking sets in, is es-
sentially independent of the dimensions above a minimal
length. In such cases, the infrinsic length scaling is
embedded in the transport and reaction dynamics. From
an operational point of view, the size of the system cho-
sen to test the character of the length scaling must be
greater than the intrinsic length. As the intrinsic length
approaches infinity, the distinction between the twotypes
of length scaling vanishes.

The onset of instability to small perturbations is found
by a linear stability analysis. Consider the evolution of
small deviations &% of the local descriptive variables
(concentrations, temperature, pressure, etc.) from
their steady state values. For a system under homoge-
neous constraints, perturbations 5¥(%, f) of wave vector
k obey the equation

a8y

Tng M(k)@l,b 1)

Y, = (H.l)

where M(%) is the matrix of the linearized dynamics. If
one of the eigenvalues z(2) of M(k) has a positive real
part for some values of %, then the corresponding per-
turbations at these wave vectors will grow.!! In Fig. 1,
we show a typical % dependence of a branch z(k) of the
eigenvalue spectrum for various values of an external
constraint, such as light intensity I, which drives and
maintains the system out of equilibrium. Because of the
dissipative transport processes such as diffusion, ther-
mal conduction, and viscosity, z(k) must approach —
as k-, In Fig. 1(a), we see a schematic plot of z(k)
for various values of I. For the root shown, the real
part is zero at =0. As I is increased above a critical
value I,, there is a finite interval

0<k<kyl), (I1. 2)

for which Rez(k)>0. For this class of systems, &, in-
creases from zero at I,

kn(L)=0, (I1. 3)

as I is increased, and it may reach the minimum value
n/1 available to the system contained in a tube of length
I. At this value of the constraint (light intensity), I=1,,

i
knlle) =7 (IL. 4)

the system of length [ just becomes unstable. The ini~

tial pattern length is thus that of the container. Sym-

metry breaking takes place at I,>I,. We classify such
behavior as extrinsic length scaling.

The case when Rez(k=0)<0 and z(k) rises to become
positive for a given interval about some finite wave vec-

tor k, is shown in Fig. 1(b). As the constraint /is in-
creased to a critical value I,, perturbations of pattern
length 27/k, become unstable. The symmetry breaking
occurs at an intrinsic pattern length determined by the
kinetics and transport of the system. Note that although
the linear analysis may yield one length scaling, the
nonlinearities may invoke a different length scaling in
the final structure.

In the sections to follow, we consider a variety of
symmetry-breaking phenomena in closed systems main-

I>I

Re [2(Kk)]

Re [z(k)]

FIG. 1, Typical behavior of the real part of the stability eigen-
values Rez as a function of the wavevectork. Case Ais thatof
extrinsic length scaling, where increasing the light intensity
beyond a critical value I, produces an interval 0 <k <k, where
unstable modes lie. Case B is that of intrinsic length scaling
for which increasing light intensity I beyond a critical value
produces an interval 0<k,; <k <k, where unstable modes lie,
(See Sec. II for details.)
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tained out of equilibrium by the effects of homogeneous
irradiation. The analyses are made with linear stability
theory, and we find examples of extrinsic and intrinsic
length scaling.

Hi. ILLUMINATED REACTING-DIFFUSING SYSTEMS

Consider a reacting-diffusing system under isother-
mal and isobaric conditions and subject to homogeneous
illumination. The system is closed and consists of two
diffusing solute species A and B in an inert solvent. We
show that such a system may undergo symmetry break-
ing only with extrinsic length scaling. The system is
driven out of equilibrium by a photochemical process
which changes the composition from the equilibrium,
zero radiation, state. The nonequilibrium state is
maintained by heat flow to the surroundings. The total
reaction mechanism including the photochemical pro-
cess(es) is described schematically by

ALl _B,

(I11. 1)

where [I] indicates that photons play a role in at least
one step in the reaction mechanism. Taking a matrix
D of diffusion coefficients and a rate W(A, B, I) for the
over-all rate of the process (I1.1), we obtain

%[‘Q]:v- DV [g} W(A, B, 1) [_i] ,

where A and B are concentrations in weight per unit
volume.

