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Numerical computation of tunneling fluxes
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The computation of tunneling probabilities in three dimensions is a numerical challenge, because
the small transition probabilities associated with the overlap of exponentially vanishing wave
function-tails require large computational accuracy. In scattering situations arising, e.g., in electron
tunneling in metal-molecule-metal junctions, this is compounded by the need to provide a proper
truncation procedure at the numerical boundaries of the computed system and by the need to account
for electrostatic fields and image interactions. This paper describes a numerical methodology to deal
with these problems. A pseudopotential that describes the underlying system is assumed given.
Electrostatic fields and image interactions are evaluated for the given boundary conditions from
numerically solving Laplace and Poisson equations. Tunneling probabilities are computed using a
grid-based absorbing boundary conditions Green’s function method. An efficient and exact way to
implement the absorbing boundary conditions by using the exact self-energy associated with
separating the scattering system from the rest of the infinite space is described. This makes it
possible to substantially reduce the size of the grid used in such calculations. Two applications, an
examination of the possibility to resolve the spatial structure of an electron wave function in an
electron cavity by scanning tunneling microscopy, and a calculation of electron tunneling
probabilities through water, are presented. 28602 American Institute of Physics.
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I. INTRODUCTION amount of work has been done during the past two decades
using quantum chemical electronic structure calculations to

Tunneling phenomena are pervasive in many processes . . .
8valuate such electronic coupling elements for intramolecu-

that involve low temperature transport of light particles, andl?r electron transfer processes and for electron transfer be-

in the context of atomic and molecular processes are mo o . )
b ?Ween donor and acceptor species in protein environments.

frequently encountered in electron and proton transfer reac- . . . .
q y P The need to determine such three-dimensional tunneling

tions. While simple analytical solvable one-dimensional . . . . . .
models are often used as guides for understanding observg]-atr'x elemgnts Is particularly |mpo_rta_nt in analyzing pro-
tions of tunneling transport, detailed three-dimensional cal®€SS€% that involve electron transmission through molecules

culations are needed for full analysis. As a case in poinf)r molecular layers that separate between regions of free or

consider electron transfer in condensed molecular enviror@uasi-free electrons, e.g., metal electro%i&;ch processes
ments such as water or proteins. Following Martdgarly e gncountgred in metal-molecule-metal junctions and re-
treatments of such processes have used continuum dielectf€Nt intérestin their study stems from the need to understand
pictures to treat solvent effect on electron transfer. This apth€ “underwater”(i.e., in solution operation of the tunnel-
proach has been quite successful in elucidating the qualitd®d €lectron microscope on the one hand, and from recent
tive phenomenology of electron transfer processes that a@udies of molecular junctions where a molecule or a mo-
dominated by solvent induced fluctuations in the donor andecular aggregate is used as a conductor connecting two
acceptor energy levels, by describing these fluctuations usingéetal leads, on the other. The transferred electosrmore

the macroscopic solvent polarization through the frequencgenerally, the charge carrjein such systems is not localized
dependent dielectric response. However, a quantitative deteif the initial and final states, therefore the transfer process is
mination of the transfer rate requires the evaluation of théot dominated by solvent reorganization, leaving the tunnel-
tunneling matrix element, i.e., the electronic coupling be-ing matrix elements as the main factor that determines the
tween the donor and acceptor. This coupling dependgansmission rate or the tunneling current.

