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Dynamic percolation theory for particle diffusion in a polymer network
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Tracer-diffusion of small molecules through dense systems of chain polymers is studied within an
athermal lattice model, where hard-core interactions are taken into account by means of the site
exclusion principle. An approximate mapping of this problem onto dynamic percolation theory is
proposed. This method is shown to yield quantitative results for the tracer correlation factor of the
molecules as a function of density and chain length provided the non-Poisson character of temporal
renewals in the disorder configurations is properly taken into accoun0@2 American Institute

of Physics. [DOI: 10.1063/1.1481763

I. INTRODUCTION sequent work on polymer ion conductors was focused on an

identification of the central parameter of this theory, the re-

Atomic charge or mass.transport processes in condenseh%wal rate A, from experimentally observed polymer
systems often take place in a dynamically disordered ho%iscositieg and more recently from dielectric relaxation

medium, whose microscopic_structu_re fl_uctuates on a tim pectroscopl In parallel, the theory was generalized con-
scale of t_he order 9f the atomic hop_plng time. An example_ Osiderably to off-lattice hoppind. spatially correlated
current interest in materials science are polymer 10N ,,qad2 cases with distinct kinds of migration stéps

conductors. These are solgtpqs of lonic salts n a po'af and, in particular, to non-Poisson renewal processes charac-
polymer that can possess significant ionic conductivities. It Serized by some waiting-time distributian(t). ™! In that case

well known that ionic motions in these materials are stronglythe zero-frequency diffusivity =3 dimensions is given
coupled to motions of polymer chain segments, a situatio%

which may be viewed as implying a continuing rearrange-
ment of preferred ionic diffusion pathways through the host 1 [dtg(t)(r3(t))o
medium. At the glass transition temperatdig, large scale =5 [Edtg(n
segmental motions get frozen, suppressing long-range ionic 0

diffusion. Other systems where atoms diffuse in a reorganizwhere<r2(t)>o is the mean-square displacement of the ran-
ing host medium include permeation of small moleculesyom walker in a frozen environmeHtNote that in the case
through polymer film$® or ionic motions through protein Y(t)=\ exp(=\t) Eq. (2) reduces to the zero-frequency
channels passing biological cell membrafies. limit of (1).

Important progress in calculating the diffusion coeffi- While DPT or, generally, dynamic disorder hopping
cient of a random walker in a dynamically changing environ-theon}l was developed as a framework for diffusion of small
ment emerged from dynamic percolation theéBPT) and  guest molecules in a fluctuating disordered host environ-
its generalizations. In its original form due to Drugsral®®  ment it was also recognized that the basic idea underlying
one considers the random walk in a bond percolation modefnese dynamically disordered hopping models can provide an
where configurations of open and blocked bonds are ranspproximation to many-particle effects in transport processes
domly renewed at a given rate An important outcome of i interacting lattice gaseéS.A (pointlike) tracer particle in
this model is the fact that the frequency-dependent diffusivyp, interacting lattice gas can hop to a neighboring site pro-
ity D(—iw,\) can be obtained by analytic continuation of yjgeqd the other particles have arranged such that this at-
the diffusivity Do(—iw)=D(—iw,0) in the absence of re- tempted site is vacant and that energetic conditions for the
newals hop are fulfilled. The fact that the time scales for the chang-

D(—iw,\)=Do(—iw+\), (1)  ing environment and the tracer motion are interconnected
offers a way to establish an effective dynamic bond percola-
tion model for the tracer, involving a time constant\ can
be determined either self-consistently or by an ansatz based

result (1) was independently obtain}ed by Harrison andgp the Jattice coordination number. A many-particle effective
Zwanzig within effective medium theonassuming indepen-  medium theory for diffusion in interacting lattice gases
dent random renewals of individual bonds rather than 9|°baémerges in this way?

renewals as in Ref. 6, and also by Hilfer and Orba&ub-

2

irrespective of the precise form of the functi@y(s) to be
derived from a system with only static disor§eFhe same