(1. 2)

Since the system of volume V is closed to mass flux,
we have conservation of total mass, which we express
in terms of average concentrations

1 —
—‘;Idsr(A+B):C, (1. 3)
where C is the average total concentration of A and B,

Homogeneous steady states (4,, B,) are determined by
the condition

W(A,, T~ Ay, D=0 . (IIL. 4)

For a given real positive solution A,(Z), we may consider
the stability to small perturbations with dependence on
space of the form e¢*". The linearized equations for the
perturbations (64, 6B)=(A, B) - (4,, B,) take the general
form (I1.1), where the matrix M(k) is given by

M(k)=—k2D+{WA Wa ] .
"WA "WB

Here, we define W, = (8 W/8A), and Wy = (8W/9B),. The
stability of the homogeneous steady state is found by de-
termining the sign of the real part of the two eigenval-
ues z,(k) of M(%);

(Im. 5)

2, (k)= 3 TrM (k) + 2{[TrM(£)]? - 4detm(R)}¥/2 . (II1.6)
Thus, instability is indicated if

TrM(k)>0 (111, 7)
or

detM(k) <0 . (1m. 8)

We assume that the diffusion process is itself stable;
TrD>0,
detD>0,

(I11. 9)
(IT1. 10)

and that the homogeneous steady state is stable to homo-
geneous perturbations

W, - Wy<0 . (1. 11)
From (III. 6), we have
WA = WB
Z*k’-‘s F2detD y , (111, 12)
Wy ~ W,

where k,, will be defined in (III. 14). Also, if D, are the
eigenvalues of D, then

2.0 - D, . (111. 13)
With this we see that Rez, must be negative for all %.
The root z. vanishes as %% because homogeneous (£=0)
perturbations obey the mass conservation law (III. 3)
that states that the homogeneous perturbations of A and
B are not independent in a closed system. Since TrM(k)
<0, instability must arise from the condition detM(%)> 0.
The marginal condition det M{(%) =0 is attained for the
wave vector k, if a real value of %, is given by

(detD)kZ = W, (Dgp +Dypg) = Wp(Dyy +Dp,) . (11 14)

Since detM(%) is quadratic in %%, it can only vanish at
most twice in kz, and we see that we may have z.(k)>0
in an interval 0< k< k,, when (III. 14) yields a real value
of ,(I). Hence, z.(k) takes the form shown in Fig. 1(a).

The presence of light is essential for the instability to
occur. In the absence of light, the system is in thermo-
dynamic equilibrium, and by LeChatelier’s principle thus
stable to all possible variations. Hence, at equilibrium,
we must have 3W(4, B, 0)/84 <0, as addition of A must
increase its rate of disappearance. Similarly,

a[- W(4, B, 0)]/8B<0 at equilibrium as - W(4, B, 0) is
the rate of formation of B. Therefore, the rhs of (I11.14)
is negative at equilibrium, and no real %, exists.

We point out that simple two species model schemes
may easily be constructed to demonstrate the general

extrinsic symmetry-breaking phenomenon. For exam-
ple,

P+A-B

2A+B-3A

B=A (I11. 15)

may be shown to have multiple steady homogeneous
states, one of which demonstrates extrinsically scaled
symmetry breaking.

The analysis presented in this section proves that in
a closed, two-species, illuminated, isothermal, iso-
baric system, only extrinsically determined symmetry
breaking can occur. Thus, we are forced to go to three
or more species systems in order to find intrinsically
scaled symmetry breaking in such systems. Alterna-
tively, intrinsically scaled symmetry breaking can oc-
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cur in a two species nonisothermal system, as is dem-
onstrated in the next section.

IV. INHOMOGENEOUS INSTABILITIES IN AN
ILLUMINATED THERMODIFFUSIVE SYSTEM

Consider a two-component, nonreactive, gaseous sys-
tem subjected to homogeneous illumination by a light
that is absorbed by only one of these components. If the
system is characterized by a sufficiently large thermo-
diffusion coefficient and if, in a thermodiffusion process,
the light absorber tends to diffuse towards the higher
temperature region, an instability of the homogeneous
system to inhomogeneous perturbations and a spontane-
ous transition to an inhomogeneous distribution is ex-
pected.

Let A denote the mass density of the absorbing spe-
cies. Assuming that the ideal gas equation of state is
applicable, we write the hydrodynamic equations of state
in the form'?

dp

@_ _ v, .
praiat AAAA v.1)
dA

A AV -V, .2
2o A=V ia s Iv.2)
d—vz—lV-P+viscosity terms , av.3)
dt o

dT 8 P 1 1
L. L gy-—V. ——clT

dt pCy pC, v pCy a+ad Cy (T, T.)