strongly on the structure of the molecular medium separating Depending on the spacer between the two metal leads,
between the donor and acceptor sites, and its evaluatiogalculation of electron transmissiof@.g., current—voltage
amounts to evaluating the tunneling rate between these siteharacteristiosin such systems can be carried out using an
separated by a three-dimensional potential barrier of relaappropriate basis set of molecular or atomic orbitals. Alter-
tively complex nuclear and electronic structure. Considerabl@aatively, in deep tunneling regimes, where the electron en-
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Here7}; is the transition probability from the incoming state
i to the outgoing statg the sum over andf is over all states
i (“channels”) associated with the electron on the left and
\ right electrodes, respectively, afg is the Fermi energy. In
another context, the reactive flux theory of Miller and co-
workers 7(E) has been termed the “all to all” transition
, probability. The important point is that in this dissipationless
i single electron theory, the conduction of a given junction is
B’ B D D' related toZ, a result from scattering theory. Indeed, evaluat-
ing 7 amounts to solving a three-dimensional single particle
Z potential scattering problem in a rather complex scattering
FIG. 1. Amodel system used to compute electron transmission between tvvgmer.]tlal’ where for a particle InCIdenE on th.e targ%". the
electrodes L and R separated by a narrow spatial géd) containing a Junction) from the left electrode the “reactive flux” is the
molecular species. The surfagg of L is shaped to mimic a tip. The lines flux traveling in the right electrode in the positizelirection.
A'B’, C'D’ andAB andCD are projections of boundary surfaces normal As already stated, in energy ranges where this quantum
to the transmis_sion directiofsee text for details The numerical solution is Scattering problem can be expressed using a given molecular
carried on a gridshown). . . . . .
basis set in the junction, standard quantum chemistry meth-
ods can be employed to evaluafe Alternatively, if the
electron-target interaction is reliably modeled by a local po-
ergy is far from resonance with any molecular level and tuntential it is convenient to use a basis based on a spatial grid.
neling takes place mostly or partly in intermolecular space, &Ve have found that a cubic gritvhose two-dimensional
spatial grid basis may be used if a suitable pseudo-potentigirojection is shown in Fig. )lon which the kinetic energy
for the electron-molecule interaction is available. In severabperator is represented by a standard differencing
recent papers we have used such an approach to investigapproximatiofi can yield a reasonably accurate transmission
electron tunneling through water. The present paper disprobability, provided the mesh size is chosen to give a reli-
cusses several methodological issues involved in such a catble representation of the scattering potential. In a typical
culation. We discuss two generic issues that should be corgalculation periodic boundary conditions are employed in the
sidered in all calculations of this type. These #&a the x andy directions parallel to the electrode surfaces, while in
handling of the electrostatic interactioeectric field distri-  the tunneling directiorz the calculation is restricted to a
bution and image effectsand (b) the use of absorbing po- finite segmeni, say between surfacésB andCD in Fig.
tentials. Together with the(assumed given electron- 1, of the infinite system by projecting out the rest of the
molecule pseudopotential and the bare potential associatedectrode bulks. This gives rise to self-energy terms in the
with the electrode-vacuum interfadmost simply modeled Green's function associated witl. The all-to-all transition
as a potential step with height derived from the metal work{robability is given by
function), the representation of the Hamiltonian on a suitable _ +
grid and an adequate numerical method to evaluate needed ME)=THG(E)R(E)GCHBTLB)], ©
Green’s function matrix elements, the end result provides avhereG(E) is the retarded Green'’s function bf, i.e., with
framework for computing single electron tunneling prob- (Hy);;=H;; wherei andj are grid points in the segmeh
abilities in metal-molecule-metal junctions under bias. _ -

Figure 1 illustrates the nature of our problem. It repre- G(E)=[E-Hu—2(E)] @)
sents a two-dimensional cut through a three-dimensiondl (E) is the retarded self-energy resulting from projecting
junction made of two metal electrodéhe bulk gray areas out the rest of the electrode bulks add(E)=T"(E)
whose edges in the junction region are the black lines de+I'g(E) is twice its negative imaginary part with contribu-
notedS; andS,) and a molecular entityrepresented by the tions '\ (E) and 'g(E) associated with the left and right
dark-shaded ellipso)dA potential bias is employed between electrodes. The Tr operation corresponds to a sum over all
the electrodes and the resulting current is monitored. The factiagonal terms, Fe=;( );;. It should be emphasized that
that the electrode surfaces are generally nonplanar is reprére calculation of7f(E) should be done under the given po-
sented in the figure by the tiplike shape of the left electrodetential biasAd between the two leads. The tunneling current
In the absence of thermal interaction the linear conductancr this voltage is then computed from Ref. 6:
of this junction is given by the multichannel Landauer for- o (=
mula |=—J dE[f (E)~ fx(E)]T(E). )

5 Th 0

e
9(E)=— T(Ef) 1) To evaluate the transmission probabili) we need(a)
to get an expression for the self-energy matrigeand T,
that connects the conductignto the multichannel transmis- and(b), to invert the matrix in Eq(4). In much of the com-
sion probabilityZ(E) putational scattering theory literature the calculation of the
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self-energy is circumvented by using the observation that, ithe polarization response of the metal electrodes to the ex-
the mathematical boundaries of the segnfeéon which the cess electron in the junction, what is sometimes called the
calculation is made are set far enough from the taiget, in ~ image effect is potentially an important ingredient in this
Fig. 1 replace the boundariesB and CD by A’'B’ and  calculation. If we take the electrode surfaces as classical
C’'D’, respectively, the resulting self energy should simply electrostatic boundaries the first issue is conceptually
reflect the fact that a particle crossing these boundaries in th&traightforward, and the external field distribution in the
outward direction is not reflected back and therefore disapj-unction may be obtained from solving the Laplace equation
pears forever from the system. One then set@=0and  with the Dirichlet boundary conditions on the electrode sur-
replacesl’| (E) and I'z(E) by simple energy independent faces. The second issue is highly nontrivial, since using
absorbing potentiald’ (E)—2¢ (z) and I'r(E)—2€r(z)  simple static image to account for metal electronic response
that are chosen to affect this reflectionless propagatiog, the excess electron in the junction is just a poor man’s
through the left and right boundaries of the systmn this  3ppr0ach to a very complex many electron problem. A simi-
absorbing boundary conditions Green's functi®hBCGF)  |5¢ problem arises when the response associated with the
formalism Eq.(3) becomes molecular electronic polarizability in the barrier to the tun-
TE)=4 T{G(E)erG'(E) €, ]. (6) neling electron is considered. If the time scale for this re-
ponse is fast relative to the timescale of the tunneling event,

