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The Green’s function method 1s utilized to obtain a modified treatment
of Fano's line-shape problem which takes into account the coupling between
different states in the continuous (or quasi-continuous) non-radiative manifold
due to their interaction with the same radiation field states. A new expres-
sion for the absorption line-shape is obtained in the form o,(e)oc[(e +q Y E)?
+(YLg? + 131 — YI)]/(e®+ 1), where ¢ is the reduced energy parameter, ¢ is
Fano's line-shape index and Y7 is the non-radiative quantum yield obtained
when the non-radiative manifold is optically forbidden. As YL 1s always

"smaller than unity, the absorption never strictly vanishes in contrast to the
result obtained in Fano's approximation. In addition, expressions are
obtained for the emission line-shape and for the (energy dependent) emission
quantum vield within a Fano resonance. The quantum yield so obtained is
free from the singular behaviour which characterizes the same gquantity
obtained in Fano's approximation.

1. INTRODUCTION

Interference phenomena in absorption line-shapes have been a subject of
intensive experimental and theoretical study since Fano in a pioneering work [1]
considered the line-shapes of auto-ionizing atomic transitions. Effects of
stmilar nature have been shown to occur in nuclear [2] and in solid state physics
[3], and more recently in molecular spectroscopy [4-6].

Two of the models originally included in Fano’s general analysis {1] have
been particularly useful in analysing experimental results. In the first (model A,
figure 14a) the zero-order basis set consists of a single state and an isoenergetic
continuous {or quasi-continuous) manifold, both carrying oscillator strength for
optical transitions from the ground state and interacting with each other through
the full hamiltonian of the system. In the second model (model B, figure 15)
the zero-order basis consists of two discrete optically allowed excited levels
interacting with isoenergetic optically forbidden continuum. The term ‘Fano
line-shape ’ or ‘ Fanian’ is usually attributed to the line-shape related to model A.
Both models are closely related, in particular one can always transform B into
model A by diagonalizing the hamiltonian in one of the discrete states and the
continuum. When both representations are available for a particular problem,
it is always preferable to utilize that in which the coupling matrix elements and
the density of states are weak functions of the energy (or the state index) in the
continuum.

tMany of the studies of interference effects in molecular spectroscopy suffer from
choosing to work with the wrong representation in this sense. For a discussion of this
Point, see reference [6 b].
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Figure 1. Conventional models for analysing interference phenomena in absorption and
scattering line-shapes. (l1a) A single discrete state )5 interacts with a dense
manifold of states {{[>}, both carrying oscillator strength for optical transition from
the ground state |g>. (15) Two discrete, closely seated, optically allowed states
|s> and |r> interact with an optically forbidden dense manifold {1y .

It is not generally realized that Fano’s method involves an approximation.
This method is based on obtaining the set of excited eigenstates {if,} of the system’s
hamiltontan and assuming that the line-shape is proportional to the quantity
| (|l )] %p;, whereyp, is the ground state, u is the operator for optical transition
and p; 1s the density of states {i;}.+ This assumption neglects high-order
interactions between closely seated i, states which result from their coupling to
the same radiation field states. 'T'o see how this assumption affects the calculated
line-shape, it is sufficient to note that in the case of a simple resonance (one
discrete, optically allowed excited state coupled to a non-radiative, optically
forbidden, uniformly spaced continuum, with an energy independent coupling
coefficient), Fano’s method predicts a Lorentzian line-shape with a width which
corresponds to the non-radiative lifetime of the discrete state, while the correct
width should be the sum of the radiative width (I'y) and the non-radiative width
(I'nr) of this state. When I'yy > I'y, Fano’s method yields the correct result
for this case to a high degree of accuracy, but this does not guarantee its success
for other cases. In particular, it has been shown [7] that when Fano’s approxima-
tion is used in calculating (energy dependent) quantum yields for resonance
fluorescence, it leads to unphysical divergencies of these quantum yields near the
points of total destructive interference (Fano’s dip) for both models A and B.
Mathematically, this results from the fact that in this approximation the scattering
cross section does not in general vanish at the point of zero absorption cross section
[7]. 'This suggests that also the absorption cross section remains non-zero at
the bottom of the interference dip. This feature was demonstrated by Nitzan
and Jortner for model B [7], but they were unable to carry on their method for
model A without invoking Fano’s approximation. It is the aim of this paper
to solve Fano’s problem (model A) without invoking this approximation and thus
obtain expressions for the line-shape and quantum yield which are free from zeros
and divergencies. This is done at the cost of assuming constant coupling matrix
elements in an early stage of the calculation. This is not a serious flaw relative
to other theoretical treatments of Fano’s problem [1-7], as the same assumption

tThroughout this paper we use the state index representation and not Fano’s energy
representation (in which the line-shape would have been written as [ lulfz>[®).
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is involved in a somewhat later stage in every other method. The same approach
has been recently used in studying the problem of interference in the consecutive
decay of a molecular resonance [8-10].

