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Numerical computation of tunneling fluxes
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The computation of tunneling probabilities in three dimensions is a numerical challenge, because
the small transition probabilities associated with the overlap of exponentially vanishing wave
function-tails require large computational accuracy. In scattering situations arising, e.g., in electron
tunneling in metal-molecule-metal junctions, this is compounded by the need to provide a proper
truncation procedure at the numerical boundaries of the computed system and by the need to account
for electrostatic fields and image interactions. This paper describes a numerical methodology to deal
with these problems. A pseudopotential that describes the underlying system is assumed given.
Electrostatic fields and image interactions are evaluated for the given boundary conditions from
numerically solving Laplace and Poisson equations. Tunneling probabilities are computed using a
grid-based absorbing boundary conditions Green’s function method. An efficient and exact way to
implement the absorbing boundary conditions by using the exact self-energy associated with
separating the scattering system from the rest of the infinite space is described. This makes it
possible to substantially reduce the size of the grid used in such calculations. Two applications, an
examination of the possibility to resolve the spatial structure of an electron wave function in an
electron cavity by scanning tunneling microscopy, and a calculation of electron tunneling
probabilities through water, are presented. ©2002 American Institute of Physics.
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I. INTRODUCTION

Tunneling phenomena are pervasive in many proce
that involve low temperature transport of light particles, a
in the context of atomic and molecular processes are m
frequently encountered in electron and proton transfer re
tions. While simple analytical solvable one-dimension
models are often used as guides for understanding obse
tions of tunneling transport, detailed three-dimensional c
culations are needed for full analysis. As a case in po
consider electron transfer in condensed molecular envi
ments such as water or proteins. Following Marcus,1,2 early
treatments of such processes have used continuum diele
pictures to treat solvent effect on electron transfer. This
proach has been quite successful in elucidating the qua
tive phenomenology of electron transfer processes that
dominated by solvent induced fluctuations in the donor a
acceptor energy levels, by describing these fluctuations u
the macroscopic solvent polarization through the freque
dependent dielectric response. However, a quantitative d
mination of the transfer rate requires the evaluation of
tunneling matrix element, i.e., the electronic coupling b
tween the donor and acceptor. This coupling depe
strongly on the structure of the molecular medium separa
between the donor and acceptor sites, and its evalua
amounts to evaluating the tunneling rate between these
separated by a three-dimensional potential barrier of r
tively complex nuclear and electronic structure. Considera
10810021-9606/2002/117(23)/10817/10/$19.00
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amount of work has been done during the past two deca
using quantum chemical electronic structure calculations
evaluate such electronic coupling elements for intramole
lar electron transfer processes and for electron transfer
tween donor and acceptor species in protein environmen

The need to determine such three-dimensional tunne
matrix elements is particularly important in analyzing pr
cesses that involve electron transmission through molec
or molecular layers that separate between regions of fre
quasi-free electrons, e.g., metal electrodes.3 Such processes
are encountered in metal-molecule-metal junctions and
cent interest in their study stems from the need to unders
the ‘‘underwater’’~i.e., in solution! operation of the tunnel-
ing electron microscope on the one hand, and from rec
studies of molecular junctions where a molecule or a m
lecular aggregate is used as a conductor connecting
metal leads, on the other. The transferred electron~or more
generally, the charge carrier! in such systems is not localize
in the initial and final states, therefore the transfer proces
not dominated by solvent reorganization, leaving the tunn
ing matrix elements as the main factor that determines
transmission rate or the tunneling current.

Depending on the spacer between the two metal lea
calculation of electron transmission~e.g., current–voltage
characteristics! in such systems can be carried out using
appropriate basis set of molecular or atomic orbitals. Alt
natively, in deep tunneling regimes, where the electron
7 © 2002 American Institute of Physics
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ergy is far from resonance with any molecular level and t
neling takes place mostly or partly in intermolecular space
spatial grid basis may be used if a suitable pseudo-pote
for the electron-molecule interaction is available. In seve
recent papers we have used such an approach to inves
electron tunneling through water. The present paper
cusses several methodological issues involved in such a
culation. We discuss two generic issues that should be c
sidered in all calculations of this type. These are~a! the
handling of the electrostatic interactions~electric field distri-
bution and image effects! and ~b! the use of absorbing po
tentials. Together with the~assumed given! electron-
molecule pseudopotential and the bare potential assoc
with the electrode-vacuum interface~most simply modeled
as a potential step with height derived from the metal wo
function!, the representation of the Hamiltonian on a suita
grid and an adequate numerical method to evaluate ne
Green’s function matrix elements, the end result provide
framework for computing single electron tunneling pro
abilities in metal-molecule-metal junctions under bias.

Figure 1 illustrates the nature of our problem. It rep
sents a two-dimensional cut through a three-dimensio
junction made of two metal electrodes~the bulk gray areas
whose edges in the junction region are the black lines
notedS1 andS2) and a molecular entity~represented by the
dark-shaded ellipsoid!. A potential bias is employed betwee
the electrodes and the resulting current is monitored. The
that the electrode surfaces are generally nonplanar is re
sented in the figure by the tiplike shape of the left electro
In the absence of thermal interaction the linear conducta
of this junction is given by the multichannel Landauer fo
mula

g~E!5
e2

p\
T~EF! ~1!

that connects the conductiong to the multichannel transmis
sion probabilityT(E)

FIG. 1. A model system used to compute electron transmission between
electrodes,L and R separated by a narrow spatial gap~M! containing a
molecular species. The surfaceS1 of L is shaped to mimic a tip. The line
A8B8, C8D8 andAB andCD are projections of boundary surfaces norm
to the transmission direction~see text for details!. The numerical solution is
carried on a grid~shown!.
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T~EF!5(
i , f

Ti f ~EF!. ~2!