Besides these investigations for a lattice gas of point
particles it seems that DP theories, although motivated by
dElectronic mail: oliver.duerr@uni-konstanz.de processes in polymer electrolytes, have never been tested
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guantitatively in the context of statistical polymer models.chains, equilibration and the subsequent dynamics at equilib-
While the renewal processes associated with a system ofum are based on the generalized Verdier—Stockmayer algo-
point particles are sufficiently characterized by a single rateithm, which employs end-bond motions, kink-jumps and
constant\ entering Eq(1),'° we expect this equation to fail crankshaft rotation§=?* Point-particles individually per-

for the problem of diffusion through a polymer network be- form nearest-neighbor hops. In the special cas® (mov-
cause of the inherent distribution of relaxation times characing dimerg only the end-bond motion is active, which then is
terizing the chain motion. This should result at least in aa 90 degree rotation of the dimer about one of its end-points.
more complicated form of the waiting-time distribution As usual, introducing

(). The question now is how far E¢2) can describe the 2 -
diffusion coefficient, whenj(t) is defined in a suitable way D(s)= S_J dte S{r2(t)), (3)
in terms of the actual dynamics of the polymer network. 6 Jo

To elucidate this question, we investigate in this ar'ucleWe can obtain the diffusion coefficient of point-particlés,

an athermal lattice model, defined in Sec. Il, which conS|sts:"msﬂo+D(S)’ from their simulated mean-square displace-

of I"’.\tt.ice cha_ins with varying d_ensity a_md chain Iengt_h and %ment (r?(t)). To separate the average effect of blocking,
sufficiently dilute system of point particles. Both chains andcontained in a factor 2c. one introduces the tracer corre-
point particles undergo diffusion via elementary stochastiqation factorf(c)<1 acco’rding to

moves. This model is a special case of a more general lattice
model of chains and point particles with specific interactions, D=D©(1—c)f(c), (4
used previously to describe the influence of temperature
pressure and salt content on diffusion and network relaxatio

properties of polymer electrolytes:” Our aim is now to map the complete system dynamics
In the present work, we first obtain diffusion coefficients . . Pl P ystem dy
onto a disordered single-particle model, where disorder con-

from dynamic Monte Carlo simulation of our model. Thesefi urations are globally renewed according to some appropri
resul rv reference with r h rﬁ oo ST S
esults serve as a reference with respect fo the subseque e waiting-time distribution/(t). In order to test the valid-

approximation method based on dynamic percolation theor;?fJl

To implement this theory, we determine by simulatiorthe ity qf this idea ggainst full simlzjlations, we have to extract
waiting-time distributiony(t), which we define in terms of € iNPUt quantities to Eq2), (r*(t)), and y(t), from our

- 2 - - . _
the occupational correlation function of a site next to a ﬁxedpolymer model. Whilgr“(t))o can be obtained in a straight

point particle andii) the mean-square displacemént(t)), L%r;\ﬁ;d thrgfg?se;of:;onq] L(?%?E:}g rc?:JTeuiztI((j)gtSérr\giI:lh (ftr)o zen
of point particles for static disordgfrozen chains These ! queg il

steps are computationally much less demanding than the full® .that we have _to employ some physical arguments. As
indicated already in the Introduction, we propose to deter-

simulation. Comparison of both methods via E2). provides . ) . .
P E2).p mine ¢(t) from the local occupational correlation function

a sensitive test for the applicability of DP theories to diffu- . . .
sion in a fluctuating polymer host. We find excellent agree-<n‘(t)ni(o)>’ wheren(t) is the occupation by chain beads
f a sitei adjacent to a fixed tracer position. To simulate

ment between the tracer correlation factors as a function o n(t)n;(0)) chains were first equilibrated while keeping the
density and chain length, as obtained from those two meth (Oni(0) d ping

ods. Temporal correlations, reflected in the nonexponentiagarfz;“féxeg'rc(s)luact:;: tﬁ;?)credbu;:e:jsoae:gencé%a':; tar;eussgér:“ ?)f
character ofi(t), are found to be crucial in this analysfs. tr?/e tracerpin " immediateynei hborhood y
In Sec. lll we specialize to a chain length=1 which g :

. . At this point let us recall some relationships from re-
corresponds to a system of point-particles only, before we . . .
present in Sec. IV our full analysis for chains up to a IengthneWaI theory. Leip(t) with t>0 be the probability density

r=20. Some further conclusions are drawn in Sec. V. for the first rengwal eyent, when the foregoing renewal took
place at an arbitrary timg<0. Then

hereD(®=Ta? denotes the diffusion coefficient for infi-
nite dilution (c—0), with I" the bare hopping rate.