1 RT (1 1
-;)—C~(VHA —VHg) i, ——-—(——————)V-jA R
v v

where M; is the molecular weight of component ¢

(i=A, B), P the local pressure that is related to the den-
sity p and the temperature 7 through the equation of state
P=RT[A/M, +{p - A)/ My]; v denotes the local center of
mass velocity, A the local density of the absorber, and
j, the diffusion flow related to it; q is the heat flow, C,

is the constant volume specific heat of the system, and
a is a parameter, proportional to the illumination inten-

sity that relates the heating rate due to light absorption
to the density A of the absorber (note that we assume a
linear relation between the concentration A and the heat-
ing rate). Finally, 6, denotes the usual dissipative term
[for definition see Ref. 12, Eq. (@I.38)], which is of
second order in the center of mass velocity; H; is the
specific enthalpy (per unit mass) of the component i, and
G(T, T,) corresponds to the local rate at which the sys-
tem looses energy to the surrounding medium, which is
maintained at a constant temperature 7,. The deriva-
tives in Eqs. (IV.1)~(IV. 4) are substantive derivatives

d d

LoZivev.

i ot @v.s)

In obtaining Eq. (IV. 4) it is assumed that on the time
scale of the experiment, heating by light absorption is
instantaneous and that excited A molecules are not in-
volved. In other words, it is assumed that the relaxa-
tion process A*-—~ A +heat (where A* denotes an excited
A molecule) occurs on a time scale much shorter than
all the time scales involved in Eqs. (IV.1)-(IV.4). To
simplify the theoretical treatment, the system is further

3137

assumed to be bounded by an evacuated double walled
long tube (Fig. 2), so that the heat loss term G(7, T,) is
radiative in nature. Furthermore, we neglect boundary
layer effects so that transverse gradients (perpendicular
to the tube axis) are taken to be zero.

For the mass and heat flows involved in Eqs. (IV.2)
and (IV.4), we assume the phenomenological relations!®
(see Appendix A)

—§,=LyVInT+ LZZ%va, (1V. 6a)

~q=L,VInT+ LIZ%V InA . (IV. 8b)
These flows are subject to the boundary conditions
n+q=n-+j, =0 at the walls of the tube, where n is a nor-
mal to these boundary surfaces.

A homogeneous steady state with a temperature 7T, is

a solution to Eqs. (IV. 4, 6) provided that
ady= 2 G(T,, T,) . av.m)
Cy

That is, the heating by radiation absorption exactly
balances the radiative cooling of the system. The
thermodiffusion processes of interest here occur on a
time scale long relative to that required to attain hydro-
static equilibrium. Thus, since there are no external
fields (i.e., gravity), the processes take place at con-
stant pressure VP=0, and we may put v=0 and P a con-
stant. To study the stability of this steady solution, it
is sufficient to look at deviations from steady state that
do not involve variations in the local center of mass
velocity from its zero steady state value. (For a justi-
fication, see Appendix B,) In this case, it is sufficient
to consider the reduced set of equations

pA .

“3_t—=—v.JAs (IV-B)
oT__ 1 1 RT(1 1
e V.q+aA -G T,T)-——(——-—)V-

5t pG, AraAy O T = e, Ty (k, ')

where in Eq. (IV.9) we neglected terms which are of
higher (> 2) order in deviations from homogeneity (and
therefore do not contribute to the linearized equations).

LIMPOSED RADIATION

[EMITTED RADIATION |

FIG. 2.
irradiation which may be used to demonstrate symmetry-
breaking instabilities in a variety of closed gaseous systems.

Experimental configuration for tube under ambient
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Linearization around the homogeneous steady state re-
sults in

%ézpvzm +L,VA T, (Iv.10)
%LszaﬂszzaAmaA-ga:r, av. 11)
where
:El;g% (IV.12a)
p-Pla, K:‘%rf%(hl:_i)%, (IV.12b)

(Iv.12¢c)
All the quantities appearing in Egs. (IV.10, 12) are un-
derstood to be the steady state values. Taking spatial
Fourier transforms of Egs. (IV. 10, 11), we obtain, after
some rearrangement,

9 (64 5A
2 [5 T] - m [5 T] , (Iv. 13)
with
- kD - KL
M= [ ! } . Iv.14)
a~-FL, -(t+EK)

Since TrM <0, a necessary and sufficient condition for
instability is

detM <0, Iv.15)

from which we deduce
2_,z2__ali+DE
B e .16
0<kE<kl XD —L.1, (tv.16)
From Eq. (IV.12), we have

P

KD - L,L,= (Wl (LyyLog = LayLys) 5 (Iv.17)

where the subscript ¢ indicates steady state values. The
quantity on the rhs of Eq. (IV.17) is positive as the ma-
trix of the phenomenological coefficients is positive defi-
nite. Thus, the condition (IV.16) leads to the necessary
conditions

Ly<0and a| L,|> D¢ . (Iv.18)

The condition L, <0 simply states that in the thermodif~
fusion process the absorber A must tend to the hotter
region. The condition ¢l L,!>D{ is a necessary and
sufficient condition for instability to occur for values of
the wave vector % which are bounded by the condition
(Iv.16).