HereTi f is the transition probability from the incoming sta
i to the outgoing statef, the sum overi andf is over all states
~‘‘channels’’! associated with the electron on the left a
right electrodes, respectively, andEF is the Fermi energy. In
another context, the reactive flux theory of Miller and c
workers T(E) has been termed the ‘‘all to all’’ transition
probability. The important point is that in this dissipationle
single electron theory, the conduction of a given junction
related toT, a result from scattering theory. Indeed, evalu
ing T amounts to solving a three-dimensional single parti
potential scattering problem in a rather complex scatter
potential, where for a particle incident on the target~i.e., the
junction! from the left electrode the ‘‘reactive flux’’ is the
flux traveling in the right electrode in the positivez direction.

As already stated, in energy ranges where this quan
scattering problem can be expressed using a given molec
basis set in the junction, standard quantum chemistry m
ods can be employed to evaluateT. Alternatively, if the
electron-target interaction is reliably modeled by a local p
tential it is convenient to use a basis based on a spatial g
We have found that a cubic grid~whose two-dimensiona
projection is shown in Fig. 1! on which the kinetic energy
operator is represented by a standard differenc
approximation4 can yield a reasonably accurate transmiss
probability, provided the mesh size is chosen to give a r
able representation of the scattering potential. In a typ
calculation periodic boundary conditions are employed in
x andy directions parallel to the electrode surfaces, while
the tunneling directionz the calculation is restricted to
finite segmentM, say between surfacesAB andCD in Fig.
1, of the infinite system by projecting out the rest of t
electrode bulks. This gives rise to self-energy terms in
Green’s function associated withM. The all-to-all transition
probability is given by5

T~E!5Tr@G~E!GR~E!G†~E!GL~E!#, ~3!

whereG(E) is the retarded Green’s function ofM, i.e., with
(HM) i j 5Hi j wherei and j are grid points in the segmentM

G~E!5@E2HM2S~E!#21. ~4!

S(E) is the retarded self-energy resulting from projecti
out the rest of the electrode bulks andG(E)5GL(E)
1GR(E) is twice its negative imaginary part with contribu
tions GL(E) and GR(E) associated with the left and righ
electrodes. The Tr operation corresponds to a sum ove
diagonal terms, Tr5( i( ) i i . It should be emphasized tha
the calculation ofT(E) should be done under the given p
tential biasDF between the two leads. The tunneling curre
for this voltage is then computed from Ref. 6:

I 5
e

p\ E
0

`

dE@ f L~E!2 f R~E!#T~E!. ~5!

To evaluate the transmission probability~3! we need~a!
to get an expression for the self-energy matricesS and G,
and~b!, to invert the matrix in Eq.~4!. In much of the com-
putational scattering theory literature the calculation of

wo
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self-energy is circumvented by using the observation tha
the mathematical boundaries of the segmentS on which the
calculation is made are set far enough from the target~e.g., in
Fig. 1 replace the boundariesAB and CD by A8B8 and
C8D8, respectively!, the resulting self energy should simp
reflect the fact that a particle crossing these boundaries in
outward direction is not reflected back and therefore dis
pears forever from the system. One then sets ReS(E)50 and
replacesGL(E) and GR(E) by simple energy independen
absorbing potentialsGL(E)→2eL(z) and GR(E)→2eR(z)
that are chosen to affect this reflectionless propaga
through the left and right boundaries of the systemS. In this
absorbing boundary conditions Green’s function (ABCGF)
formalism Eq.~3! becomes

T~E!54 Tr@G~E!eRG†~E!eL#. ~6!

For example, in our previous calculations we have emplo
the form

eL,R~z!5S 2uzu
Lz

D 7

~7!

that expresses the need for a very smooth rise of these
sorbing potentials toward the boundaries needed to a
reflection. Noting that in tunneling calculations we often e
counter the need to compute transmission coefficients of
der, say, 10210, the necessity to avoid even the small refle
tion that will cause an error of this magnitude makes
necessary to use a very gradual rise ofe(z), as seen in Eq
~7!, which in turn makes it necessary to increase the sys
size in thez direction. Typically, the system size in this d
rection was taken 3–4 times larger than the actual size of
target ~expressed by the range of the electron-target po
tial! in implementations of Eq.~6!, and a typical spatial grid
used7–13 in calculations of electron tunneling through a wa
layer made of, say, three monolayers~thickness;10 Å! was
163163400 with lattice spacing of the order of 0.1 and 1.
Å in the tunneling and in the lateral directions, respective
This implies the need to invert matrices of order;105 to get
G(E), and a sum over a number of points of the same or
to calculate the trace in Eq.~6!. For this reason our earlie
calculations were restricted to the one-to-all transmiss
probability associated with a particular incoming statel on
the left ~say! that in theABCGF formalism is given by

Pl~E!5
2

\
^ l ueLG†~E!eRG~E!eLu l &. ~8!

