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The tunneling time of a particle through a given barrier is commonly defined in terms of “internal clocks”
that effectively measure the interaction time with internal degrees of freedom of the barrier. It is known that
this definition of the time scale for tunneling is not unique in the sense that it depends on the clock used to
define it. For the case of resonance tunneling, a particular choice that in the limit of a high/broad square
barrier yields the original result of Biiker and LandauerRhys. Re. Lett. 1982 49, 1739) is correlated to

the lifetime of the resonance state. This is illustrated for analytically solvable one-dimensional double barrier
models and for a realistic model of electron tunneling through a static water barrier. The latter calculation
constitutes a novel application of this concept to a 3-dimensional model, and the observed structure in the
energy dependence of the computed traversal time reflects the existence of transient tunneling resonances
associated with instantaneous water structures. These models, characterized by the existence of shape resonances
in the barrier, make it possible to examine different internal clocks that were proposed for measuring tunneling
times in situations where a “clock independent” intrinsic time scale (the resonance lifetime) for the tunneling
time exists. It is argued that this time may be used in order to estimate the relative importance of dynamical
barrier processes that affect the tunneling probability.

1. Introduction no effective change in the barrier height, but inelastic tunneling
. ) ) can occur by absorption or emission of modulation quanta. The
The dynamics of tunneling processes has been under discusierse of the crossover frequency separating these regimes is

sion for a long time. “Straightforward” time scales such as the ¢ estimated traversal time for tunneling. For tunneling through
rate for probability buildup on one side of a barrier following  {ha 1-dimensional rectangular barrier

a collision of a particle wave packet on the other side or,

equivalently, the time associated with the tunneling splitting in VIY) = Usg Vi =YY, 1

a symmetric double well potential, are important measures of v) = 0 otherwise (1)

the tunneling rate Following the work of Landauer and

Biittiker~6 and others, it has been recognized that other time and provided thatl = y, — y; is not too small and that the

scales may be relevant for other observables associated witHunneling energ is sufficiently belowUs, this analysis gives

the tunneling process. In particular, the question “how long does

the tunneling particle actually spends in the classically forbidden 7= d_ m d )

region of the potential” is of particular interest. Thiaversal v A 2Ug—E)

time for tunnelingis useful in estimates of the relative

importance of processes that may potentially occur while the for a particle of massnand energye < Ug. v, defined by (2),

particle is in the tunneling region. Energy exchange with other is the imaginary velocity for the underbarrier motion. A similar

degrees of freedom in the barrier and interaction with external result is obtained (see below) by using a clock based on

fields focused in the barrier region (e.g., deflection of a tunneling population transfer between two internal states of the tunneling

electron by an electrostatic field induced by a heavy ion) are particle induced by a small barrier localized coupling between

important examples. them? Using the same clock for electron transfer via the
The Bittiker—Landauer approach to tunneling time scales is SUPerexchange mechanism (equal-energy donor and acceptor

based on imposing an internal clock on the tunneling system, levels coupleql to opposite ends of a molecular brldge descr.lbed

for example, a sinusoidal modulation of the barrier height. by ar]N-state tight binding model with nearest-neighbor coupling

modulation frequencies much smaller than the inverse tunneling V> With an energy gag\E > V between the donor/acceptor

time the tunneling particle sees a static barrier that is lower or and bridge states), yieltis

higher than the unperturbed barrier depending on the phase of AN

the modulation. At frequencies much higher than the inverse T= AE )

tunneling time the system sees an average perturbation and so

It was show# that both results (2) and (3) are limiting cases

T Part of the special issue “John C. Tully Festschrift”. (wide and narrow band limits) of a more general expression.