1. SIMULATION METHOD AND IMPLEMENTATION OF oo
THE DYNAMIC PERCOLATION CONCEPT d()=1- fodt o(t") (5

Consider a system of lattice chains on a three- . . . -
. . . . . : . is the resulting probability that there is no renewal within the
dimensional simple cubic lattice of spaciagThe chains are

made of beads, assigned to lattice sites, and linearly Cor{gterval[o,t]. Following Refs. 11 and 22,

nected via nearest-neighbor bonds. Apart from site exclusion, d¢p —

which mimics a hard-core repulsion, no explicit interactions m:)\lﬂ(t), (6)
between beads are assumed. Mochains each with beads o

in a box of linear sizeLa, the concentration of occupied where A~ 1=(#(0)) 1= [gdtty(t) denotes the mean re-
lattice sites is simply given bg=Mr/L3. In addition, our newal time.

system contains pointlike tracer particles, again subjected to Our basic idea is now to identify renewal events with
site exclusion, with a concentratian<1 sufficiently small  occupational changes at sitaext to a fixed tracer. We argue
so that correlations among them are negligible. Most of outhat with probability®(t) the occupation at site does not
simulations were carried out with=10, r=1 to 20, ¢, change withif 0,t] so that the stochastic variabigt) (with
=102, and periodic boundary conditions are employed. Af-possible values 0 or)lpreserves its initial valuen;(t)
ter preparation of the system with the desired number of=n;(0) andn;(t)n;(0)=(n;(0))?=n;(0). Conversely, with
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probability 1-&(t), one or more renewals occur within 1 . : .
[0t]. Then, since configt_Jrations are randon_1|y rgassigned, Shomim;gﬁ‘g;i?g; _7
n;(t) can be replaced by its average,Hence, in this case, \ Continued fraction E:Z‘ T
n;(t)n;(0)=cn;(0). Averaging in addition over the initial \ N=§ ~———
. . . . \
occupationn;(0), we obtain for the correlation function 01F  \Rpo
(Ni(HN;i(0))=c[D(t) +c(1-D(1))]. (7) s \-\ e
This can be rewritten as ° ' S
(ni(Hn;(0)) — c2 001 f N ey e '
P(H)= I C(]I__C) ’ 8 \ \\DDDDDDDDD """"
\. \\\ DDDDDDDDD
consistent with the requiremends(0)=1 and®(t)—0 as \-\ \\\
t—oo. Combination of(5), (6), and(8) yields 0.001 ' s . =
0 5 10 15 20 25

— — d?
PO=A"10" () =[Ne(1-0)] g (ni(tni(0)).  (9)
FIG. 1. Semilogarithmic plot of the functiop(t) [see Eq.(8)] for the

After insertion into(2) the prefactors drop out. Equatid8) hard-core lattice gas. Monte Carlo data are obtained by simulating the prob-

. . ability of return of a single random walker starting next to a blocked site.
completes the implementation ,Of DP theory to our Many-pashed—dotted line: single exponential approximation as determined by the
particle model. In the next sections we test the performancgitial slope [see Eq.(11)]. The other lines represent continued fraction
of this approximation scheme to a simple hard-core latticeapproximants up to ordei=6 (see Appendix A Here and in subsequent

gas and to a polymeric system. plots we takel’=1 for the bare hopping rate.

I1l. HARD-CORE LATTICE GAS
] o ) ) ) Results ford (t) obtained both from Monte Carlo simu-
As a first application let us briefly examine the special|ation and from these approximations are plotted in Fig. 1.
case of nonconnected beadss 1, which is identical to the  ag seen from the figure, the main decay ®ft) at short
conventional hard-core lattice gas of point-particles. Th&jmes is fairly well represented by an exponential with decay
tracer correlation factof(c) in that case is known to a high 5t
degree of accuracy via dynamic pair approximatithg?

giving No=— (dd/dt),_q=(DT. (11)

1+(coso) (10 The factor? simply arises from the fact that one of the six
’ 6

1-[(3c—2)/(2—c)](cosO) bonds in the simple cubic lattice connected to sités
and through simulatior.In Eq. (10), which becomes exact blocked by the tracer. The actual decay ®{t) is ap-
asc—1, the gquantity(cos©) characterizes the average di- proached gradually by continued fraction approximants of
rectional change in two consecutive steps of the tracer due tmcreasing ordeN, which were derived according to Appen-
the presence of one vacancy. For a simple cubic latticedix A. The asymptotic decay ob(t) at long times is gov-
(cosO)=—0.209. An effective-medium approximation to erned by diffusion, givingp (t)=(I't) ~*2 which, however,
f(c) was obtained recentfy from dynamic percolation cannot be accounted for by a finite continued fraction. Nev-
theory using the Harrison Zwanzig approdch. ertheless, for the purpose of practically evaluati@y we