Obviously, if exact expressions for the self-energy we
available one could use Eq.~3! with the boundariesAB and
CD placed right on the edge of the target. In practical c
culations we have found that implementing this idea make
possible to reduce substantially the size of the calculatio
system in thez direction, providing saving of at least a
order of magnitude in both the memory requirement and
CPU time needed.

Another important, and not completely solved proble
is the need to evaluate the electrostatic and polarization
teractions that affect the tunneling electron. Two issues
involved. First, for a given potential bias the electrosta
field distribution between the electrodes is needed. Sec
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the polarization response of the metal electrodes to the
cess electron in the junction, what is sometimes called
image effect is potentially an important ingredient in th
calculation. If we take the electrode surfaces as class
electrostatic boundaries the first issue is conceptu
straightforward, and the external field distribution in th
junction may be obtained from solving the Laplace equat
with the Dirichlet boundary conditions on the electrode s
faces. The second issue is highly nontrivial, since us
simple static image to account for metal electronic respo
to the excess electron in the junction is just a poor ma
approach to a very complex many electron problem. A sim
lar problem arises when the response associated with
molecular electronic polarizability in the barrier to the tu
neling electron is considered. If the time scale for this
sponse is fast relative to the timescale of the tunneling ev
a simple local potential associated with this polarizabil
response can be constructed. We have argued13 that such an
approach provides a reasonable approximation for elec
tunneling through water. Similarly, if the timescale asso
ated with a tunneling event is slow relative to the me
response time, static image should provide a reasonable
proximation for the metal response. The metal response t
can be estimated from the plasma frequency, of or
1016s21, while the relevant for a tunneling event through
barrier of height 1 eV and width 10 Å is estimated to
;1015s21. This justifies the use of static image in such tu
neling calculations and we will adopt this approach here
has been done many times in the past following Ref.
Evaluating the static image between electrodes of arbitr
shape constitutes a nontrivial numerical problem that we
cuss below.

A numerical calculation of electron tunneling in a bias
junction within the framework described above thus requir
~a! evaluating the electrostatic field distribution in the ba
rier; ~b! evaluating the image interaction as a local poten
affecting the electron;~c! having a suitable pseudopotenti
that describes the interaction of the tunneling electron w
the underlying molecular system;~d! deriving and testing
suitable absorbing potentials that allow to truncate the s
tem in the tunneling direction, or alternatively evaluating t
exact self-energy associated with this truncation;~e! Setting
the scattering Hamiltonian on a spatial grid and using a s
able numerical inversion algorithm to evaluate the nee
Green’s function matrix elements.

Common to steps~a!, ~b!, and ~e! is the need to invert
large sparse matrices. Krylov space based iterative metho15

are particularly suitable for this task. In our applications w
have used the implementation of this method provided in
PETSc package.16

Some of these issues have been described in our re
publications. This paper deals with recent developments
the methodology used for others. The next section provi
the details of our numerical approach to the electrostatic
of our problem. In Sec. III we describe the way the absorb
boundary conditions are constructed. Two applications,
examination of the possibility to resolve the spatial struct
of an electron wave function in an electron cavity and
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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calculation of electron tunneling probabilities through wat
are presented in Sec. IV. Section V concludes.

II. ELECTROSTATIC AND IMAGE INTERACTIONS

Between the two metal surfaces the tunneling elect
moves in an external field imposed by the potential drop. T
distribution of this field between the electrodes is obtain
from the Laplace equation

¹2F50 ~9!

using a finite differencing scheme on the given lattice, e.

]2

]x2 F~ i , j ,k!5
F~ i 11,j ,k!22F~ i , j ,k!1F~ i 21,j ,k!

hx
2 ,

~10!

where (i , j ,k) is a grid point andhx is the grid spacing in the
x direction. Periodic boundary conditions in thex andy di-
rections are naturally contained within this scheme, and
in
le
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o
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rg

e
n
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m
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Dirichlet ~potential! boundary conditions on the surfacesS1

andS2 appear as fixed terms in the l.h.s. of Eq.~9!. Taking
these terms to the r.h.s., Eq.~9! takes the form

AF5b, ~11!

where the potentialF is now represented by a vector of th
order of the total number of grid pointsn. The boundary-
conditions vectorb is of the same order, whileA is an
n3n matrix. In the more general case of position depend
dielectric response characterized by a dielectric functione~r !
Eq. ~9! becomes

¹•@e~r !¹F~r !#50. ~12!

Particular care must be exercised in cases where the inho
geneous medium is described by a discontinuous dielec
function, e.g., in a model system with different dielectr
media separated by distinct boundaries. In this case the
cretization scheme~10! becomes17,18
¹•@e~r !¹F~r !#→
Ci , j ,k

i 11,j ,k@F~ i 11,j ,k!2F~ i , j ,k!#2Ci 21,j ,k
i , j ,k @F~ i , j ,k!2F~ i 21,j ,k!#

hx
2

1
Ci , j ,k

i , j 11,k@F~ i , j 11,k!2F~ i , j ,k!#2Ci , j 21,k
i , j ,k @F~ i , j ,k!2F~ i , j 21,k!#

hy
2

1
Ci , j ,k

i , j ,k11@F~ i , j ,k11!2F~ i , j ,k!#2Ci , j ,k21
i , j ,k @F~ i , j ,k!2F~ i , j ,k21!#

hz
2 , ~13!
try
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Cl ,m,n
i , j ,k 52

e~ i , j ,k!e~ l ,m,n!

e~ i , j ,k!1e~ l ,m,n!
. ~14!