To study the stability properties of our system in
more detail, we solve the characteristic equation
det(M = zI) =0 by expanding z in powers of k%, We ob-
tain two roots which to the lowest nonvanishing order in
¥® are

21:_‘5:

@Iv. 19)
2,=~(DE+ L)k

z, is larger than 0 when condition (IV. 18) is fulfilled.
Thus, any mode of branch 2 with % satisfying Eq. (IV.16)
is unstable under the condition (IV.18). The dispersion
curve z,(k) is of the type displayed in Fig. 1(a), where

L is evaluated from the condition

alDL,+DE=0. (Iv. 20)

If the tube is of length I, the system first becomes un-
stable when &, =7, Under these conditions the system,
at least in the early stages of the development of in-
homogeneity, breaks up into two regions, one rich in A
and hotter and the other rich in B and cooler. This
symmetry-breaking instability is obviously of the ex-
trinsic type; its characteristic length and the thresh-
old for its occurrence are dependent on the dimension
of the system, i.e., it is a scale-variant instability.

Up to this point, the possibility of A to B conversion
has been disregarded. We now show that when a reac-
tion such as A==B or A==2B is added to the kinetic
scheme, the system possesses an intrinsic character-
istic length. To this end, we add to the kinetic equa-

tions (IV.8-11) the chemical process
WI(A: B)
A=——= (Iv.21)
WZ(A; B)

and neglect additional couplings such as the temperature
dependence of the rates W, and W,. The linearized
kinetic equations take the form (IV.13), where now

~-EFD+Ww  -FL
M= y (IV- 22)
a-FL, -{(£+FK)
in which
We [d[Wz(A, p=A) =Wy(4 p- A)]] ' 1v.23)

The instability conditions (IV.20) are now replaced by
B2 ki< kR (1v.24)

where

K=

- [Dt+aL, - WK|+ [(DE + aL, — WK)?+ 4WE(DK = L L,)]*/2
2DK - L,L,

(Iv.25)

are those values of % which satisfy the equation detM=0.
The dependence of the eigenvalue on the wave vector %
for this system is displayed schematically in Fig. 1(b).
This system is clearly characterized by an intrinsic
length scale; the onset of symmetry-breaking instability
corresponds to that critical intensity I, for which Bi=E,
or, with a,=al(l),

(Dt +a,Ly -~ WK)?+4WE(DK = L{Ly) =0, (Iv.26)

while the characteristic wave vector %, is given by

2 DE+o. L - WK
Bf= T el TS

SR Y L. (Iv. 27)
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V. OPTICAL-ACOUSTIC INSTABILITY
A. General

The transformation of optical energy into kinetic
(thermal) energy by light absorption followed by a radia-
tionless relaxation process has been studied mainly in
relation to the measurement of vibrational relaxation
rates. A well known relaxation technique of this type is
the spectrophone method, * where a system is subjected
to an amplitude modulated illumination and the resulting
pressure variations are recorded by a sensitive micro-
phone. Information on vibrational relaxation rates is
then extracted from the relation of the amplitude and
phase of the resulting pressure variations to those of
the applied light. Another technique is provided by the
impulsive optic—acoustic effect, where a single short
pulse of a high intensity laser source is applied to gen-
erate a localized optically excited region within the sys-
tem.'® The consecutive radiationless relaxation pro-
cesses then result in the generation of a local pressure
and temperature peak (highly localized kinetic energy),
which in turn give rise to the formation of sound waves.
Alternatively, a modulation of the fluorescence due to
the density fluctuations may be observed in both the
spectrophone and the impulsive methods. %15

In this section, we describe a different optical-acous-
tic effect; in a gaseous system, subjected to a strong
homogeneous constant illumination, instability that gives
rise to the spontaneous excitation of sound waves may
occur. Qualitatively, this phenomenon may be described
as follows; consider a one-component gas (A) homoge-
neously distributed in a container and subjected to a
homogeneous, steady illumination by light with frequency
in resonance with a convenient optical transition of the
molecule A. Under steady state conditions, some of the
molecules A will be in their ground state, while the re-
maining molecules (usually a small fraction) will be in
the excited state A*. (For the sake of convenience of
description, we consider a two-level case.) The radia-
tionless relaxation A*— A is collisionally induced. This
system contains a positive feedback loop. In a high den-
sity and temperature region resulting from a fluctuation
or acoustic wave, the process A* -~ A is faster; namely,
the rate of conversion of optical energy to translational
kinetic energy is larger, and this leads to a further in-
crease of the temperature in that region. This results
in higher density variations in the next cycle of a spati-
ally distributed acoustic disturbance and thus yields
amplification.

For a quantitative description of this process we con-
sider the following model.

(a) The single-component gas A is contained in a
long, narrow, double-walled tube. The interspace be-
tween the two walls is evacuated so that energy exchange
between the system and its surroundings occurs by
blackbody radiation only. The wall of the inner tube is
a perfect acoustic reflector, so that no energy is lost
to the external world by work performed on the walls,
The system is illuminated homogeneously (Fig. 2). This
experimental situation is chosen for the sake of simpli-
fying the theoretical treatment.