2. MODEL AND NOTATIONS
Qur model is described in figure 2.  The hamiltonian for this model system is

H“—:HO_E'Hﬂ"'Hint’ (1)
where

Hy=Hy+Hpy (2)

is the ‘ unperturbed’ part which consists of the hamiltonian of the free system
(the molecule say) Hy, and the hamiltonian of the free radiation field Hy. H,is
some residual interaction in the system (so that Hy + H, is the full hamiltonian
of the free system) and H,, is the interaction between the system and the radiation
field which is responsible for the optical transition. 'The basis set is chosen to
consist of eigenstates of H,. It is assumed that the optical region considered is
spanned to a good approximation by the following eigenstates of H,: {|m)}=
{lg;k,e)} are one photon states seated on the system’s ground state |g) (k and e
denote the wave vector of the photon and its polarization state respectively);

Vg

9

Figure 2. The model used in the present work. This is an extension of the model
displayed in figure 1(a), where the radiative continuum {|m)}, consisting of one-
photon states seated on the molecular ground state, is taken into account.

s> =5, vac) is an excited state of the system which is optically accessible from
the ground state (vac denote the zero photon state of the radiation field);
{ly}={|/;vacy} is an excited continuous or quasi-continuous manifold of
eigenstates of Hy; again with the vacuum state of Hy. The pertinent coupling
matrix elements are

<5u7{int.|m>E Vsm : <l|Hmt.1m> = Vlm ; <SIH1:1I>E Val' (3)

‘The remaining non-diagonal matrix elements of H vanish. This results from
B2
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the assumption that H,, is a one-photon operator and from prediagonalizing H
within the manifold {{{}}. Thus,

(s{H[s) = (| Hy+ Ho[s) = E,,
QHIY =(|Hy+H|I)=Edy,
(m|H|m"y = (m|Hy|m'Y=E,3,, (the ground state of H, defines the (4)
origin for the energy variable),
(S| H yfmy = (| H |m)y = (s|Hipy| ) = {m| Hipy|m") = O.

In what follows we shall apply the Green’s function method to calculate the
absorption and scattering line-shapes and the scattering (fluorescence) quantum
yields for this model. We shall repeatedly invoke the assumption of constant
coupling matrix elements, namely V,,, V and V;,, are assumed to be independent
of indices [ and m (but remain, of course, different from each other). Similar
assumption is invoked for the densities of states p; and p,, in the / and m manifolds:
these are also taken to be constants over the manifolds. Indeed, in many cases
we do not expect the coupling coefficient and the density of states to change
appreciably within the resonance width. In cases where the transition moments
V..and V,, are vectors in the systems frame of reference [5], 1t 1s further assumed
(as is commonly the case) that these vectors are parallel (or anti-parallel) to each
other. They are thus taken as scalars throughout this work. Finally we shall
assume that trivial level shifts may be neglected (see equation (13) below). It
should be noted that the last two assumptions are made for the sake of simple
presentation only, and may be easily relaxed at the cost of more cumbersome
expressions in the following treatment.

3. THE ABSORPTION LINE-SHAPE

We shall utilize the Green’s function method which was described in earlier
works [7, 10-12]. The absorption cross section is given by [7]

2
ulB)= = 2 Im{(m|(H 4 Hon) GO, + Higg ), ()
where ¢ is the velocity of light and Q is the normalization volume of the system, and
where

G=(E-H+m)1; 50t (6)
Qur problem is to calculate the matrix element
L:<m‘(H*u+Hint)G(Hv+Hi11t)|m>‘ (7)

Expanding in our basis set and setting
x:Gss; y:zGIs; ”=ZGSI? w:zzGﬂ” (8)
! !

i
cquation {7) takes the form
L= ‘ Vms 2y + VmsVlmu + leVsmy + [ Vlm‘zw: (9)

where the coupling matrix elements were taken to be independent of the state
indices m and . It is convenient to make the additional definitions:

R = EG y U= ZGS‘H.' ;b= zszI (10)

s
m mi
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We now utilize the identities
G:G0+GO(Hint+Hv)G; GOZ(E“HD“H‘TJ)FI
= Gy+ G(Hin + H,)G, (11)