Consider now the evaluation of the image potential of a po
charge positioned in the space between the two metal e
trodes in a tip-substrate geometry such as shown in Fig
This image potential arises from the polarization induced
the electrodes by the point charge. The total potential a
ciated with a given charge distributionr~r ! in an inhomoge-
neous dielectric environment can be computed from
Poisson equation equivalent of Eq.~12!

¹@e~r !¹F~r !#524pr. ~15!

On a grid this leads again to Eq.~11!, with a b vector that is
modified to take into account the existence of the cha
distributionr. For example, for a point chargeq located on
the grid point , we havebn→bn2@4pq/hxhyhz#dnl . To
evaluate the image potential of such a point charge we n
to subtract fromF its singular part that will amount to a
interaction of the charge with itself.19 In addition we need to
correct for the unphysical effect of the periodic bounda
conditions taken in the lateralr i5x,y directions, that would
result in false contributions toF from the periodic replicas
of both r and its images. An approximate correction sche
is as follows. We solve Eq.~15! once for F1(r i ,z)—the
t
c-
1.
n
o-

e

e

ed

e

potential of a point charge in the desired tip-plane geome
and once forF2(z)—the potential of a point charge at th
same position between two parallel planar electrodes. In
differenceDF(r i ,z)5F1(r i ,z)2F2(z) the self-energy sin-
gular part is eliminated. Also much of the unphysical cont
bution of the periodic replicas is eliminated.~The interaction
of the electron with its own replicas is eliminated but not
interaction with the replicas of the tip, which still leaves
small error in the resulting potential.! DF is therefore an
approximation to the difference between the image poten
of a point charge in the space between the tipped and the
electrodes and the potential of a similar point charge betw
two planar electrodes. An analytical expression for the la
is known20

F I
flat~z0!5 (

k51

` S 1

Lzk
2

1

Lz~2k21!22z0

2
1

Lz~2k21!12z0
D , ~16!

whereLz is the distance between the two electrode surf
planes andz0 is the position of the point charge measur
from the mid-point between these planes. Our final appro
mate expression forF I is thus

F I~r i ,z0!5DF~r i ,z0!1F I
flat~z0!. ~17!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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To summarize, the numerical calculation of the image pot
tial of a point charge positioned between a tipped and a
surfaces is obtained by solving the Poisson equation~15!
twice, once for our actual geometry and once for the equ
lent system without the tip, i.e., a point charge between
flat electrodes, and forming the differenceDF between these
solutions.F I is then obtained from Eqs.~16! and ~17!.

III. ABSORBING BOUNDARY CONDITIONS

As noted in the Introduction, the absorbing bounda
conditions Green’s function method in computational scat
ing theory is essentially just a way to circumvent the need
evaluate exact self-energy terms that arise when an infi
space process is described within the framework of a fi
subspace. In our application~Fig. 1! the outcome of the scat
tering process is determined by interactions that vanish
yond the target region, which is confined between the pla
represented by the projectionsAB and CD. Also here, the
physics of the process is defined by the fact that outgo
waves are never reflected back into the interaction reg
Adding absorbing potentials that vanish in the target reg
and rise smoothly asuzu→` achieves this goal at the cost o
having to deal with much bigger systems, say between
planesA8B8 and C8D8. Alternatively, we could limit the
size of our computational grid to the system confined
tween planesAB andCD if we use Eqs.~3! and~4! with the
correct self-energies. This is often done in computations
volving tight-binding models in solid-state physics, whe
the inherent lattice symmetry makes it possible to find
closed set of equations for the required self-energy and
eral methods have been developed for this purpose.21–27 In
the present paper we consider single electron transmis
problems in which the Hamiltonian of the system is defin
on a spatial grid. In this representation the potential is a lo
operator that vanishes outside the molecular ‘‘target,’’ wh
the kinetic energy has a tight binding form.4 Therefore the
same methods for evaluating the exact self-energy are a
cable as detailed below. Note that the absorbing poten
derived in this way is naturally energy dependent. A differe
approach that yields an exact energy independent com
absorption potential was recently derived by Moiseyev.28,29

In general, the Hamiltonian for our problem~see Fig. 1!
has the form

H5S HL HLM 0

HML HM HMR

0 HRM HR

D ~18!

and theM-space retarded Green’s operator is

GM~E!5@E2HM2SL~E!2SR~E!#21, ~19!

SK~E!5HMK~E2HK1 i e!21HKM ; K5L,M . ~20!

A self-consistent procedure for evaluatingSR ~and similarly
SL) is obtained by exploiting the fact that the Hamiltonia
matrix is nearly diagonal. If the division betweenM andR is
set deep enough in the electrode region so thatHMR connects
only sites on the electrode’s surface, the nonzero elemen
SR may be obtained from the following consideration co
Downloaded 25 Mar 2004 to 132.66.16.12. Redistribution subject to AIP
-
at

-
o

y
r-
o
te
e

e-
es

g
n.
n

e

-

-

a
v-

on
d
al

li-
al
t
ex

of
-

cerning the surface Green’s function ofR. Let S denotes the
surface ofR, i.e., all lattice sites on thenS leftmost planes of
R (nS is chosen to be equal or larger than the range of
nondiagonality ofR, determined from the way the kineti
energy matrix is set.HR , a semi-infinite nearly diagonal ma
trix has the form30

HR5S HR
s HSR

HRS HR
D . ~21!