(b) The relevant reactions within the system are con-

sidered to be
kI

A—A*
ko

kol
A2

(v.1)

(v.2)

pk.
A¥*z—> A +heat ,
pk.g

(v.3)

where I denotes the light intensity.

The first two equations describe optical processes—
absorption and (spontaneous and induced) emission.
The third equation describes thermal (collisional) relax-
ation and excitation, The rates of these thermal pro-
cesses are assumed to be proportional to the density p
and we explicitly indicate this dependence. We intro-
duce rate coefficients k, containing a factor I for the
light intensity:

Ei=kd;  ka=hol. (v.4)

(c) We assume that none of the Reactions (V.1, 2, 3)
is accompanied by a volume change, and that only the
heat of Reaction (V. 3) is nonzero. We also assume that
the system is an ideal gas.

(d) Transport coefficients are taken to be independent
of the local thermodynamic state variables.

(e) Diffusion is neglected as a process of minor im-
portance on the time scale of a few sound oscillations.
Let A and A* stand for the mass density of the species
A and A*, respectively. Then we have a local conserva-
tion relation

A+A*=p. (v.5)

(f) The system is at rest at steady state (the steady
state center-of-mass velocity is zero).

With these conditions the system is fully character-
ized by the variables p (local density), v (local center
of mass velocity), X, (local mass fraction of the com-
ponent A, X, =A/p), and the local temperature 7. The
time evolution is governed by the equations of irrevers-
ible thermodynamics!?

3p

g_t_z—V-(pv), (V'S)
av_ 1 1 1
ﬁ_-;v;;--(v-V)v+;{nvzv+[3n+ct>]V(V-v)} (v.m)
)
YA = VA 4 LVLF, (V.8)
at "
T P 1
or- "V VT-pCVV-v—CvG(T, T.)
A oo 1 1
-—Vv —— A —_
+pCV T Cvzr) H’F'+pC,,9" (v.9)

where the notation is the same as in Sec. IV with sever-
al additions; 7 and ¢ are the shear and bulk viscosities.
For the rth reaction v} is the stoichiometric coefficient
of component A, F,(p, x,, T) is the local rate of reac-
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tion (see Fitts!® and below), and AH, is the enthalpy
change per one gram of reaction; finally, A is the ther-
mal conductivity.

For simplicity, we only consider variations in the Z
direction—along the tube. Thus, the viscosity terms
in Eq. (V.7) may be replaced by one term of the form
(/p)(8%*v/8Z), where fj=4n+¢. For the reactions in-
volved we have
r=1,2
AHy=~E, (V.10)

where E >0 is the excitation energy per gram of the
A -~ A¥ transition.

For the chemical rates and the stochiometric coeffi-
cients, we have

vi==1;  Fy(x)=(ki+k)xs ko ; (v.11)
vi=1; Folx) =~ koxy + o (v.12)
vi=1; Falp, x4, T)=—pllg+kog)xy +pks . (V.13)

According to our assumptions, only k,; and k_; are func-
tions of T.

The homogeneous steady state concentrations of A and
A* are easily obtained. Denoting homogeneous steady
state quantities by a subscript 0, we obtain

Ry +Pokag
by + kgt by +pollg + B3

A§ = )pO ) (V. 14)

koy+ Dokst Ry

= 7 . V.15
By + by + kg + pollg + kog) o ( )

4

These concentrations are of course functions of the ho-
mogeneous steady state temperature which may be
eliminated according to the steady state energy balance
condition

G(T,, T,)=EF, . (V.16)

We now inquire into the conditions for stability of the
homogeneous steady states.

Linearizing the equations of motion around this homo-
geneous steady state and taking a spatial Fourier trans-
form (Z -~ k) of all the variables, we get a set of equa-
tions in the form (II.1), 8¥/3¢= M(k)p, where

¥ =col{sp, 6x,,5v, 6T} . v.17)

The matrix M is given in Appendix C, and dv repre-
sents the longitudinal (Z) component of §v.

The temporal evolution of a perturbation of wave vec-
tor 2 may be written as a sum of terms of the form
exp(z,(k)f), where z,(k) is the nth eigenvalue of M(k). If
Rez,(k) is positive for a given u, then the corresponding
perturbations of wave vector k will grow. The behavior
of the various branches (n) of the eigenvalue spectrum
z,(k) in a given region of » depends on the relative time
scales for sound and for thermoconductive, viscous, and
chemical relaxation process in that range of wave vec-
tors.

B. High frequency behavior

We focus our attention on cases where the relaxation
processes take place on a much longer time scale than
that of the sound oscillations. The square of the adiaba-
tic sound frequency is given by

wi=yP, K, (v.18)

where P,=(8P/8p), and y is the specific heat ratio.