For example, in our previous calculations we have employe simple local potential associated with this polarizability

the form response can be constructed. We have argukdt such an
2|2\’ approach provides a reasonable approximation for electron
€Lr(Z)= L, () tunneling through water. Similarly, if the timescale associ-

ated with a tunneling event is slow relative to the metal

that expresses the need for a very smooth rise of these aisgponse time, static image should provide a reasonable ap-

sorbing potentials toward the boundaries needed to avoif;yimation for the metal response. The metal response time
reflection. Noting that in tunneling calculations we often eN-.an be estimated from the plasma frequency, of order
counter the need to compute transmission coefficients of O 651 while the relevant for a tunneling event ihrough a

10 H H
der, say, 10, the necessity to avoid even the small reﬂec.'barrier of height 1 eV and width 10 A is estimated to be

tion that will cause an error of this magnitude makes 't~1015$‘1. This justifies the use of static image in such tun-

necessary to use a very gradual rises(df), as seen in Eq. . . ; .
S ; . neling calculations and we will adopt this approach here as
(7), which in turn makes it necessary to increase the syste . . .
as been done many times in the past following Ref. 14.

size in thez direction. Typically, the system size in this di- : L .

i ; . Evaluating the static image between electrodes of arbitrary
rection was taken 3—4 times larger than the actual size of theh titut trivial ical problem that we di
target (expressed by the range of the electron-target potens- ape constitutes a nontrivial numericai probiem that we dis-

tial) in implementations of Eq6), and a typical spatial grid cuss below.

used—*3in calculations of electron tunneling through a water A numerical calculation of electron tunneling in a biased
layer made of, say, three monolayétisickness~10 A) was junction within the framework described above thus requires:

16X16X400 with lattice spacing of the order of 0.1 and 1.46(@ evaluating the electrostatic field distribution in the bar-
A in the tunneling and in the lateral directions, respectively.1€f; (b) evaluating the image interaction as a local potential
This implies the need to invert matrices of ordei(® to get affecting the electron(c) having a suitable pseudopotential
G(E), and a sum over a number of points of the same ordefhat describes the interaction of the tunneling electron with
to calculate the trace in Eq6). For this reason our earlier the underlying molecular systentd) deriving and testing
calculations were restricted to the one-to-all transmissiorsuitable absorbing potentials that allow to truncate the sys-
probability associated with a particular incoming staten ~ tem in the tunneling direction, or alternatively evaluating the

the left (say that in theABCGF formalism is given by exact self-energy associated with this truncati@;Setting
the scattering Hamiltonian on a spatial grid and using a suit-
P|(E)=E<||6LGT(E)ERG(E)6L|I). (8) able numerical inversion algorithm to evaluate the needed
h Green’s function matrix elements.

Obviously, if exact expressions for the self-energy were ~Common to stepga), (b), and(e) is the need to invert
available one could use E(B) with the boundaries\B and  !arge sparse matrices. Krylov space based iterative methods
CD placed right on the edge of the target. In practical cal-are particularly suitable for this task. In our applications we
culations we have found that implementing this idea makes ifave used the implementation of this method provided in the
possible to reduce substantially the size of the calculationd?ETSc packag®.
system in thez direction, providing saving of at least an Some of these issues have been described in our recent
order of magnitude in both the memory requirement and théublications. This paper deals with recent developments in
CPU time needed. the methodology used for others. The next section provides
Another important, and not completely solved problemthe details of our numerical approach to the electrostatic part
is the need to evaluate the electrostatic and polarization inef our problem. In Sec. Ill we describe the way the absorbing
teractions that affect the tunneling electron. Two issues arboundary conditions are constructed. Two applications, an
involved. First, for a given potential bias the electrostaticexamination of the possibility to resolve the spatial structure
field distribution between the electrodes is needed. Secondf an electron wave function in an electron cavity and a
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calculation of electron tunneling probabilities through water,Dirichlet (potentia) boundary conditions on the surfac8s
are presented in Sec. IV. Section V concludes. andS, appear as fixed terms in the l.h.s. of Ef). Taking
these terms to the r.h.s., E@) takes the form

Ad=h, (11

Il. ELECTROSTATIC AND IMAGE INTERACTIONS

Between the two metal surfaces the tunneling electron o
moves in an external field imposed by the potential drop. Th&vhere the potentia® is now represented by a vector of the

distribution of this field between the electrodes is obtainecPrder of the total number of grid points The boundary-
from the Laplace equation conditions vectorb is of the same order, whilé\ is an

nXn matrix. In the more general case of position dependent

2 —
Vie=0 ©) dielectric response characterized by a dielectric function
using a finite differencing scheme on the given lattice, e.g.,Ed. (9) becomes
5? B0 K O>i+1,j,k)—2P(,j,k)+P(i—1,,k) V- [e(r)Vd(r)]=0. (12
_2 I!Jy = 2 ]
X h% (10 Particular care must be exercised in cases where the inhomo-

geneous medium is described by a discontinuous dielectric
where (,],k) is a grid point andh, is the grid spacing in the function, e.g., in a model system with different dielectric
x direction. Periodic boundary conditions in tkeandy di- media separated by distinct boundaries. In this case the dis-
rections are naturally contained within this scheme, and theretization scheméL0) become¥’ 18