This form reflects the fact that the sub-system remaining
ter the surface layer is removed from the semi-infinite res
voir is identical to the original reservoir. The surface Gree
function, the projectionGR

s (E)5@(E2HR1 i e)21#SS of
GR(E) onto theS-subspace is also given by

GR
s ~E!5@E2HR

s 2SR
s ~E!#21, ~22!

where

SR
s ~E!5HSR~E2HR1 i e!21HRS. ~23!

Here we use the fact that the space obtained by removing
surfaceS from R is identical toR. Since the couplingHSR

involves only the surface (nS planes! of the ‘‘new’’ R space
we have

SR
s ~E!5HSR@E2HR

s 2SR
s~E!#21HRS. ~24!

This constitutes a self consistent equation for the surf
self-energySR

s (E) that may be solved iteratively. Actua
implementations of this idea use different methods~resolvent
matrix approach,21 a recursive scheme,22,23,31 renormaliza-
tion group or decimation technique,24–26and a matrix-valued
extension of the Mo¨bius transformation method27! to en-
hance convergence. In our calculation we have used an
aptation of the decimation technique of Refs. 25, 26, outlin
in Appendix A.

Once a converged matrixSR
s is obtained from this cal-

culation it can be identified with the self-energySR needed
in Eq. ~19!. A similar procedure yieldsSL . In particular, if
we use the simplest 3 point approximation for the kine
energy operator, for which the kinetic energy matrix is t
diagonal, thennS51 and inki space~i is the direction par-
allel to the electrode surfaces! Eq. ~24! becomes a set o
independent equations forSR

s (ki ,E). In our usual applica-
tion of a 7-point approximation for the kinetic energ
SR

s (ki ,E) is a 333 matrix.
Obviously the all-to-all transmission flux may be o

tained also by summing theABCGF one-to-all transmission
probability, Eq.~8!, over all initial statesl of energyE. If
u l &5(v l)

21/2exp(ik l•r ) is defined on the left of the barrier
this implies summing over all directions of the incide
wave-vectork l(v l5\ukl u/m). Note that because we usual
apply periodic boundary conditions in the lateral direction
only a finite discrete number of such wave vectors are
evant. This has provided a useful check on the applicab
of the exact self-energy—based calculation using Eq.~6!
~see Fig. 6 below!.

To end this section we note that a spatial grid repres
tation corresponds to describing the system in terms o
particular orthonormal basis in which the potential ener
operator is diagonal. In many practical situations it is con
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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nient to describe a molecular bridge using the nonorthogo
basis of atomic wave functions. The Hamiltonian still tak
the form ~18! but Eqs. ~19! and ~20! are replaced by
GM(E)5@hM2SL(E)2SR(E)#21 where h5ES2H and
Si j 5^f i uf j&. A commonly used approximation for the sel
energy in this case isSK(E)5hMK(ES2HK1 i e)21hKM ;
K5L,M . A procedure for its calculation is given in Appen
dix B.

IV. APPLICATIONS

In the examples discussed below we consider elec
tunneling through a spacer separating two biased electro
The potentialHM in Eq. ~18! is then a superposition of th
pseudopotential describing the interaction between the e
tron and this ‘‘target’’ and the electrostatic potential asso
ated with the given potential boundary conditions, calcula
from solving the corresponding Poisson and Laplace eq
tions as described in Sec. II.

A. Imaging the structure of a cavity-confined
wave function

We first apply the methodology discussed above to
simple three-dimensional scattering calculation aimed at
sessing the possibility to resolve the structure of cav
confined wave functions in a standard STM measurem
Such an experiment was recently reported by Dekker
co-workers32 where the cavity is provided by a short carb
nanotube deposited on a gold substrate, and it was obse
that the conduction in the direction normal to the tube axis
a function of the tip displacement along this axis can,
some potential bias conditions, reflect the standing w
character of the electronic wave function confined in the tu
rather than the underlying atomic structure. In the calculat
described below we mimic the nanotube by a long rectan
lar cavity in an otherwise square barrier~see Fig. 2!. An
energy diagram showing the positions of the lowest ene
levels of the cavity relative to the Fermi and the vacuu
energies is shown in Fig. 3.

Evaluation of the tunneling current according to Eqs.~3!
and~5! is done on a rectangular grid with 25313379 points
and lattice spacings 23230.2 Å. Periodic boundary condi
tions are used in thex and y directions, while absorbing
boundary conditions are set on the boundary planes no
to the z axis using the procedure described in Sec. III. T
potential experienced by the tunneling electron is taken to
a superposition of the bare potentials in the electrodes, ca
and vacuum regions~see caption to Fig. 2!, with the electro-
static potential arising from the voltage bias and with t
image potential associated with the response of the m
boundaries to the moving electron. As discussed in Sec. I
latter is assumed to be instantaneous. In addition, an artifi
high barrier is added on the flat part of the upper electr
surface, restricting transmission to the tip region~this mimics
the real-life situation in which the tip is much longer than
our numerical model!. In our calculation the potential at th
substrate is kept zero, that of the tip and the upper electr
is varied, and the electrostatic potential distribution in t
system between the electrodes is obtained from the solu
of the corresponding Laplace equation~see Sec. II!. Simi-
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larly, the image potential was obtained from the solution o
Poisson equation using the procedure described in Sec. I
both electrostatic calculations we have used the same rec
gular grid used in the quantum calculation.