(o obtain a set of algebraic equations for the matrix elements of G':

G, =x= E—Elm (1+Vagy+ V2, (12a)
G, = m(ﬂsﬁ Vi) (125)
Gops= F_TI;%F;; (Vs + Vo), (12¢)
Ggu= E-‘_—é—l—-4_1.;(Vﬂx+ V.av) (12d)
G, = 'E_—_El:-f;; (V g + Vi), (12¢)
Gy = Z‘_—%{I?E (8p + Vi,Gg+ Vlm%Gmy), (121)
G = E_PTT;:—G? (Vs G+ V”@G“')' (12g)

To obtain a closed set of algebraic equations in the variables x, y, 2, u, v, w, t We
sum equations (125) and (12 d) over ], equations (12¢)and (12¢) over m, cquation
(12f) over both [ and I’ and equation (12g) over both m and I’.  Tor the sake of
simplicity, we neglect level shifts in the resulting equations, namely we take

1 1

im e = —tmp; lim ZE~

. = —imp (13)
na0+ I E"EI"'”) n-0+ m Em"““} "

(here p, and p,, are densities of states in the [ and m manifolds, respectively) and
neglect the real part of these expressions.  For nearly constant coupling elements
and density states this approximation is valid.

Performing the summations described above and neglecting level shifts, we
get from equation (12)

x="Et—l%+—i'q(l +Vay+ V.2 (14 a)
y=imp Vi — tmp Vi, (14 5)
2= —tmpy Vs — 7P Vit (14 ¢)
u= —inpVgx—1mpV iV, (14 d)
v = —1mpy V % — 1Py Vi, (14e)
w= —1imp,—impV  u—tmpVyt, (14f)

t= —1mp, Vst — 1P V pu - (14g)

ms
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This is a closed set of linear homogeneous algebraic equations which yields after
some algebraic manipulations

x=G,=(E~-E+ (i/2)T,), (15 a)
Vlm Vms + iWVIspl G

2
— G — T PP , 15 b
Yy EI Is 1+N LE ] ( )
720V e Ve + 1m0,V
=5G = — we’ osm G , 15¢
U zl 83 1 +N 85 ( )
(720100 ViV s + im0V, ) + i,
= Gpo = — L i 15d
tooVoiVietinV, o
— NG = TP PPV mVis msPm 15
< %: ms 1+ N Gss: ( e)
wzpmpl Vsl Vlm + zlwpm Vsm
v=3Gu, [t Tenl o, (157)
mep, PV o+ (’sz PIV rJVI —{—prmV,, )u
— —_ 1. Tt m’ Frd 3 18 15
l ZWZG:RI 1 + N ’ ( 4 )
where
N= WzPle' Vlmlzi (16)
EszEs'—Dm (17(1)
D = szlpm( VImV?nsVsI+ VmIVIsVSm) (17 b)
! 1+N ’
rL+rM
= _5 8 18
5 1+N H ( a)
FsL: 277[ Vsllzpb . (18 b)
Fstzwl Vsm|2pm‘ (18 C)
It will prove convenient to define the additional parameters
[yM = 2n| Viml *rms (194a)
FmL= 277' I/Imlzpl' (19 b)

Note that the parameters Iy (i=s, ], m; K=1L, M) have a simple physical inter-
pretation as the width of a single state 7 interacting with a single continuum K.

The rest of the calculation is now straightforward. We insert equations
(15 a-d) for «x, y,  and w into equation (9) and find after a few algebraic steps

L
L= -(i2) 2 A 20
(i2) 5 +Ged, (20)
where
g,k N fow
A*Tm(q—z) (¢*—1) (21)
and where ¢ is Fano’s line-shape index given by
V?’RS
g= (22)

T sz V: s .
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i In what follows we assume that all the coupling matrix elements are real.t Using
Fano’s notation we also define the dimensionless energy variable

_E-E,
-2
which differs, however, from the energy variable in Fano’s case as E, and T, are

given now by equations (17 a) and (18 a), respectively. In terms of ¢, equation
(23), expression (15 a) for G, takes the form

€

(23)

3

2 e—1t
=, 24
Co= & @37 (24)
Utilizing now equations (21) and (24), equation (20} takes the form
r,,- rr  e—i
L= " | — ! —1)2 !, 25
. (BN+1[£+FJN+Ué+1@ ”J (23)
A further simplification is obtained by noting (from the definition (184} of I',)
that
L L
L L =YLl=1--Y¥, (26 a)

(NT1)I', TI+TH

where YZ has the simple physical meaning of the quantum yield of the decay of the
initially prepared state s into the non-radiative channel {|I)} provided that the
channels {{I}} and {|m)} were non-interacting, (Similarly ¥¥ is the radiative
quantum yield under the same conditions.)