In terms of this quantity, the characteristic equation
det[M(k) - Z], given by Eq. (C.10), may be written in the
form

4

2+ agd® + (B + %) 2+ (@ + bz +b2i=0,  (V.19)

where the coefficients ¢; and b; are frequencies which
correspond to the time scales of reaction, viscous flow,
or thermal diffusion and may be derived from the ma-
trix M (see Appendix C).

An expansion procedure for this high frequency acous-
tic behavior is carried out by studying the limit in which
w, is much greater than any conductive, viscous, or
reactive inverse lifetime. Formally, for the conductive
and viscous terms, we go to the limit of high frequency
while keeping the product of the transport coefficient and
the square of the wave vector constant and small rela-
tive to w,. Thus, we introduce the expansion

2 =

2 D" (V. 20)
n=1

into the characteristic equation (V.19). In this limit,

we obtain a pair of acoustic roots z, with imaginary

part of order w, and real part on the slower time scale,
Im(z,)~+w,, (V.21a)

v—1
Y

Re(z,) ~§(Msa+ M44+;%’TM41> . (V.21b)
0
The sign of the real part of z, determines whether we
have sound attenuation or amplification under the given
conditions. In most applications, we expect k.5 to be
very small, which is the case provided that E> k5 T,
i.e., the optical excitation energy is much larger than
the thermal energy at the steady state temperature,
while k; is a very weak function of temperature. We
also note that, assuming an Arrhenius-type temperature
dependence of k.3, that is

boy= K. €XP (— R—TQ) , (v.22)
we get

9k.s R

ﬁr&:?glk_a , (v.23)

which is also small if k4 is sufficiently small. We may
thus neglect the terms involving the temperature de-
rivatives of %, and k.5, and using Appendix C obtain

Mgg=~fik%/py (V.24)
A
Myy=—8& = kz s (V 25)
b £ PoCy
E
My C_ks(XA*)o 5 (V. 26)
v
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or

n y-1 A v=1 0o E
R :-l[k2<i+ )+ £]+ L kg(xy%)g -
e(z) 2 Pe ¥ PCy Y YTy Cy AT
(v.27

(x4%)o= (A*/p), is given as a function of the external
temperature and the illumination intensity by simulta-
neously solving (V.14) and (V.16).

Some comments need to be made on this development.

(a) The result (V.27) is obtained as an approximation -

valid in the high frequency regime. This regime is a
physically interesting one, as there are many systems
for which the time scale for sound oscillations may be
made shorter than that for the other relaxation pro-
cesses.

(b) The real part of z,(k), (V.27), contains a posi-
tive contribution that is proportional to the steady state
fraction (x,4), of the excited A molecules. This is
counterbalanced by negative contributions which corre-
spond to the various dissipative processes: viscosity
(the 7 term), heat conduction (the A term), and radiative
heat loss (the £ term).

(c) Since we neglected thermal excitation by using
the approximations (V. 25, 26) for M,, and M, , we have
x4+ >0 only in the presence of illumination. For this
same reason, the attenuation (negative) terms in Re(z,)
do not contain contributions from the thermal excitation
A - A*, When these approximations are not valid (for
example at high steady state temperature, Tz E/R),
then the thermal excitation process induces sound at-
tenuation.

(d) Under conditions in which Re(z,) >0, spontaneous
excitation of sound waves in the illuminated system may
occur. Note that the range () of modes that may be
spontaneously excited is bounded from below by the
length 7 of the tube 27/k> %1, and from above by the vis-
cous and thermal conductive dissipative terms, because
these grow like #%. In an allowed range of %, the modes
that may grow are of course those which fulfill the
boundary conditions, namely

k=”l—”, n=0, £1, --+ . (V. 28)

(e) By monitoring the attenuation of sound as a func-
tion of illumination intensity until the threshold for
amplification is reached, one may obtain information
on the transport coefficients A, 7, and £ and on the rate
coefficient kg. In particular, the threshold condition
Re(z,)=0 provides a valuable relation between these
constants.