In what follows we apply the approach outlined in Sec.find that it is sufficient to approximat@(t) in terms of a
Il to the same problem(r?(t)), is obtained from simulating superposition of three exponentials.
a single mobile particle in the frozen configuration of the Figure 2 shows the-dependent tracer correlation factor
background particlesb(t) is deduced from Eq(8) where obtained in this way. The agreement of data points from our
(n;(t)n;(0)) is obtained from a short time simulation of a DPT with the full curve representing the dynamic pair ap-
lattice gas with one fixed tracer particle, as described abovearoximation Eq.(10) is quite satisfactory. For completeness
These simulations were carried out within a cubic box ofwe also included Monte Carlo data for the full hard core
length L=10 and periodic boundary conditions. Note thatlattice gas. The DPT result far=1 with value f=0.6802
collective properties of a hard-core lattice gas with symmetwas obtained analytically, see Appendix A, whereas the exact
ric transition rates show a relaxational behavior independentalue is f(1)=(1+(cosO))/(1—(cosO))=0.654. Also
of concentratiorf”? The functiond(t) as determined from shown are diffusion constants calculated from the effective
(8) is thereforec-independent and thus can be determinedmedium approximation as described in Ref. 15, which is
from single particle random walk theory. Within that frame- based on only one time constant for renewal events. With
work @ (t) can be interpreted as time-dependent probabilityh =\, as given by(11) this theory yields the dashed curve
of return of a single random walker to site taking into  whose deviations from Eq10) in the high-concentration
account that one site adjacent tis blocked by a fixed tracer. regime are larger than the deviations of our DP thefddn
In Appendix A we briefly indicate howp(t) can be calcu- the other hand, merely fitting to the exact value of (1),
lated exactly or how one can generate efficient analytic apgiving A=0.62", turns out to give very good agreement
proximations. with Eq. (10) in the whole concentration range.

f(c)=
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FIG. 2. Tracer correlation factdi(c) of the hard core lattice gas against FIG. 3. Simulated tracer correlation factb(c) for different chain lengths

concentration, obtained by different methddse text Full curve[Eq. (10)] r=2, 5, 10, and 20. Full lines refer to the fit functidn=(1— ac)/(1

and MC simulation data serve as reference for the performance of the-gc), where forr=5, 10, and 20 the fit parameters gfe=1 and «

present DP theory and the EMA as described in Ref. 15. =1.057, 1.062, and 1.071, respectively. This implies that the diffusion con-
stant (4) is approximately linear irc, D(c)=Dgy(1—ac). On the other
hand, forr=2 we find «=0.391 andB=0.318. For comparison we also

These results confirm the conclusion in Ref. 15 that dy-fg:;j&”_“élgggg ﬁ,?éa for=1 (hard core lattice gadogether with Eq(10

namic percolation theory can reasonably describe diffusion
in many-particle systems. At the same time our results indi-
cate that the theory significantly improves when the non-
Poisson character of renewal processes is taken into accoufgsults of Fig. 3(For clarity, only the full lines from Fig. 3,

For the problems in the next section this last aspect will€presenting the fitted data as discussed above, appear in Fig.
become much more important. 6.) Evidently, the DP approximation agrees very well with

the full simulation for allr. Some further observations are

noteworthy:
IV. LATTICE POLYMERS

] (@ From the MC simulation results foi(c) (Fig. 3 an
_For the hard-core lattice gas 1) the procedure de- interesting picture emerges concerning the effect of
scribed obviously bears no computational advantage over ex- st connectivity on the tracer diffusion. Focusing first
isting methods. The situation changes, however, when we go 4 chains withr=5 we see that foc<0.8 f(c) and

over tor>1. The correlation factof(c) now depends om hence the diffusion constant are larger than in the hard-
and no analytic approximation equivalent to EGO) is core lattice gagSec. 11)).2° Thus, in this density range
available for this case. At the same time full simulations of chain connectivity facilitates diffusion of tracer par-

the diffusional dynamics become more demanding because ijes relative to the hard core lattice gas<(1) with
of the internal degrees of freedom of the host molecules and 6 same average site occupatiorFor larger site oc-
the larger statistical errors connected with the small concen-