10.1021/jp0258412 CCC: $22.00 © 2002 American Chemical Society
Published on Web 07/09/2002




Traversal Times for Resonant Tunneling J. Phys. Chem. B, Vol. 106, No. 33, 2002307

The interpretation of defined above as a characteristic time 4,4 space of two stategl 1= (1) and|20= (0) These states
for the tunneling process should be used with caution. An are coupled only in the baorrier region 1The Hamiltonian
important observation made by Biker? is that the tunneling glescribinpg the sy);tem is gon.

time is not unique and depends on the observable used as

clock. This observation is put on a more formal basis in section R B2 o2
2 below. Still, as shown in ref 1, it appears that with a proper = [— i a? + V(y)]l + AF(y)o, 4)
choice of clock the traversal time provides a useful measure m 3)'2
for the degree of adiabaticity of the interaction of the tunneling whereF(y) is 1 in the barrier region and 0 outside litis the

particle with barrier degrees of freedom. This issue is repeatedly 1 ) ) 01
encountered in electron tunneling through molecular environ- unit operato 0% ando; are Pauli matrices, e.gox = (1 0)-
ments, and its importance has been highlighted recently in The Hamiltonian (4) (we usi to denote the & 2 Hamiltonian
studies of electron transport in metaholecule-metal junc- matrix) corresponds to the concrete example of a &piparticle
tions. Whether the barrier appears rigid to the tunneling electron, described in the representation of eigenstates of the Pauli matrix
as is often assumed in theoretical modeling, and to what extentg, that interacts with a magnetic field pointing in the —x
inelastic transitions occur and affect transmission and conduc-direction, which vanishes outside the barrier and is constant
tance depend on the relative scales of barrier motions andinside it. In this casel = guB/2 = Aw /2 whereg is the

traversal time, properly defined. gyromagnetic ratiox is the absolute value of the magnetic
Assuming that eqs 2 and 3 do provide suitable measures formoment, ando, is the Larmor frequency

this purpose, we note that for a barrier of height— E = AE For an incident particle polarized in an arbitrary direction,

~ 1 eV and width~10 A (taking the correspondinly to be ie.,

~2-3), eqs 2 and 3 yield = 0.2 fs andr = 2 fs, respectively, a

both considerably shorter than the period of molecular vibra- — ; _ ; 1

tions. When tun>r/1eling is affected |C())r dominated by barrier Vin = expliy)(a,[ 1+ 8,20 = exp(lky)(az) ®)

resonances, these estimates may change. For example, we have ) o
recently analyzed resonance effects in electron tunneling throughWith [au|* + |a21/> = 1, the transmitted wave function is, apart
water and have shown that the lifetime of excess electron from the position dependent phase factor,

resonances associated with transient cavities in the water c

structure is of the order of 10 fs, suggesting the possible T/’trans=( l) (6)
involvement of OH vibrations and librations who move on &

similar time scales. A suitably defined tunneling time should where the incident and transmitted spinors are related by a linear

contain similar information. Indeed, as shown in ref 9, the . ” .
. : transformation that depends on the barrier characteristics and
traversal time computed using the same clock that leads to eqs

2 and 3 shows a good correlation with the typical resonance on the couplingl:

lifetime. In the present paper we expand our analysis of this c=Sa 7)

correspondence, using both a simple 1-dimensional double

barrier model and a realistic 3-dimensional water barrier that Analytical expressions for the elements of the scattering matrix

corresponds to electron transfer between metal electrodesS, as functions of the incident energy, for the Hamiltonian (4)

separated by a thin water film. A brief review of the clock- for a 1-dimensional rectangular barrier were obtained by

based definition of the tunneling traversal time is presented in Bittiker.2 In the limit 4 — 0 the total transmission probability

section 2. Section 3 discusses the applicability of the tunneling T = |Su1l? = |S$2/? is the same as would be obtained for a particle

time concept to resonant tunneling processes within a simplewithout internal structure. Association with time is achieved

1-dimensional double barrier model, while section 4 describes by considering the relationship between the normalized trans-

our results for water barriers. Section 5 concludes. mitted wave function] Z1ans and the wave function obtained
by the interactiont operating during time, i.e.