ClidM®i+1,k)—®(i,j,k)]—=Clly [ PG,],K)—P(i—1,,k)]

V-[e(nVe(r)]— )

::’}JLLK[I(IIJ 11k) I('!Jvk)]_::yii(lk[l(Ia.lyk)_I(Ial lyk)]
+ 2)s ) S
h2
y

Cll @ (i,j k+1) =D (i,j,k) = Cll_ [ @ (i), k) = P(i,j,k=1)]

+ ’
h;

(13

where potential of a point charge in the desired tip-plane geometry
. and once ford,(z)—the potential of a point charge at the
ik _o e(i,j,k)e(l,m,n) (14  Same position between two parallel planar electrodes. In the
bR (i, k) + e(l,m,n) differenceA®d(r,z) =®,(r,,z) — ®,(z) the self-energy sin-

ular part is eliminated. Also much of the unphysical contri-

Cr:)n3|der now thede_valrl:atlon of tt;e Image r;]otentlal of alpol'ngution of the periodic replicas is eliminate@he interaction
charge positioned in the space between the two metal eleGy e glectron with its own replicas is eliminated but not its

trOQe§ In a tlp-sub_stratg geometry such as S,hOW.” in Fig. nteraction with the replicas of the tip, which still leaves a
This image potential arises from the polarization induced O mall error in the resulting potentiplAd is therefore an

%{pproximation to the difference between the image potential
of a point charge in the space between the tipped and the flat
@lectrodes and the potential of a similar point charge between
two planar electrodes. An analytical expression for the latter

ciated with a given charge distributigsir) in an inhomoge-
neous dielectric environment can be computed from th
Poisson equation equivalent of Ed-2)

V[ e(r)V(r)]= - 4mp. (15 s knowr®
On a grid this leads again to E(L1), with ab vector that is fat - 1 1
modified to take into account the existence of the charge P, (ZO):kZl (L_zk_ L,(2k—1)—2z,
distribution p. For example, for a point chargglocated on
the grid point¢ we haveb,—b,—[4mq/hhyh,]8, . To 3 1 16
evaluate the image potential of such a point charge we need L,(2k—1)+2z,/’

to subtract from®d its singular part that will amount to an

interaction of the charge with itself.In addition we need to  wherel, is the distance between the two electrode surface
correct for the unphysical effect of the periodic boundaryplanes andz, is the position of the point charge measured
conditions taken in the latera|=x,y directions, that would from the mid-point between these planes. Our final approxi-
result in false contributions t® from the periodic replicas mate expression fob, is thus

of both p and its images. An approximate correction scheme

is as follows. We solve Eq(15) once for ®,(r,,z)—the D (r,20) = AD(ry,20) + P[*(20). 17
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To summarize, the numerical calculation of the image poteneerning the surface Green’s function Rf Let S denotes the
tial of a point charge positioned between a tipped and a flasurface ofR, i.e., all lattice sites on theg leftmost planes of
surfaces is obtained by solving the Poisson equatid®) R (ng is chosen to be equal or larger than the range of the
twice, once for our actual geometry and once for the equivanondiagonality ofR, determined from the way the kinetic
lent system without the tip, i.e., a point charge between twenergy matrix is seHy, a semi-infinite nearly diagonal ma-
flat electrodes, and forming the differenté between these trix has the form°
solutions.®, is then obtained from Eq$16) and (17). s
_( HR HSR)
R= .

HRS HR

This form reflects the fact that the sub-system remaining af-

As noted in the Introduction, the absorbing boundaryter the surface layer is removed from the semi-infinite reser-
conditions Green'’s function method in computational scattervoir is identical to the original reservoir. The surface Green’s
ing theory is essentially just a way to circumvent the need tdunction, the projectionGx(E)=[(E—Hgr+i€) *]gs of
evaluate exact self-energy terms that arise when an infinit&g(E) onto theS-subspace is also given by
space process is described within the framework of a finite o s s 1
subspace. In our applicatidkig. 1) the outcome of the scat- Cr(B)=[E-Hr=2R(E)] 7, (22)
tering process is determined by interactions that vanish bawhere
yond the target region, which is confined between the planes -
represented by the projectiods8 and CD. Also here, the 2R(E)=HsgE-Hgtie) 'Hrs. 23
physics of the process is defined by the fact that outgoingdere we use the fact that the space obtained by removing the
waves are never reflected back into the interaction regiorsurfaceS from R is identical toR. Since the couplinddsg
Adding absorbing potentials that vanish in the target regiorinvolves only the surfaceng planes of the “new” R space
and rise smoothly ag|— o achieves this goal at the cost of we have
having to deal with much bigger systems, say between the _
planesA’B’ and C'D’. Alternatively, we could limit the R(E)=Hsd E-Hr— 33" Hes. (24)
size of our computational grid to the system confined beThis constitutes a self consistent equation for the surface
tween plane#\B andCD if we use Egs(3) and(4) with the  self-energyS3(E) that may be solved iteratively. Actual
correct self-energies. This is often done in computations inimplementations of this idea use different meth@e@solvent
volving tight-binding models in solid-state physics, wherematrix approack! a recursive schenfé;?>3! renormaliza-
the inherent lattice symmetry makes it possible to find aion group or decimation techniqd&;?®and a matrix-valued
closed set of equations for the required self-energy and seextension of the Mbius transformation methéf to en-
eral methods have been developed for this purBbséin  hance convergence. In our calculation we have used an ad-
the present paper we consider single electron transmissigptation of the decimation technique of Refs. 25, 26, outlined
problems in which the Hamiltonian of the system is definedin Appendix A.
on a spatial grid. In this representation the potential is alocal  Once a converged matriX}, is obtained from this cal-
operator that vanishes outside the molecular “target,” whileculation it can be identified with the self-enerfy, needed
the kinetic energy has a tight binding fofhTherefore the in Eq. (19). A similar procedure yieldE, . In particular, if
same methods for evaluating the exact self-energy are applive use the simplest 3 point approximation for the kinetic
cable as detailed below. Note that the absorbing potentiadnergy operator, for which the kinetic energy matrix is tri-
derived in this way is naturally energy dependent. A differentdiagonal, themg=1 and ink, space(l is the direction par-
approach that yields an exact energy independent complexlel to the electrode surfade&q. (24) becomes a set of