(f) The positive contribution to Eq. (V.27) may be re-
cast in a different form, which makes the calculation of
the condition for instability and sound amplification
easier. For this, we make use of the steady state equa~
tion (V.16) which, with the neglect of .5, leads to the
relation

1 E
“—G(Ty, T,) = = poks{xax)o - (V.29)
C, Cy

Thus, the positive contribution to Eq. (V.27) is simply
(1/yCyTy)G(Ty, To). A necessary condition for observing
sound amplification may be obtained by comparing the
radiative loss term to the positive term in (V.27). This
corresponds to the balance of local processes and the
neglect of transport terms. We obtain

1y-1 < 1
2 vy vCy Ty

With (A9) and the fact that y=Cp/Cy (>1), we then have
1 (a 1nG> L1
2\8InT/r, v-1 '

Assuming for G the relation G=qa(T*- T3) (as is the case

for cooling by blackbody radiation), we find for (v.31)
the form

G(T,, T,) . (V. 30)

(v.31)

T4
'y—1<§<1——-‘i). (v.32)
Ty
The maximum value of the rhs of this inequality is 3.
The inequality (V.32) is never satisfied for a monatomic
gas for which 'y=§—. This is, however, an uninteresting
case. We expect the steady state temperature T to be
large enough so that at least the rotational degrees of
freedom contribute to the specific heats. For a non-
linear triatomic molecule, for example, we get

“Ceeyog.08, (V. 33)
Cy
and the inequality (V. 32) is fulfilled for
T,21.21T,, (V.34)

which may be achieved for sufficiently strong illumina-
tion and low external temperature. For a larger mole-
cule with low frequency vibrations, y is smaller and the
condition is easier to fulfill.

{(g) A simple representation of the quantity Re(z,) is
also obtained if we do not neglect 8%,/87, but still dis-
regard k_,. In this case, instead of (V.25), we have
[according to (C8)]

A E ok
My=~ ———kz -¢ +_C:p0(xA*)0<5‘7‘?‘>0 .

V.35
oCy (v.35)

Taking for &, the temperature dependence conventionally
attributed to vibrational relaxation rates,

R
k3= K3exp (‘ T1733‘> > (v.36)
we obtain
8k, 1 R;
i
oT 3 7¥3ks (v.37)

so that, utilizing (V.29) and Appendix C we arrive at

_ X 2, 1 Rs
My pCVk €+3 ﬁﬁc—vG(To, T.), (v.38)

My =&G(To’ T,) .

Cy (v.39)

Inserting now (V.24), (V.38), and (V.39) into (V. 21b),
we find
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7t -1 2
Relz =—lk2(1+‘y >
(*) 2 Po Y pCy
1y-1 1 CY—HRs )
3t s+ 1) 6(To, T

(V. 40)
In this case, the positive contribution to Re(z,) is great-
er by a factor of 1+(y —1)R,/3TY?® than that obtained in
neglecting the temperature dependence of k;. The neces-
sary condition for sound amplification (V. 32) is now re-
placed by a less stringent inequality:

4
y—1<%(1 —%—EXH%Q .
QOur stability analysis has been carried through only
for the high frequency regime. A second physically in-
teresting limit is one for which the vibration—-translation
relaxation rate occurs on a time scale short compared
to the acoustic period.

(v.41)

V1. APPLICATIONS

Homogeneous steady illumination has been shown to
produce a variety of nonequilibrium effects. An inter-
esting feature of these phenomena is that they may all be
attained in systems closed to mass flux. Optical energy
is converted to other forms before finally being con-
verted to and eliminated as thermal energy. The possi-
ble intermediate energy forms are chemical and mechan-
ical (acoustic) and may also include electrical energy
in appropriate illuminated electrochemical systems.

These intermediate energy forms may be used to pro-
duce systems such as motors and batteries by appro-
priate coupling to other systems. For example, the
pressure variations in the optical-acoustic system of
Sec. V may be used to drive a piston at one end of the
tube at the resonance frequency. If the work done by
the piston, held inrest positionby a spring, is sufficient-
ly small, then the optical-acoustic phenomena will con-
tinuously provide mechanical energy by direct conversion
from electromagnetic energy.

The conditions for the onset of instability involve re-
lations between rate and transport coefficients, exter-
nal temperature, and imposed photon flux. Thus, mea-
surements of critical illumination intensities and ex-
ternal and internal steady state temperature (or gener-
ally internal thermodynamic state) provides a measure-
ment of the rate and transport coefficients. More de-
tailed relaxation type experiments involve a pulse per-
turbation followed by the regression of the system back
to the steady state. The functional dependence of the
divergence of the relaxation lifetime at the point of mar-
ginal stability provides additional information on the
rate and transport coefficients. In particular, the the-
ory of Sec. V presents itself as a method for measuring
vibration—translation relaxation rates. Unlike the spec-
trophone method, !4 the present one is not restricted by
mechanical difficulties (upper bounds on the chopping
frequency).

Closed homogeneously illuminated systems may have
multiple steady states.!® Transformations between
steady states may involve large changes in temperature

Nitzan, Ortoleva, and Ross: Instabilities in illuminated systems

and pressure. Thus, the local initiation of such trans-
formation in a gas bears resemblance to a chemically
reacting system in which detonation fronts may occur. 16

Finally, we note that the role of light may be taken by
other forms of irradiation; for instance, ambient elec-
tron flux in a discharge tube.