2. Traversal Time as an Observable Variation Problem

_ —itHye B
Different approaches to tunneling traversal and reflection V(@)= ’ (az) =U(@a (8)

times attempt to estimate the time the tunneling particle spends

“under the barrier” given that it is eventually transmitted or whereH, = A(|]102| + |2001]). For smalli
reflected. Additionally, a dwell time can be defined when the
outcome of the tunneling process is undetermiidathese times (1= (1/2)(t/h)? —idtlih

are obviously different from each other. In the present section U= —iltlh 1 — (1/2)Q/h)? ©)
we focus on the traversal time. We follow the approach taken
by Biitiker? following earlier works by Ba#!2 and Ry-
bachenkd?2 This approach is based on the analysis of a particle
with two degenerate internal states undergoing the elastic

We may attempt to define the traversal time for tunneling by
formally requiring that ford — 0, W(1) = T Y2pyqns i.€.1°

scattering (or tunneling) process. The two internal states are Ussay + U, = T(8) 4Spya; + S;,8,)

weakly coupled only in a particular spatial region (e.g., the

barrier). An analysis of the subspace of internal states in different Uy, + Uy, = T(a)‘l’z(s2 2, +S.8) (10)
components of the outgoing wave function provides a measure

of the time the particle spent in that region. These equations, howevare not mutually consisterite., they

In the following discussion we consider a 1-dimensional give different results forr. Furthermore, these results may
tunneling process (defined to be along ttdirection) and focus depend on the choice of the initial This is the origin of the
on the transmitted part of the outgoing wave function. The observation that the “tunneling time” depends on the observable
tunneling particle has an internal spin coordinate described in used to estimate it. For a dynamical variallein the spin
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subspace, a time, may be defined by the requirement that
the relative change iA that accompanies the tunneling process
is the same as that associated with the time evolution (8):

|——"JutransJAl wtrang_ |EA‘(}in |A| 1/}in D:

|ZlytransJ wtran;| Elyinw)inl:|
W(za) AW ()0 [W(r=0)|AW(r=0)1
W (7,) [P (7,0 (W(z=0)|¥(z=0)O

(11)
or

2 2 2 2
T*llzkzlAjkC}“Ck = JZlkzlAjk(U(f D) U)a), (12)

Let the incident spin wave be in thez direction, i.e.,a =
(é) ForA = o, = (é _(1)) this leads to

1Sul® — 1)° (Arz)z
T fu: 13
1Sul? + 1S,1° h o)
to second order i, while A = oy = ((I) _(')) yields
{Im}(SuSy _ 47y (14)

ISy + 1S 1

These equalities yield expressions fpandzy that are consistent
with Bittiker’s definitiong of the corresponding tunneling times
in terms of the spin rotations in the two directions that are
orthogonal to the direction of the “external” magnetic fiéfd.

However, usingA = oy (g %) gives zero on the right-hand
side of (12), so no information can be obtained on the tunneling
time 7y, which is associated by ‘Biiker with spin rotation in
the direction parallel to the external filed. Indeed, the commu-
tativity of oy with H implies thatléyOOremains zero at all time
under the time evolution (8. We note that Bttiker? has
identified [&Owith w| tx, anddefinedzy by this relation. This
leads to

{ReH(SuS) _ 4z,
1Sul” + 1S5y

= (15)
These three times are relatec?by
2

sz + ryz =1,

The fact that the tunneling time obtained as described above
depends on the observable used to define it is an awkward

feature of this concept. It is interesting to note that, for an
incident particle in thea (é) state, if we replace the
requirement®(r) = T Y2yans i-€., U = T-Y2S by |U;| =
T-12|S| (to be evaluated fot — 0) it may be easily checked
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Figure 1. Traversal time, eq 16, for a system described by the
Hamiltonian (17) withV(y) given by eq 1, displayed as a function of
AE for a particle incident on a 1-dimensional barrier with endegyn
channel 1, i.e., in spin staté= (%) The barrier height itJg =5 eV,

and the incident kinetic energy is 2 eV (full line), 3 eV (dashed line),
and 4 eV (dotted line).

a5

of considering the importance of competing population transfer
processes in the barrier. Furthermore, in the following sections
we find (see also ref 18) that for resonance tunneling this time
correlates well with the lifetime of the barrier resonance. Still,
it should be emphasized that this concept should be used with
caution. For example, tunneling times defined by eq 14 or 16
also depend on the energy spacing between the two internal
(spin) levels that was taken as zero above. For example, Figure
1 shows the dependence of the timef eq 16 on the energy
spacingAE = E; — E;, between the levelglland|2[]i.e., the
Hamiltonian (4) is replaced by

Hz[ 2m gy’

It is seen that the computed traversal time depend&Bmot

a surprising result considering the fact that at constant incident
energy the two internal states see different effective barriers
that depend om\E. Still, in the range—0.5 eV < AE < 0.5

eV, which is the relevant range for assessing the relative
importance of nuclear dynamics effects on electron tunneling,
this dependence is seen to be modest and the calculated time
provides a reasonable order of magnitude indication.