(21)
I1l. ABSORBING BOUNDARY CONDITIONS

absorption potential was recently derived by Moise§&%.  independent equations f&(k;,E). In our usual applica-
In general, the Hamiltonian for our problefsee Fig. 1 tion of a 7-point approximation for the kinetic energy
has the form 2(k;,E) is a 3x3 matrix.
H. Hyy O Obviously the all-to-all transmission flux may be ob-
tained also by summing th&B C GF one-to-all transmission
H=| Hu. Hwm Hur (18)  probability, Eq.(8), over all initial stated of energyE. If
0 Hgy Hg [1Y=(v)) " Y2exp(k,-r) is defined on the left of the barrier,

this implies summing over all directions of the incident
wave-vectork,(v,=7%|k|/m). Note that because we usually
Gu(E)=[E—Hy—3.(E)—3x(E)] 4, (199  apply periodic boundary conditions in the lateral directions,
oo . only a finite discrete number of such wave vectors are rel-
2(B)=Huk(E-Hc+ie) tHew: K=LM. (20 o o0 This has provided a useful check on the applicability
A self-consistent procedure for evaluatig (and similarly  of the exact self-energy—based calculation using ).
>,) is obtained by exploiting the fact that the Hamiltonian (see Fig. 6 beloy
matrix is nearly diagonal. If the division betwedhandR is To end this section we note that a spatial grid represen-
set deep enough in the electrode region sokthat connects  tation corresponds to describing the system in terms of a
only sites on the electrode’s surface, the nonzero elements phrticular orthonormal basis in which the potential energy
3,r may be obtained from the following consideration con-operator is diagonal. In many practical situations it is conve-

and theM-space retarded Green’s operator is
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nient to describe a molecular bridge using the nonorthogona
basis of atomic wave functions. The Hamiltonian still takes
the form (18) but Egs. (190 and (20) are replaced by
Gu(E)=[hy—3. (E)—3x(E)]"! where h=ES—H and 2z
Sij=(¢il#;). A commonly used approximation for the self-
energy in this case i€x(E)=hyk(ES—Hk+i€) thew;
K=L,M. A procedure for its calculation is given in Appen-
dix B.

IV. APPLICATIONS X

In the examples discussed below we consider eIectroﬁ'G'.z' A side VIE‘W'Of the quel used to demonstrate STM resolution of.
confined wave function. The distance between the two planar electrodes is

tunneling thrOUgh_ a spacer geparating two bias-e.d electrodess A. The tip is a cone protruding from the upper electrode, of height 6 A
The potentiaH,, in Eq. (18) is then a superposition of the and opening angle 30°. In the absence of bias, the potentials in the gray

pseudopotential describing the interaction between the ele@reas that represent the electrodes and in the white regamuum are

o n : : . taken 0 and 5 eV, respectively. The work functions of the two electrodes are
tron and this “target” and the electrostatic potential associ taken to be 3 eRef. 33. The rectangular crossed area represent the cavity,

ated with the given potential boundary conditions, calculate@yhose dimensions are taken:38x5 A. The potential in this cavity is set to
from solving the corresponding Poisson and Laplace equabe 1 eV, i.e., in the vacuum it forms a rectangular potential box of depth 4

tions as described in Sec. II. eV. These potentials are superimposed with the potential distribution asso-
ciated with the voltage drop between the electrodes and with the image

A. Imaging the structure of a cavity-confined potential, both computed as described in the text. The distances between the

wave function tip edge and the cavity, and between the cavity and the substrate are 3 and 2

A, respectively. The tip is set above the center of the cavity in the direction
We first apply the methodology discussed above to & perpendicular to the paper, and the current is computed as a function of its

simple three-dimensional Scattering calculation aimed at aé)_osition along thex direction for different potential biases. The region sur-
rounded by the thin-lined rectangle is the projection of the system used in

sess_lng the p055|b|I_|ty tO_ resolve the structure of CaV'ty'the calculation on the plane of the figure. The cavity is situated in the center
confined wave functions in a standard STM measurementsf this region in thex andy directions.