It should be noted that the parameters Y%, ¢ and N are not all independent.
It is easily verified that

1
Yi= —— ., 265
N +1 (265)
Inserting now equation (26 a) into equation (25) and separating real and imaginary
parts we obtain

FT?‘EL
N+1eE+1
Substituting this result for the matrix element L into equation (5) we arrive at
the final result for the absorption cross section:

_Q I (e+gY D+ (Yig*+1)(1-YE)
(€)= Fo W1 2+ 1 ‘

A few examples of the line-shape predicted by equation (28) for different
values of the parameters ¢ and YZ are displayed in figure 3. The following
points are now in order.

(a) Equation (28) is an expression for the energy dependence of the total
absorption cross section of our model system. This is a two-parameter expres-
sion: the absorption line-shape is determined by the values of the ‘ quantum

L=(4) {Yi(eg?—e—29) —i[(e + YPq)' + (YR + 1)(1 - ¥5)]}. (27)

(28)

tThe definition of V,,, and V/,  implies that these quantities are real. A complex
Vs may, however, be encountered if, for example, H, is a spin—orbit coupling operator.
This possibility is disregarded here as in all the previous works on this problem.
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yield " Y4 and of the ‘line-shape index * ¢ given by equations (26 a) and (22)
respectively.  Note that Fano’s original result
2
_ Ly 1) (29)

Ua(e T ™ @11

i3 a one-parameter result: the line-shape index ¢ fully determines the form of the
predicted absorption profile.

(b) Our result, equation (28}, is reduced to Fano’s expression, equation (29),
on setting Y% =1 and N =0 (the second follows from the first by equation (26 b) if
g#0). Actually YL is smaller than 1 unless g=0. It may be concluded that
Fano’sexpression provides a good approximation to equation {28)when 1 — Y2 < 1
and ¢ 21 (the second condition is necessary for N=(1/YZ—-1)/4? to be much
smaller than 1).  Fano’s result is of course useful for any ¢, as long as only the
relative absorption is concerned and the coefficient (14 N)~! in equation (28) may
be disregarded.

(¢) The condition Y%~ 1 is equivalent to

FSL> Fslﬂ or | Vxl|2pt> ‘ Vsmlzpm! (30)
namely the (independent) non-radiative decay of the state s should be much faster

than the (independent) radiative decay of this state. The condition N<1 is
equivalent to

Tl Vinl® = ($)7 Mo = ()71, P, <11, (31)

which states that the radiative width I} of th= states {[I)} should be much
smaller than their average spacing (and equivalently the width T'_ L of the states
{{m)} due to their interaction with the continuum {|/}} should be much
smaller than their spacing). The first condition, (30), is what we saw necessary
for Fano’s theory to describe correctly a simple lorentzian resonance. The
second condition (31) has been encountered in the study of interference effects
in consecutive decay, as a condition for lack of interference due to coupling
between two continuous manifolds [8-10].

(d) As YL never exactly equals unity, it is evident from equation (28) that
o,(¢) 1s non-zero even at its minimum value. There is thus no danger of un-
physical divergence of the quantum yield for resonance fluorescence as occurs in
the approximate treatment [7].

(e) Sharf has recently shown [5] that when the transition moments V,,, and
Va1 are not parallel to each other (as may be the case for molecular transitions),
Fano’s approach has to be modified and the resulting expression for the absorption
line-shape does not vanish at its minimum point. The result (28) shows that
also in the more commonly encountered case of collinear transition moments
there 1s never total cancellation of the abhsorption cross section,

(f) As a consistency check on the result (27) we note that in the limit g oo
and N—( (which corresponds to the case of one discrete state coupled to two
non-interacting continua, o,(¢) takes the form

N->( Q rye_ 9 q* Ql 0 I, (32)

%ale q—’ﬁw*ﬁ? e i ALY (E—E 2+ (I,]2)

which 1s the expected result for this limit.
We now turn to the calculation of the photon scattering cross section and the

quantum yield.
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4. RESONANCE FLUORESCENCE AND QUANTUM YIELD