2 2
L V(y)]l +%AEOZ+/1F(y)O“X (17)

3. Traversal Times in Resonant Tunneling by the
Distorted Wave Approach

As argued above, the concept of tunneling time is useful when
discussing the possible importance of barrier processes that
transfer population between internal states of the tunneling
system. Resonant tunneling situations are important examples
of cases were such barrier processes could happen. Here we
apply the formalism outlined above to such processes. A

that the resulting two equalities lead both to the same expressionl-dimensional double barrier model where the tunneling be-

for z,

L_hISd_hlSd_
Al T2 (A1 1S,l *
which, for a square barrier characterized by the widtand

heightUs, yields the result (23.
This definition of the tunneling time asz; is appealing as

(16)

havior is affected by resonance(s) in the intermediate well is
considered in this section, and a 3-dimensional model that
corresponds to a water layer between two metal electrodes is
discussed in section 4. In both cases we show that, near
resonance, the result of eq 16 is in a good correspondence with
the resonance lifetimes, while alternative measures can give
counterintuitive results.
The one-dimensional double barrier potential is defined in

a measure of the duration for a tunneling process for the purposeterms of the potential energy function:
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0 Y™V

Vo Y3<Y=Y,
VY)={0 Y,<Y=Y;

Vo i <y=VY,

0 y=y

(18)

The tunneling time through the double barrier is defined in terms

of the two-dimensional Hamiltonian in eq 4, in which the one-
dimensional tunneling coordinate is coupled locally to internal
“spin” levels. The coupling range is defined Byy), which is
zero fory < y; andy > y, and equals 1 within the barrier range
y1 <Y < ya In the particular case of resonant tunneling through
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im - imA rya -,
51,2: - @WLHVHW)EDD: - @/}Z 1/)|,1 (Y) w:l(y) dy
(26)

Using eqgs 13, 25, and 26, the tunneling timean be expressed
as

- 1S5 Sl _
’ (S P +18,% S

g Wi ) Vi) B @D

a symmetric double barrier, where the on-resonance transmissioryvhere we have used the limit— 0 again, in neglectings, 2|2

probability is unity, it was shown by Leavens and Aérhat
¢ vanishes, and so the traversal time is given by

Ttrav = TZ =T (19)

y

In the previous section the different tunneling times were defined
in terms of the scattering matrix elements associated with the

two-dimensional (“spinor”) Hamiltonian, eq 4. Our purpose is
to expressyay in terms of the parameters of the one-dimensional
double barrier (eq 18). We start by dividing the potential energy
operator into two parts, following the two potential formali&n,

V=V, +V, (20)

with

Vi=vy)l, V= AFM)o, (21)
In the weak coupling limitA — 0, the transmission proba-
bility amplitudes can be well approximated by the distorted

waves approximation. Let the incoming wave vectorkoe

V2mEH?, the transmission probability amplitude from an
initial spinor stateg;[to a final spinor statéy;lllis given by

S5= 0y — (It VI
&1y = Ay, ¥y I Ty ¥y I (22)

The double bracket notation is used for integration over both
the spatial and the spin coordinatgg;is the exact scattering
wave function associated with the asymptotic statéll
1 N
|1/}J-DD= (1 + E—_'mV)kpj[[D (23)

and the asymptotic states are defined|@gll= eiky(%) and

|poM= ek 8) ly;;are the distorted waves, which are the

exact incoming {) and outgoing {) scattering states in the
absence of the two-level coupling (i.e., for= 0):

1

Substitution of the appropriate asymptotic states leads to the

following expression for the transmission probability amplitudes:
_ im__ _ «
S,=1- @Wl,ll\/l'q)l[m:

1= ) V) 9109 o (25)