Some results of these calculations are shown in Fig
The different lines depict the computed current plott
against the tip displacement in thex direction. It is seen that
the spatial structure of the wave functions is reflected in
spatial modulation of the tunneling current. Clearly, with t
exception of the lowest state observed at low bias voltag

FIG. 2. A side view of the model used to demonstrate STM resolution
confined wave function. The distance between the two planar electrod
16 Å. The tip is a cone protruding from the upper electrode, of height 6
and opening angle 30°. In the absence of bias, the potentials in the
areas that represent the electrodes and in the white region~vacuum! are
taken 0 and 5 eV, respectively. The work functions of the two electrodes
taken to be 3 eV~Ref. 33!. The rectangular crossed area represent the ca
whose dimensions are taken 303535 Å. The potential in this cavity is set to
be 1 eV, i.e., in the vacuum it forms a rectangular potential box of dept
eV. These potentials are superimposed with the potential distribution a
ciated with the voltage drop between the electrodes and with the im
potential, both computed as described in the text. The distances betwee
tip edge and the cavity, and between the cavity and the substrate are 3
Å, respectively. The tip is set above the center of the cavity in the direc
y perpendicular to the paper, and the current is computed as a function
position along thex direction for different potential biases. The region su
rounded by the thin-lined rectangle is the projection of the system use
the calculation on the plane of the figure. The cavity is situated in the ce
of this region in thex andy directions.

FIG. 3. The energetics of the transmission problem of Fig. 2 in the abse
of a bias potential. The gray areas represent the substrate and tip elec
with their common Fermi energyEF . The energy levels depicted in th
center are the lowest eigenstates of the cavity~computed on our grid using
a Lanczos algorithm!. The levels shown are all nodeless in they and z
directions, i.e., correspond to increasingly shorter wavelengths in thex di-
rection.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



re
g.

i

es
th

ci
th
-

is
-
m

ials
sed
the

er
he
m
III.
te
e-

ns
ies
t
s in
s-

vi

th

by
t to

10823J. Chem. Phys., Vol. 117, No. 23, 15 December 2002 Numerical computation of tunneling fluxes
more than one cavity state contribute to the tunneling cur
at higher voltages and the spatial modulation seen in Fi
reflects combination of several wavefunctions. As noted
Ref. 32, the spatial modulation of the conduction,dI/dF,
can be dominated by a single barrier state ifF is chosen so
that the transmission dominated by the corresponding r
nance. Figure 5 demonstrate this point by displaying toge
the average conduction in the 568–742 mV range,Ḡ
5@ I (F5742 mV)2I (F5568 mV)#/174, which is domi-
nated by the resonance associated with the second ex
cavity state and the probability density associated with
state.33,34 Obviously, Ḡ reflects the distribution of this den
sity much better thanI.

FIG. 4. The current calculated atT5300 K in the system of Fig. 2~with
Fermi energyEF52 eV for both tip and substrate33! displayed as a function
of the tip position along thex direction (x50 is the center of the cavity!.
The different lines correspond to different tip potentials~the substrate po-
tential is taken zero!: s-F5100 mV,D-F5326 mV,^-416 mV,L-568 mV,
h-742 mV.

FIG. 5. Full line—the probability density,* dy* dzuc(x,y,z)u2 (Å21), as-
sociated with the second excited cavity state normalized in the ca
30.0592. Dashed line—Ḡ ~see text;nA•V2130.232). Dotted lines,I (F
5742 mV) ~nA30.228!. The numerical constants are used to scale
maximum of each function to unity.
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B. Calculation of the cumulative tunneling flux
in water

Another example of a calculation done in this way
shown in Figs. 6~a! and 6~b!. These figures use configura
tions of water layers that were obtained from equilibriu
trajectories of water~density 1 g/cm3 and temperature 300 K!
between two platinum~1,0,0! surfaces~see Refs. 8, 12 for
details of the water, water-Pt, and water-electron potent
used!. The electron-water pseudopotential is superimpo
on a rectangular potential of height 5eV that represents
vacuum barrier. Figures 6~a! and 6~b! show the one-two-all
~dashed lines! and the cumulative~all-to-all, full lines! trans-
mission probabilities for particular configurations of wat
layers consisting of 3 and 4 monolayers, respectively. T
cumulative transmission probabilities were obtained fro
Eq. ~3! using self-energies calculated as described in Sec.
The circle marks that practically sit on the full lines deno
results of all-to-all transmission obtained by summing on
to-all transmission probabilities over all incident directio
consistent with the grid used. The one-to-all probabilit
were calculated from Eq.~8! as described in Ref. 8. In tha
work we discussed the existence of tunneling resonance
the range of;1 eV below the vacuum barrier and their po

ty

e

FIG. 6. One-to-all~dashed curves! and all-to-all~full curves! transmission
probabilities of electron between two planar electrodes separated by~a!
three and~b! four monolayers of water~see text for details!. The circles
sitting on the full lines are all-to-all transmission probabilities computed
summing the one-to-all probabilities over all incident directions relevan
the grid used.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10824 J. Chem. Phys., Vol. 117, No. 23, 15 December 2002 Galperin, Toledo, and Nitzan
sible role in enhancing electron tunneling through water.
see that the cumulative transmission probabilities show
same resonance behavior. We note in passing that the cu
lative quantities are sums over probabilities that can in p
ciples exceed unity; in fact in the absence of a barrier wh
the transmission probability is 1 for all incident waves, t
cumulative ‘‘probability’’ corresponds to the number o
transversal channels. A full account of tunneling calculat
in water is given elsewhere.12,35