Such an experiment was recently reported by Dekker and

co-workers? where the cavity is provided by a short carbon

nanotube deposited on a gold substrate, and it was observ&lY: the image potential was obtained from the solution of a
that the conduction in the direction normal to the tube axis a$’iSson equation using the procedure described in Sec. Il. In
a function of the tip displacement along this axis can forboth electrostatic calculations we have used the same rectan-
some potential bias conditions, reflect the standing wav@ular grid used in the quantum calculation. o
character of the electronic wave function confined in the tupe  SOMe results of these calculations are shown in Fig. 4.
rather than the underlying atomic structure. In the calculationd € _different lines depict the computed current plotted
described below we mimic the nanotube by a long rectangu@9ainst the tip displacement in tleairection. It is seen that

lar cavity in an otherwise square barritsee Fig. 2 An the spatial structure of the wave functions is reflected in the

energy diagram showing the positions of the lowest energy$patiallmodulation of the tunneling current. Clearly, with the
levels of the cavity relative to the Fermi and the vacuumeXxception of the lowest state observed at low bias voltages,
energies is shown in Fig. 3.

Evaluation of the tunneling current according to E(.
and(5) is done on a rectangular grid with 283X79 points
and lattice spacings>22x0.2 A. Periodic boundary condi- vacuum
tions are used in th& andy directions, while absorbing 5 —
boundary conditions are set on the boundary planes norme
to the z axis using the procedure described in Sec. Ill. The
potential experienced by the tunneling electron is taken to be%
a superposition of the bare potentials in the electrodes, cavity=
and vacuum region&ee caption to Fig.)2with the electro- &
static potential arising from the voltage bias and with the & 2T T
image potential associated with the response of the metaé Ll
boundaries to the moving electron. As discussed in Sec. |, the T
latter is assumed to be instantaneous. In addition, an artificia
high barrier is added on the flat part of the upper electrode
surface, restricting transmission to the tip regftms mimics X
the real-life situation in which the tip is much longer than in FIG. 3. The energetics of the transmission problem of Fig. 2 in the absence
our numerical model In our calculation the potential at the of a bias potential. The gray areas represent the substrate and tip electrodes
substrate is kept zero, that of the tip and the upper electrodéth their common Fermi energf: . The energy levels depicted in the
is varied, and the electrostatic potential distribution in theSenter are the lowest eigenstates of the caldgmputed on our grid using

. . ._a Lanczos algorithin The levels shown are all nodeless in theand z
system between the electrodes is obtained from the SOIUt'OJIrections, i.e., correspond to increasingly shorter wavelengths ix the
of the corresponding Laplace equatisee Sec. )l Simi-  rection.

+ =+

41 4
3
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FIG. 4. The current calculated a&t=300K in the system of Fig. 2with
Fermi energyEg=2 eV for both tip and substrat® displayed as a function
of the tip position along the direction x=0 is the center of the cavity

The different lines correspond to different tip potentiéttse substrate po- 1
tential is taken zeno O-®=100 mV,A-®=326 mV,®-416 mV, ¢ -568 mV, -

0-742 mV.

10°F

-6 L
more than one cavity state contribute to the tunneling current 0
at higher voltages and the spatial modulation seen in Fig. 4 1 . ol
reflects combination of several wavefunctions. As noted in g " - - - oneto-all
Ref. 32, the spatial modulation of the conductiah/dd, - , |1 © Tone-to-all
can be dominated by a single barrier statéifs chosen so 2 3 4 5
E (eV)

that the transmission dominated by the corresponding reso

nance. Figure 5 demonstrate this point by displaying to—g—e'd‘]elglG. 6. One-to-all(dashed curvesand all-to-all(full curves transmission
probabilities of electron between two planar electrodes separate@)by

the average conduction in the 568-742 mV ran@e,
= [I ((I):742 mV)— | (@:568 mV)]/174, which is domi- three and(b) four monolayers of watetsee text for detai}s The circles
nated by the resonance associated with the second excit&ing on the fulllines are all-to-all transmission probabilities computed by
. " . . . . summing the one-to-all probabilities over all incident directions relevant to
cavity state and the_probability density associated with thigne grid used.
state®>3* Obviously, G reflects the distribution of this den-
sity much better thai.
B. Calculation of the cumulative tunneling flux
in water
Another example of a calculation done in this way is
shown in Figs. &) and b). These figures use configura-
tions of water layers that were obtained from equilibrium
trajectories of watefdensity 1 g/criand temperature 300)K
between two platinun{1,0,0 surfaces(see Refs. 8, 12 for
details of the water, water-Pt, and water-electron potentials
used. The electron-water pseudopotential is superimposed
on a rectangular potential of height 5eV that represents the
vacuum barrier. Figures(& and b) show the one-two-all
(dashed linesand the cumulativéall-to-all, full lines) trans-
mission probabilities for particular configurations of water
layers consisting of 3 and 4 monolayers, respectively. The
cumulative transmission probabilities were obtained from
Eq. (3) using self-energies calculated as described in Sec. Ill.
The circle marks that practically sit on the full lines denote
results of all-to-all transmission obtained by summing one-
to-all transmission probabilities over all incident directions