Y1

relative to|S; 1/2. The latter expression can be farther simplified
for the particular case of aymmetricdouble barrier, with
isolated resonance states. For> 0 the transmission at near
resonance impact energies is close to uniy;| — 1. In such

a case, one obtains

T,= T (28)
wherev is the incoming velocity
(29)
and the effective barrier widthXes, is given by the overlap

integral between the incoming and outgoing distorted waves in
the barrier region:

Xett = 1L 2" () ¥iia(y) dly] (30)

Y1

The distorted waves can be calculated explicitly as solutions to
the one-dimensional Schiimger equation,

R, V(y)]w(Y) = Ey(y) (31)
2m Hy?
For a stepwise potential,
V(y) =V, WS<Y<V.1 N=1,2,..N (32
a solution to the eq 31 in theth segment is given by
Va(y) = A(B)E + B (B)e "
- ST

where the standard continuity condition of the function and its
derivative at the matching points leads to the following
recursion?®

Av(E) _
B, +(E)

o A EVBLENE Yy + k) + ek, — k)

(AENBL(ENE (K, ; — k) + e (ki + k)

(34)

The coefficients{ A|(E)} and {Bn(E)} of the incoming and
outgoing distorted waves are obtained by the recursion above,
with the following incoming wave boundary conditions,




8310 J. Phys. Chem. B, Vol. 106, No. 33, 2002 Peskin et al.

T (v) > A =1- — TABLE 1: Resonance Lifetimes and Traversal Times for
Vi) A =1By=0 Double Barrier Potentials
Pay) < A=1B,=0 (35) model resonance energy  Tres Tuav  TradTres
o o symmetric 0.0142i0.000302  1655.6 3330 2.0114
The tunneling timeg,, can therefore be calculated explicitly 0.0566- i0.002517 198.65 410 2.0639
according to egs 2830. 0.1266 i0.008990 55.617 122 2.1936

Let us consider two different double barrier model potentials. nonsymmetric 0-0226,50-00023915 1277.1 25;4 5-0155
The first is a symmetric double barrier potential characterized 0.0887-10.0032165  155.45 824 2.0843
by the parametertlg = 5 eV, (1, Y2 3, ¥a) = (~10, =7.5, is 16 x 400 x 16, with grid spacings 0.4 au in the tunneling
7.5, 10) au. The second is nonsymmetric with the parameters yirection () and 2.77 au in the parallel directions, (2).
Us =5¢eV, (. Yo V2 Vo) = (—10, —7.5, 3.75, 10) au. Both Absorbing potentials, applied near the grid boundary inythe
models support resonance states, which are solutions of thegjrection, make it possible to solve a scattering problem on a
Schralinger equation (which amounts to the recursion relation, fipite grid. Periodic boundary conditions are used in xhend
eq 34) when outgoing wave boundary conditions are applied. ; girections. The distance between the metal electrodes depends
Denoting the resonance stateiagy) gives the corresponding o, the number of water monolayers. The overall dimensions of
boundary conditions for the recursion as the water slab in the simulation cell were thus 23510 x
P 23.5 A for 3 monolayers, and 23.%5 12.9 x 23.5 A for 4
Yr(Y) = A =0:By=0 (36) monolayers. The water density between the electrodes was
assumed independent of the confinement, and was taken as 1

These conditions can only be satisfied for a complex resonanceglcmg_ This corresponds to a total of 197 and 257 water

energy, molecules in these two water slabs.
T We consider theone-to-all transmission probability: the
E=E - '5 (37) electron is incident in the directionnormal to the barrier, and