V. CONCLUSION

This paper has described the numerical techniques u
by us in recent works that calculate single electron transm
sion probabilities and the associated current in molec
junctions. We have focused on examples where the pote
experienced by the electron is given as a local function
position, however similar formulations for other represen
tions are easily derived. The calculation is based on eval
ing electrostatic contributions to the electron-junction pot
tial by numerically solving the relevant Laplace and Poiss
equations, and by numerically evaluating tunneling pro
abilities by using iterative matrix inversion techniques
compute relevant elements of the electron Green’s funct
given proper care to self-energy terms that account
needed absorbing boundary conditions. Together, these
niques combine to yield an efficient numerical package
evaluate single electron transmission probabilities and
rent in molecular junctions of arbitrary geometries. So
simple applications demonstrate the power of this comp
tional approach. More detailed applications in more realis
contexts are described elsewhere.
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APPENDIX A: SELF-ENERGY CALCULATION

Here we briefly outline the procedure we use to calcul
the self-energy matrices,SL and SR , Eq. ~20!. This proce-
dure is based on the renormalization-group technique
Refs. 24–26. This is a technique to evaluate both the b
and the surface Green’s function of a semi-infinite latt
with tight-binding coupling structure. We start by going
k-space in the directionsx,y normal to the tunneling direc
tion. Considering for example the right reservoir, it can,
this representation be written as a block matrix of the for

HR5F H00 H01 0 0 0 ¯

H01
† H00 H01 0 0 ¯

0 H01
† H00 H01 0 ¯

0 0 H01
† H00 H01 ¯

] ] ] ] ] �

G , ~A1!

where the quadratic matricesH00 and H01 are of ordern. n
corresponds to the ‘‘interaction range’’ defined by the type
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finite difference approximation~FDA! scheme used for the
kinetic energy operator, (n51, 2 and 3 for the 3, 5 and
7-point FDA, respectively!. The Green’s function is defined
by (E2HR)GR5I and its block elements are denoted belo
by Gi , j

(R) . Explicit equations for these elements are

~E2H00!G00
~R!5I1H01G10

~R! ,

~E2H00!G10
~R!5H01

† G00
~R!1H01G20

~R! ,

¯

~E2H00!G2n,0
~R! 5H01

† G2n21,0
~R! 1H01G2n11,0

~R! ,

~E2H00!G2n11,0
~R! 5H01

† G2n,0
~R! 1H01G2n12,0

~R! , ~A2!

¯

~E2H00!G2n,2n
~R! 5I1H01

† G2n21,2n
~R! 1H01G2n11,2n

~R! ,

~E2H00!G2n11,2n
~R! 5H01

† G2n,2n
~R! 1H01G2n12,2n

~R! .

¯

Of particular interest areG00
(R) , the surface Green’s function

andGnn
(R) (n→`), the bulk Green’s function. They will also

be denoted belowGR
s ~or GL

s for the left reservoir! andGB .
Next, the formal solutions for all elements with odd fir
index, i.e., elements of the typeG2i 11,j

(R) , are inserted in the
equations for elements with even first index, i.e., element
the typeG2i , j

(R) , to get

5
~E2E 1

s!G0,0
~R!5I1A1G2,0

~R!

¯

~E2E1!G2n,0
~R! 5B1G2~n21!,0

~R! 1A1G2~n11!,0
~R!

¯

~E2E1!G2n,2n
~R! 5I1B1G2~n21!,2n

~R! 1A1G2~n11!,2n
~R!

¯,

~A3!

with

A15H01~E2H00!
21H01,

B15H01
† ~E2H00!

21H01
† ,

~A4!E1
s5H001H01~E2H00!

21H01
† ,

E15H001H01~E2H00!
21H01

† 1H01
† ~E2H00!

21H01.

Equations~A4! define the first iteration (i 51) of an effec-
tive Hamiltonian

HR
~ i !5F Ei

s A i 0 0 0 ¯

Bi Ei A i 0 0 ¯

0 Bi Ei A i 0 ¯

0 0 Bi Ei A i ¯

] ] ] ] ] �

G ~A5!

that for i 51 describes a chain of effective layers with
lattice constant 2a, twice the original one. Renumbering in
dices in Eq.~A3! such that 2n→n this procedure is contin-
ued to yield the iterative sequence
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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A i5A i 21~E2Ei 21!
21A i 21 ,

Bi5Bi 21~E2Ei 21!
21Bi21 ,

~A6!Ei
s5Ei 21

s 1A i 21~E2Ei 21!
21Bi 21 ,

Ei5Ei 211A i 21~E2Ei 21!
21Bi 21

1Bi 21~E2Ei 21!
21A i 21,

starting with E0
s5E05H00, A05H01, and B05H01

† . Equa-
tions ~A5! and ~A6! define an effective Hamiltonian for
chain of lattice constant 2ia. Iterations are repeated until th
renormalized nearest neighbor interactionsA i and Bi are
small enough to be disregarded. At this stage the sur
Green’s functions of the right reservoir may be written as

GR
s ~E!'~E2Ei

s!21. ~A7!