FIG. 5. Full line—the probability density, dyS dzy(x,y,2)|* (A", as-  consistent with the grid used. The one-to-all probabilities
sociated with the second excited cavity state normalized in the cavity lculated f Eq8) d ibed in Ref. 8. In that
X0.0592. Dashed lineG (see text;nA-V~1x0.232). Dotted lines| (® were ca cqae rom C( _as escribe m_ €l. 0. Intha .
=742 mV) (nAX0.228. The numerical constants are used to scale theWork we discussed the existence of tunneling resonances in
the range of~1 eV below the vacuum barrier and their pos-

maximum of each function to unity.
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sible role in enhancing electron tunneling through water. Wdinite difference approximatioFDA) scheme used for the
see that the cumulative transmission probabilities show th&inetic energy operator,n=1, 2 and 3 for the 3, 5 and
same resonance behavior. We note in passing that the cumé-point FDA, respectively The Green’s function is defined
lative quantities are sums over probabilities that can in prinby (E—Hg)Gr=1 and its block elements are denoted below
ciples exceed unity; in fact in the absence of a barrier wheréy Gi(?) . Explicit equations for these elements are

the transmission probability is 1 for all incident waves, the

cumulative “probability” corresponds to the number of (E—Hoo) Gy =1+HoGig

transversal channels. A full account of tunneling calculation

in water is given elsewheré:*® ° (E~Hoo)Glig'=Ho;Gg' + HoiGls

V. CONCLUSION

R R R
This paper has described the numerical techniques used (E—Hoo)Ghno=H{Go 1 o+ HuuGor 1.0,
by us in recent works that calculate single electron transmis- _ (R _ gt ~(R (R)
sion probabilities and the associated current in molecular (E~Hoo) Gan'1,0=HouGano T HorGon'20: (A2)
junctions. We have focused on examples where the potential
experienced by the electron is given as a local function of
position, however similar formulations for other representa-  (E—Hop)Gorpn=1+H§GR 1 5+ HoiGY\ 1 o
tions are easily derived. The calculation is based on evaluat-
ing electrostatic contributions to the electron-junction poten-  (E—Hoo)Gins 1 2= HEiGo a0+ HoiGlny 5.2 -
tial by numerically solving the relevant Laplace and Poisson
equations, and by numerically evaluating tunneling prob-

compute relevant elements of the electron Green’s functiony,q Gfﬁ? (n—), the bulk Green’s function. They will also

given proper care to self-energy terms that account fope genoted belowBs, (or G for the left reservoir and Gg .
needed absorbing boundary conditions. Together, these teCRax; the formal solutions for all elements with odd first
niques combine to yield an efficient numerical package tqnqex je.. elements of the tyg@), ., are inserted in the
evaluate single electron transmission probabilities and Curgyations for elements with even first index, i.e., elements of
rent in molecular junctions of arbitrary geometries. Som (R)
simple applicationsJ demonstrate the pgwger of this computgt—he typeGy ., to get
tional approach. More detailed applications in more realistic [ (E—&5)Gyy=1+A,GSY)
contexts are described elsewhere.

R _ R R
(E— 51)(3(2n),o— BlG(Z(r)1—1),O+AlG(2(r)1+ 1).0
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A1=Ho(E—Hoo) ~*Hoy,
APPENDIX A: SELF-ENERGY CALCULATION
i - Bi=H{(E—Hgo) ~*H{
Here we briefly outline the procedure we use to calculate 1= o 00 01 (Ad)

the se_lf—energy matrice$,, andER, Eq. (20). This proce- £5=Hoo+ Hoy E— Hoo) "“HY,,

dure is based on the renormalization-group technique of

Refs. 24-26. This is a technique to evaluate both the bulk & =H g +Hy(E—Hgo) " *H{+ HI(E—Hgo) ~*Hor.

and the surface Green’s function of a semi-infinite lattice

with tight-binding coupling structure. We start by going to Equations(A4) define the first iterationi¢ 1) of an effec-

k-space in the directions,y normal to the tunneling direc- tive Hamiltonian

tion. Considering for example the right reservaoir, it can, in - o
|

this representation be written as a block matrix of the form Al 000
_ _ B, & A 0 O
HOO HOl O 0 0 e .
: HV=| 0 B & A 0 (A5)
HOl HOO H01 0 0
; 0 0 B & A
Hg=| O Hopy Hopo Hor O -, (A1) . .