the transmission probability is a sum over all final directions.
A search was carried out for complex resonance energies forFor an electron without internal states, described by a Hamil-
the two models. The resonance lifetimasss = 1/I',were tonianHo, this probability is given b2
calculated directly from the imaginary parts of the resonance
energies and are given in Table 1. For each resonance the T=gl]jbin(E)IeinGTéoutGEinWin(E)D (38)
traversal time,tyay, Was calculated in terms of the distorted h
waves (eqs 9 and 27), for the impact ene E;, the real )
part of g[hg resonance) energy. Thgse resull??tare also shown iwheregin = €9/+/v with k = v2mBEh* andv = hk/m, €, and
Table 1. We see that the resonance lifetimes and the traversaFoutare absorbing potentials in the incident and transmitted wave
times are strongly correlated. Interestingly, we find that “on regions and
resonance” the traversal time that measures the interaction time . 1
with an external clock is roughly twice the lifetime of the G=(E—Hyti(e,+ €ow)) (39)
corresponding resonance states. One may be tempted to explain ) .
this observation for a symmetric double barrier where the ~OF the absorbing potentials we have usgd= (2lyl/L)"for
resonance decays to both directions at double the rate associatedy/2 = Y = 0 and the corresponding mirror image
with traversal to one direction. Indeed, for this casétiRar? wherelL is the length of the calculational grid in tiyelirection.
has shown that within the BreitWigner approximation for the For the present problem we takg,= (e”‘V/\/E)(é) and
scattering matrix near resonance, the tunneling time is equal tothe Green’s operator is given by (39) withy replaced by
the dwell time, which is twice the resonance lifetime. Interest-
ingly, we obtain similar results also for a nonsymmetric barrier, ~ 10 01
which suggests that the roots of this observation may run deeper H= Ho(o 1) + ’“:(y)(]_ o) (40)

and will be addressed elsewhere. wherel is a constant ané(y) = 1 in the barrier region and 0O

outside it. The approximate scattering wave function,

In this section we examine the use of the traversal time A . ¥,(E)
concept for a particular and singularly important case: electron [y (B)ID= iG(E) &l (B) = (1/}2(5))
tunneling through water. Preliminary results for this system were
already publishedl.For specificity we consider a particular s evaluated using iterative inversion methods as in our previous
situation: electron tunneling through a water layer confined work 2223 The transmission probabilities into th&dand |20
between two planar Pt (100) electrodes. Our model system andstates (summed over all final directions of the transmitted wave)

4. Traversal Times in Water

(41)

interaction potentials are the same as those used Béféte are obtained froR{28
evaluate electron transmission probabilities in water. In par-
ticular, the potential experienced by the electron is taken to be 1SL(E)*> = (2R)T,(E) ¢, dvi(E)IM  i=12 (42)

a superposition of the vacuum potential, modeled by a rectan-

gular barrier, and the electron-water interactibithe latter is These probabilities are used to compute the traversal#{Ee
represented by the pseudo-potential of Barnett 8t edgdified?® according to eq 16

to account for the many-body aspect of the water electronic  Figure 2 shows calculated traversal times as functions of
polarizability. Water configurations are sampled from an equi- incident electron energy. The distance between the two platinum
librium trajectory obtained by running classical molecular electrodes is herd = 18.9 au, corresponding to three water
dynamics simulations. The electron Hamiltonian is represented monolayers. The barrier potential is taken as the superposition
on a grid in position space. The overall grid size that was used of the vacuum potential (represented by a simple rectangular
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Figure 2. Computed traversal time as a function of the incident electron Figure 3. Traversal timer (full line; left vertical scale) and the
energy measured relative to the vacuum barrier. See text for details.transmission probability (dotted line; right vertical scale) computed as
functions of incident electro_n energy for one static configuration of

barrier of heightUg) and the electronwater effective potential.  the three-monolayer water film.
Shown are the results obtained for this barrier (full line) and ¢ | h h .
for the corresponding vacuum potential (dashed line). The dotted'S: We leave the exact correspondence between these times to
line represents the approximation (2) to the traversal time for future study. _
the vacuum potential. These results were obtained for a vacuum 1 he calculations discussed so far are based on the one-to-all
barrier heightUs = 5 eV, but takingJg = 3 eV made practically transmission probability with the electron incident normal to
no difference. We may conclude that, as in eq 2, also for the (N water layer. For completeness we consider also the
3-dimensional water barrier the traversal time depends mainly eq“'Va'_ei”t result obtained from a one_-to-one tra}nsmlssmn
on the incident energy measured relative to the (vacuum) barrierProPability, where the electron is transmitted at a given angle
height and only very weakly on the absolute energy. Two other €lative to the layer. Th% nzgedﬁ matrix_elements were
significant observations can be made: (a) For the 3-dimensionalc@lculated from eq 41 usifig
water barrier the tunneling time exhibits a complex dependence . .
on the incident energy (measured relative to the vacuum energy), S = il éqydp D (43)
and in particular, what appear to be resonance features are seen
below the vacuum barrier. (b) The absolute traversal times arewith |0 given by eq 41:|¢:00 = v—l/zék-r(é); |pol] =
fractions of femtoseconds in the deep tunneling regime, and vflfzeik"(o)
5-10 fs at the peaks of the resonance structure below the . 1 )
vacuum barrier. Figure 4 shows the results obtained fofour t,; 7« of ref 2)