In this section we calculate the probability of transition betwecn two states
of the radiative manifold. This probability is related to the non-diagonal matrix
element (m|H, +H YG(H+ H,)|m'y={(m|H,,,GH,y|m") of the T operator
which is defined by T=(H+H,)+H+H,)G(Hy+H,). As in our
model the coupling matrix elements are independent of the particular state m,
this reduces again to the problem of calculating L, equation (7), and we can directly
use the result given by equations (20)—(22). The full expression for the total
scattering cross section is given by [7]

2[ Ok, 12
ot~ 2| St [ 1 (39
where, as before, () is the normalization volume of the system, ¢ 1s the velocity of
light and where k, is the absolute magnitude of the wave vector of the scattered
light. Equation (33) gives the cross section for the process lg: k,e)>lg ik, ep)
as a function of the incident photon energy £ = kc.
To calculate | L|? it is convenient to recast equation (27} in the form

L Yi(g2—1)+1—i(e+2Y5g)

L:
%N+1 e+1

, (34)

from which we get
‘L|2:i( r - )2 (Yig®— yL+1)2+(€+2qu)2‘

N+1 e+ 1 (35)

Inserting this expression into equation (33) the result of the total scattering cross
section is obtained in the form

1 (Qk,)z( r,~ )2(Y5q2~ YL+ 1)2 4+ (e + 2V Lg)? (36)

on(€)= 2\ A2 N+1 e?+1

The quantum yield for this scattering process is (from equations (36) and (28))
b ) ORF Tl (VR VI 1) (e 2V IR

0ale) _ ZnW N+1(e+ VOVt (Vogit 1) (1= YE)

These results may be simplified by using the well-known expression for the
density of states in the radiation field

(37)

Ok,

Pm= 273, (38)
together with the definition (equation (16)) of the number N, to obtain the final
forms :

o © TuPN (Vg = VE+ 104 (4 2V 1)
aple)= =
R fic (N +1)? E2+1
v N (PR VIR (e 2V i)

BT NET (e qVEE+ (VEgE+1) (I- YE)
These equations together with equation (26 &) are our final results for the scattering
cross section and for the total quantum yield for resonance fluorescence as a
function of the incident light energy within a Fano line-shape. Numerical

calculations based on these results are displayed in figure 3. 'The following
remarks should be made at this point,

. (39)

(40)
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(@) Nitzan and Jortner [7] have recently distinguished between quantum yield
measured in a long-time experiment using a highly resolved photon beam, and
that measured in a short-time experiment after a broad-band pulse excitation at
the interesting spectral region. It is evident that the result (40) is the ‘ long-
time > quantum yield which depends on the incident light energy. The long-
time and the short-time yields become identical in the case of a simple resonance,
as 1s demonstrated by equation (46) below.

(b) The quantum yield given by equation (40) is a well-behaved function of ¢
which never exceeds unity and does not exhibit the singular behaviour which
characterizes the result obtained in Fano’s approximation [7}.  'This last approxi-
mate result is essentially that which is obtained from equation (40) by replacing
YL by unity. This leads to

g* + (e +29)°
Yg(e)oc TletqRf (41)
which diverge when e~ — ¢, namely at the bottom of Fano’s dip.

(¢) The result (40) for the quantum yield is fully determined by the two
parameters Y2 and ¢ (V is given in terms of these parameters by equation (26 b)).
Simpler expressions are obtained for various limits, In particular consider the
following cases:

(¢c1} N- oo and ¢g—0:
e+ (1-YI)?2

= 7 42
YR(G) 62+(1_YL) r ( )
(c2) N->o and Y20
Yp(e)=1; (43)
(c3) g—>o0 and YZ—>0 such that N=1/(Y’4?) remains finite:
N e@+(1N+1y
Yelo)= 7 A+ (N+1) (#)

In case (c1) there is a strong coupling between the states {|I)} and the radiative
continuum. All the energy which is absorbed directly to the {|I}} manifold is
emitted back and Yy(e¢) <1 only in the vicinity of the discrete state |s) (e~ 0).
In both cases (¢ 2) and (¢ 3) the state |s) is uncoupled to the non-radiative manifold
{l1>} and decays to the radiative channel only. In case (¢2) there is a strong
coupling between the manifold {|I)} and the radiative continuum and conse-
quently the emission yield is 1 everywhere. In case (¢3) the {|[}}—{|m)}
coupling strength is finite (and is measured by the value of N). Yg(¢) takes a
maximum value of unity near the totally emitting state s (when e=0) but far
enough from this energy €% (1/N + 1)2, we have Yy(e)~ N/(IN + 1) for this case,
as part of the radiation energy absorbed in the continuum {{I)} is not emitted
back. Yp(¢) approaches unity when the coupling between the states {|/)} and
the radiative channel {|m)} becomes larger, namely when IV increases.