0 0 Hy Hep Ho
. . . . c that for i=1 describes a chain of effective layers with a
- ) ) ) ) - lattice constant &, twice the original one. Renumbering in-
where the quadratic matricé$,; andHy; are of ordem. n  dices in Eq.(A3) such that 2—n this procedure is contin-
corresponds to the “interaction range” defined by the type ofued to yield the iterative sequence
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Ai=A_(E-&_) Ay, Consider the lead Hamiltoniai®\1) and the correspond-
. ing matrix g
Bi:Bifl(E_Si*l) Bi*l’ g (E) S';]_G S';l [ESR H ]*1 (84)
_ A6 rRIE)= ROR — — MRl .
&= 1+A_1(E-&_) "By, (A6) , .
. Equation (B3) for the lead Green function, ESg
E=& atAi(E=&-1) B —Hg) Sz 'Gr= Sk can be rewritten in terms @ as
+B_(E—& ) Ay, (ESs—Hp)Gr=1. (B5)

starting with £&=&£,=Hqo Ag=Ho;, and Bo=H},. Equa-
tions (A5) and (A6) define an effective Hamiltonian for a
chain of lattice constant'a. Iterations are repeated until the

Proceeding as in the case of orthogonal bé&gpendix A),
i.e., writing equations for the different blocks of the Hamil-

lized t neiahbor int tiok 4B, tonian and overlap matrices and using substitution to sequen-
renormalized nearest neignbor: Interactions an are tially exclude equations with odd indices, one gets a modi-
small enough to be disregarded. At this stage the surfaCﬁled version of the iterative procedufa6)
Green'’s functions of the right reservoir may be written as
SR(E)%(E_SIS)fl (A7) A| Al—l(ESOO HOO) Al—lv

This is the Green’s function needed in E483)—(24). The Bi=Bi_1(ESpo—Hoo " 'Bi-1,

bulk Green’s function can also be identified &g(E) s oS B 1

~(E—¢&) L. The Green function for the left contact is given Ei=E- 1t Ai-i(ESpo—Hoo) "Bi-1, (B6)

by 3 EP=E7 1+ B_1(ESwo—Hoo A1,
GlE)=(E-&)7H, (A8) -

L ' E=&_1+Ai_1(ESpo—Hoo) 'Bi_1

WhereZ’TS is obtained by iteratin _
| Y g +B,_1(ESog—Hoo) A1,

_ -1
& 5'5711— Bi-(E 5'713 6'71 (A9) with the starting valuesAy=—hgy, By=—h{,, 6’3=E’3
starting with&g=Hqo, until §~&_ ;. =Hgo, Whereh;=ES;—Hj; .
After convergence, i.e., whefy~¢&; _; (and similarly for
APPENDIX B: THE CASE OF NONORTHOGONAL £ and &) to the desired accuracy, the surface and bulk
BASIS blocks of the matrixg are given by

While not encountered in the present paper, the need to

S _ _ 51
use the Green'’s function techniques described in Sec. 11l and L(E)=(ESpo=&) %,

Appendix A often arises when using overlapping basis func- S (E)= (ESa— £5)~ 1 B7
tions. For completeness we describe here the procedure that (B)=(ES0=&) B7)
should replace Appendix A in such cases. Ga(E)=(ESy— &) L.

When using a basis with overlap, the system partition is

not as straightforward as it is for the orthogonal basis sets. 14 his is in fact all we need to evaluate the approximatidi)
particular, partitioning of the Schdinger equation and par- for the self-energy. The actual Green functions may also be
titioning of the Green function equation are not Obtained. Itis straightforward to show that

equivalent®3’ The latter, which is relevant for the purpose _GR +5.0Rs g oRgh

of describing subsystem dynamics, cannot be implemented Gr(E) = Go5'= Sockios'Soo So1910'Soo+ Soo Son

rigorously for the infinite subspace representing the lead. A +501g 801, (B8)

useful approximation is obtained by expanding in the overlap

between the subspace and the rest of the overall sy£tém. GL(E) =G = Spedbs Soo+ St1916' Soot+ SoaFor Sos

the lowest order this yields the result identical to that ob-

tained from partitioning the Schadinger equation +501g Sor. (B9)
Sk(E)=(ESyk—Hu)Gc(E)(EScu—Hikn),  (BD) Ga(E)=Giin' = ShiGn” 10 1501+ SooGhn- 1501

where + 501007 10— 1501+ Sh1G 1,400

E)=[ESkk—Hkx] % B2

Gx(B)=[ESac~Huel (82 + SooE1 S0t SuGiE 1 Soo

Note thatGk(E) is not the Green function of the systefn

The Green function in a nonorthogonal basis is obtained +501g 1n+1501+ SOOgn n+1 l

from + S0 10+ 1S (B10)
G(E)=9ES-H] 1s (B3)

where G89=Gr, G¢=0G., and where G&)=g®,
Here we generalize the renormalization-group technique out= gn+1n+1 Gg. After some algebra one gets expressions
lined in Appendix A for the case of nonorthogonal bases ancilso for the other matrix elements in E4B8)—(B10)

show the algorithm for calculating(E) as well-as surface R .

and bulk Green function&(E) of the leads. G =(ESpo— &P 1,
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