It should be emphasized that the results displayed in Figure 8 Well asrc andzy (egs 5 and 14¢; andz, of ref 2). We see
2 correspond to a single static configuration of the equilibrated that the estimate for is only weakly sensitive to the "experi-
water, and different results, in particular in the resonance- MeNt” (one-to-one or one-to-all) done. Also, as functions of
dominated tunneling regime within 1 eV below the vacuum Incident energyz, andz, behave quite differently from. In
barrier, are obtained for different static configurations. The Particular,z, shows a pronounced dip (familiar from earlier
following common features are noteworthEirst, a strong  Studies®) near the resonance energy, whilg can become
correlation with the resonance structure of the transition N€dative close to the barrier top where interference features
probability is observed (see also below); second, in the dee affect t_he transmission proba_b_|I|ty. Surprlsm_gly, we f!nd that
tunneling regime, the computed time is similar for different these times are not very sensitive to the particular incident and
configurations, is proportional to the barrier width, ane-50% scattered directions used in the 1-to-1 calculation.
longer than for the vacuum barrier. These calculations were carried using static water structures

The nature of the resonance structure observed below theSampled from a classical equilibrium distribution. The computed
vacuum barrier is elucidated in Figure 3. Here we show, for a times provide a posteriori Jugtlflcatlon .for this procedure. In
particular configuration of the three-monolayer film, the tun- particular, the relatively long times obtained near the resonance
neling time and the transmission probability, both as functions peaks are short relative to the lifetime of the structural defects
of the incident electron energy. The resonance structure in the

that give rise to these resonances. It is important to note,
transmission probability was discussed in ref 23 and was shownnowever, that these times are of the same order of magnitude
to be associated with cavities in the water structure. Here we

as the periods of intermolecular librations and intramolecular
see that the energy dependence of the tunneling time follows

-3 -2

OH stretch vibrations, suggesting the possibility that inelastic

this resonance structure closely. In fact, the times1( fs) processes contribute to the tunneling process. Indged,_ recent
obtained from the peaks in Figure 3 correlate well with the calcullatlor?é.0 have elucidated the effects of water vibrational
resonance lifetimes estimated in ref 23. A similar correspon- @nd librational motions on electron tunneling through  this
dence was found for all configurations studied. It is interesting SYSt€M.

to note that, as in the 1-dimensional case discussed above, th
traversal times at resonance energies are longer by factors o
order 2 than the corresponding resonance lifetimes. For example, The tunneling time is not a unique quantity, and different
for several of the resonances found in ref 23 we find an averagemeasures depend on the observables used to quantify them. We
traversal of 11 fs, compared with an average lifetime of 6.65 have pointed out that a particular measure, eq 16, is particularly

%. Conclusions
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Figure 4. Different “tunneling times” vs incident electron energy for
the configuration of Figure 3. All results are for incident direction
normal to the water layer. (a) Traversal timebtained from the one-
to-all transmission (full line, same as full line of Figure 3) and for
one-to-one transmission with an outgoing wave &t @ashed line)
and 45 (thin dotted line) to the normal. (b) One-to-one transmission
calculation ofzy (full line and thick-dotted line; outgoing wave at 20
and 45 to normal, respectively) and of (z; of ref 2; dashed line and
thin-dotted lines; outgoing wave at 20 and®486 normal, respectively)

Peskin et al.

is associated with resonances originating from structural defects
in the water structuré® The tunneling times;-10 fs, computed

at the peaks of these structures, follow the lifetimes of the
corresponding resonances. These results set the scale for gauging
possible effects of other barrier motions, e.g., intramolecular
water vibrational modes, on the tunneling process.
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