(d) The case of one discrete state interacting with two uncoupled continua
corresponds to the limit N-0 and g¢—» 0. In this case we have

N (YE)gt
YR( )"_ N(YL)zqz+ YLq2(1 — YL)

~ YENg? (45)
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or, using the definitions (16) and (22) for N and g,

Volitn _yu T T

l Vls‘zpl l"sL F3M+ FsL ’
which is the well-known result for this case. Note that in this case the quantum
yield is no longer energy dependent.

(¢) As is seen from the graphs (figure 3) the quantum yield Yg{e) goes
through unity near the interference dip. "This may be shown in general: Yg(¢)
(equation (40) with (26 &)) is unity for e=g(N—1)Y%1.

An interesting cross-check of the results obtained in this paper is provided by
calculating the cross section for scattering into the non-radiative channel L,

V()= YE (46)

2T ¢

oxnl€) = & @'(ll T'|my|2pl. (47)

The method of calculating the non-diagonal matrix element {| T|m) is identical
to that for the diagonal term {m| T|m) and one gets for anple):

O, 1 [e+(1-N)VigP

O-NR(G) = 52‘ m (N+ 1)2 €2+ 1 4 (48)
while the non-radiative quantum yield s
oxnl(e 1 e+ {1—-N)Yig)?
YNR(€)= NR( ) — ( ( ) Q) (49)

o(e) N+1{e+qrTy+ (Yig+1)(1-YE)

It is now straightforward, though somewhat tedious, to ascertain that
Yr(e)+ Yyr(e)=1 (50)
for any €, which provides the consistency check. Note that a zero interference

dip always occurs in oy g (€) and Yyg(e) which corresponds to the value of Yy (¢) =1
found above.

5. CONCLUSION

In this paper we have modified the treatment of Fano’s line-shape problem
by taking into account the coupling between the system and the radiation field to
infinite order. It has been shown that under conditions where different states
in the non-radiative dense manifold interact with each other via their interaction
with the same radiation field states, this modification is necessary and Fano’s
result (equation (29)) for the absorption line-shape has to be replaced by the
expression (28). This modified result is reduced to Fano’s expression only for
the case where the radiative quantum yield is negligible and when the line-shape
index ¢ is not too small. In addition we have obtained expressions for the
emission (or scattering) line-shape (equation 39)) and for the ‘long-time’
energy-dependent quantum yield (equation (40)). The result for the quantum
yield is free from the singular behaviour which characterizes the result obtained
in Fano’s approximation [7].

Fano’s original result [1] seems to be adequate for interpretation of most of
the experiments performed to date. We are unaware of any measurement of the
scattering cross section or the long-time quantum yield within a Fano resonance.
Also, line-shapes which were interpreted as Fanians were observed mostly in
spectral regions characterized by vanishingly small emission quantum yields.
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This is, as we have shown, the condition for the validity of Fano’s approximation
if only relative intensities are considered. In the Rydberg spectra of some large
molecules, (e.g. naphthalene) absorption line-shapes of the Fano type fail to
vanish at the bottom of the interference dip [6]. However, the non-radiative
width involved is too large relative to the radiative width [6] to enable our theory
to account for this phenomenon. It seems that background absorption provides
a better interpretation of the observed line-shape.§

Careful quantum yield measurements seem to be the best way to experimentally
verify the results of the present theory. The sharp maximum predicted near the
bottomn of Fano's dip (see, e.g., figure 3 @) may be unobservable because of the
unavoidable presence of background absorption. However, characteristic
energy dependence of the quantum yield should be observed also when inter-
ference effects are very small (e.g. figure 3%). The use of modern high intensity
light sources makes possible the detection of quantum yields as low as 10—%-10-7
With these techniques, the prediction of the present theory may be amenable to
experimental verification.

I am indebted to Professor J. Jortner and Mr. S. Mukamel for suggesting
the cross-check presented in equations (47)-(50) and for helping me in locating
an error in the original computations.

This work has been supported in part by the National Science Foundation
and Project Squid, Office of Naval Research.

+Florida et al. (6 b] have attempted an interpretation based on a Fano type analysis,
which does not involve background absorption. However, also in their analysis, background
abrorption is necessary to fit theory to experiment on the low energy side of the transition.
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