APPENDIX A: PHENOMENOLOGICAL RELATIONS
FOR THE THERMODIFFUSIVE SYSTEM (SEC. IV)

To idehtify a convenient system of fluxes and forces,
we begin with the expression for the entropy production,
due to heat and mass flows, which is given by ¢/ T,
where

O=—q VInT~j, Vo, =g Vog . (A1) |
Here, V,u is the gradient which does not include the
contribution from the dependence of y on T. As j = -jz,
Eq. (A1) may be recast in the form

¢=-q-VInT—j, * Vo (p, = ip) . (A2)
We can use the coefficients of the independent fluxes g
and j, as the relevant forces and write phenomenological
relations between these fluxes and forces. Utilizing
further the assumption that the system is maintained in
mechanical equilibrium, we have!2

AVqpp, =~ BVgppp, (A3)
so that the force associated with j, is (o/B)Vyu,. With
the relation u, = p°(P, T) + RTIn(4/p), and noting that p

is a function of T only (p=(RT/P), with P a constant at
mechanical equilibrium), we get

L)
B

_pRT

AL VlnA:I—;-VInA, (A4)

which in turn leads directly to the phenomenological re-
lations, Eq. (IV.86).

APPENDIX B

We outline the conditions for which we can disregard
Eqs. (IV.1) and (IV. 3) and consider only the reduced set
(Iv.8, 9) in the stability analysis of the thermodiffusive
system (Sec. IV). The physical basis for this approxi-
mation is that sound energy is absorbed (or lost into the
surrounding) on a time scale much shorter than other
characteristic times in the system. For simplicity, we
take the case of overdamped sound, where the damping
is shorter than the period of the acoustic period at wave
vectors of interest. The attainment of hydrostatic
equilibrium through transmission of sound through the
walls is usually treated phenomenologically in standard
acoustics texts. Here, we shall represent it also by
adding a term - (1/7)v to the velocity equations. Our
assumption is then that x=1/7 is much larger in magni-
tude than any other term in the coefficient matrix of the
linearized equations of motion. This set of equations is
of the form
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v K a1z 3 Qg v

d P g 0 0 0 P

Zi_t = . (Bl)
A ay Az (33 Az A
T ay Agp Qa3 (A4a T

1t is evident that for our purpose it is sufficient to use
the theorem: For the matrix A=(qg;,), let ¢;;=-«. When
k—~ o, there is one root which equals -k (to leading
order in k), while the rest of the eigenvalues are of
order 1 and are given to this order by the eigenvalues
of the matrix that is obtained from A by eliminating the
first row and column.

The proof is straightforward. The characteristic
equation | A-wll=0 is solved by an expansion of the
form

W= 0 k" . (B2)
n=1
Taking the matrix A to be NX N, we obtain to order «
(= wy)' = (w)"'=0 (B3)

yielding w;=-1,0, 0, - -+, 0. For the N-1 roots for
which @, =0, the highest order term in the expansion of
the characteristic equation is of order 1, and we find
that w, is given by the eigenvalues of the matrix

thus completing the proof.

APPENDIX C

We present here some of the intermediate formulae
involved in the stability analysis of the optical acoustic
system studied in Sec, V. For simplicity of notation,
we drop the subscript zero which denotes the steady
state value.

The stability matrix M(%) takes the form

0 0 ~ikp 0
M21 M22 0 Mz4
M(%) = i _ , (€1)
-ikP,/p O Mg ikPp/p
M41 M42 - ikp/pCV ]l’144
in which P, =(8P/8p); ,, and Pr=(8P/3T),,,. The ma-~
trix elements M;; in (C1) are given by
Moy = Rgxpx — kagXa 4 (c2)
Mgp=— [k;+k-1+ka'+0(ks+k-3)] > (C3)
ak k.
e 0505
My ==K/ py , (C5)
My =EMy/Cy, (C8)
M,;z = - E(k3 + k-3)p/Cy 3 (C7)

E
M44= - Akz/pCV - £ +"C'—M24 . (C8)
14

We define the linear coefficient £ for the radiative heat
loss as

The characteristic equation det[M — z] =0 then takes
the form

24 - TI‘M23 + [MZZMZS + M22M44 + M33M44 - M24M42 + '}’P‘,kz]z
= [ Mgy MagMyy — MpgMygMyp + Gy P, My + P, Myy — Pr Myy) )z

+A=0,
where (€10)
Mgy My Mps
=-kidet| P, O Py (Cc11)

My My, My

For an ideal gas, Pp=P/T and P,=P/p.

Note added in proof. After submission of this manu-
script we learned of the work of H. -J. Bauer and H. E.
Bass [Phys. Fluids 18, 988 (1973)] in which they study
amplification of sound by radiation (the topic considered
in Sec. V).
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