This is the Green’s function needed in Eqs.~23!–~24!. The
bulk Green’s function can also be identified asGB(E)
'(E2Ei)

21. The Green function for the left contact is give
by

GL
s~E!'~E2 Ẽ i

s!21, ~A8!

whereẼ i
s is obtained by iterating

Ẽi
s5 Ẽi 21

s 1Bi 21~E2Ei 21!
21A i 21 ~A9!

starting withẼ0
s5H00, until Ẽi

s' Ẽi 21
s .

APPENDIX B: THE CASE OF NONORTHOGONAL
BASIS

While not encountered in the present paper, the nee
use the Green’s function techniques described in Sec. III
Appendix A often arises when using overlapping basis fu
tions. For completeness we describe here the procedure
should replace Appendix A in such cases.

When using a basis with overlap, the system partition
not as straightforward as it is for the orthogonal basis sets
particular, partitioning of the Schro¨dinger equation and par
titioning of the Green function equation are n
equivalent.36,37 The latter, which is relevant for the purpos
of describing subsystem dynamics, cannot be implemen
rigorously for the infinite subspace representing the lead
useful approximation is obtained by expanding in the over
between the subspace and the rest of the overall system.37 To
the lowest order this yields the result identical to that o
tained from partitioning the Schro¨dinger equation

SK~E!5~ESMK2HMK!GK~E!~ESKM2HKM !, ~B1!

where

GK~E!5@ESKK2HKK#21. ~B2!

Note thatGK(E) is not the Green function of the systemK .
The Green function in a nonorthogonal basis is obtain
from

G~E!5S@ES2H#21S. ~B3!

Here we generalize the renormalization-group technique
lined in Appendix A for the case of nonorthogonal bases a
show the algorithm for calculatingG(E) as well-as surface
and bulk Green functionsG(E) of the leads.
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Consider the lead Hamiltonian~A1! and the correspond
ing matrix G

GR~E!5SR
21GRSR

215@ESR2HR#21. ~B4!

Equation ~B3! for the lead Green function, (ESR

2HR)SR
21GR5SR can be rewritten in terms ofGR as

~ESR2HR!GR5I . ~B5!

Proceeding as in the case of orthogonal basis~Appendix A!,
i.e., writing equations for the different blocks of the Ham
tonian and overlap matrices and using substitution to sequ
tially exclude equations with odd indices, one gets a mo
fied version of the iterative procedure~A6!

A i5A i 21~ES002H00!
21A i 21 ,

Bi5Bi 21~ES002H00!
21Bi 21 ,

E i
s5E i 21

s 1A i 21~ES002H00!
21Bi 21 , ~B6!

Ẽ i
s5 Ẽ i 21

s 1Bi 21~ES002H00!
21A i 21 ,

Ei5Ei 211A i 21~ES002H00!
21Bi 21

1Bi 21~ES002H00!
21A i 21,

with the starting valuesA052h00, B052h01
† , E0

s5 Ẽ0
s

5H00, wherehi j [ESi j 2H i j .
After convergence, i.e., whenEi'Ei 21 ~and similarly for

Ei
s and Ẽi

s) to the desired accuracy, the surface and b
blocks of the matrixG are given by

GL
s~E!5~ES002Ei

s!21,

GR
s ~E!5~ES002 Ẽi

s!21, ~B7!

GB~E!5~ES002Ei !
21.

This is in fact all we need to evaluate the approximation~B1!
for the self-energy. The actual Green functions may also
obtained. It is straightforward to show that

GR~E!5G00
~R!5S00G00

~R!S001S01G10
~R!S001S00G01

~R!S01
†

1S01G11
~R!S01

† , ~B8!

GL~E!5G00
~L !5S00G00

~L !S001S01
† G10

~L !S001S00G01
~L !S01

1S01
† G11

~L !S01, ~B9!

GB~E!5Gnn
~B!5S01

† Gn21,n21
~B! S011S00Gn,n21

~B! S01

1S01Gn11,n21
~B! S011S01

† Gn21,n
~B! S00

1S00Gn,n
~B!S001S01Gn11,n

~B! S00

1S01
† Gn21,n11

~B! S01
† 1S00Gn,n11

~B! S01
†

1S01Gn11,n11
~B! S01

† , ~B10!

where G00
(R)5GR , G00

(L)5GL , and where Gn,n
(B)5Gn21,n21

(B)

5Gn11,n11
(B) 5GB . After some algebra one gets expressio

also for the other matrix elements in Eqs.~B8!–~B10!

G11
~R!5~ES002Ei

p!21,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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G10
~R!5h01

21~ I2h00G00
~R!!,

G01
~R!52h00

21h01G11
~R! ,

G11
~L !5~ES002 Ẽi

p!21,

G10
~L !5@h01

† #21~ I2h00G00
~L !!,

~B11!G01
~L !52h00

21h01
† G11

~L ! ,

Gn,n21
~B! 5Gn11,n

~B! 52~ES002Ei
s!21h01

† Gn,n
~B! ,

Gn21,n
~B! 5Gn,n11

~B! 52~ES002 Ẽi
s!21h01Gn,n

~B! ,

Gn11,n21
~B! 5~ES002Ei

p!21h01
† h00

21h01
† Gn,n

~B! ,

Gn21,n11
~B! 5~ES002 Ẽi

p!21h01h00
21h01Gn,n

~B! ,

where

Ei
p5Ei

s1h01
† h00

21h01,

Ẽi
p5 Ẽi

s1h01h00
21h01

† , ~B12!

h005ES002H00.

Equations~B8!–~B12! provide the route for calculating th
Green’s function, if needed.
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