tration of tracer particles. Here our approximate DPT-based

computational scheme is potentially useful. In this section

we examine the performance of this scheme. 1
Figure 3 summarizes our MC simulation results, again

represented in terms of the correlation factéc), Eq. (4),

for different chain lengths up tor=20. The full lines are

fits to the simple functional formf(c)=(1—a(r)c)/(1 0.1

— B(r)c) with fit parametera, 8 that depend on the chain £
lengthsr. These results will be used as a basis for assessinge
the performance of the approximate DP-based approach. A¢
discussed above, this approach is based on evaluating th
waiting time distributiony(t) according to Eq(9) and the 0.01
mean-square displacemefit’(t)), of a tracer in the pres- )
ence of a frozen solvent. Figure 4 shows typical results for =

the function ®(t), see Eq.(8), obtained for chains with 0 20 40 60 80 100
lengthr = 10 for several concentrations, while our simulation t

res.ults.for<r2(t)>O grelshown in Fig. 5 for.the samevalues FIG. 4. ®(t) for chains of lengthr =10 for three different concentrations
as in Fig. 4. Substitution of these results into E@s.and(4) ¢=0.8, 0.1, and 0.4from above. Also shown is the short time behavior of

yie!ds our DP-approxi_mation for the cqrrelation fact¢r), the c-independent functiod(t) for r=1 (dashed-dotted line reproduced
which is shown in Fig. 6 together with the “exact” MC from Fig. 1.

Downloaded 25 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 1, 1 July 2002

Dynamic percolation theory for particle diffusion 445

100 - ' - - c. Two opposing trends seem to be the reason for a
if%g gfgi o nonmonotonous-dependence. First, we argue that at

80 t r;10 c;O:S Pl an intermediate concentratiarn=0.4 the relaxation is
=1 c=04 ——-— e faster than forc=0.1 because of the more homoge-
- 60 I // neous distribution of monomers in the surroundings of
A P the tracer, allowing enhanced occupational fluctuations.
N; 40 | /// Second, going to higher concentrations, all polymer
el e e modes slow down and thereby diminish the decay of

// e d(t) (see the case=0.8 in Fig. 4. The final result for

20 // _,__/.-_/"/"/ - f(c), however, remains monotonous inbecause of

L - the strongec-dependence dfr%(t)), (see below. For

= - dimers {=2) we have found tha®(t) decays even

0 20 40 60 80 100

somewhat faster than in the case1l and is only
weakly c-dependent. To eludicate in this context the
role of the fixed tracer, we have performed additional

FIG. 5. Mean-square displacemeft(t)), of walkers in a frozen chain
network. Network parameters are as in Fig. 4. Eer0.4 a comparison is
made with the case=1.

simulations for the correlation functiom;(t)n;(0))(©
in the absence of the tracer, which follows from the

(b)

(©

f(c)

cupations, however, correlation factdrg) for lattice
polymers seem to drop below those of the hard core
lattice gas (=1).

These findings for=5 are in contrast to the behavior (d)
found forr =2, which is a special case concerning the
allowed elementary movesee Sec. ) For all con-
centrationsc consideredf(c) now remains larger than
0.9; see Fig. 3. Dimers therefore induce only minor
backward correlations in the tracer motion. Intuitively,
from the point of view of the tracer, only one monomer
of the dimer molecule effectively suppresses tracer for-
ward motion by a nearest-neighbor hop, while its sec-
ond monomer is shielded.

The main feature seen in Fig. 4 is the highly nonexpo-
nential decay of the functio®(t) for the chain sys-
tems, indicating the importance of temporal correla-
tions in the associated renewal processes. Furthermore,
in contrast to the case=1 with c-independentb(t),

we observe for =10 a decay ofb(t) that depends on

1.05 T T T ' T " r T ©

H & ¢ »

0.95

0.9

0.85

0.8

0.75

0'7 1 1 1 L 1 1 i L
0 01 02 03 04 05 06 07 08

unperturbed polymer dynamics. The corresponding
functions®(©)(t), see Eq(8), generally show a similar
but somewhat faster decay thdr{t). We have found
that using®(©)(t) instead ofd(t) in calculatingf(c)
causes deterioration of the good quantitative accuracy
of the DPT scheme.

The mean square tracer displacem@r(t)), in a fro-

zen host, plotted in Fig. 5, shows with increasing
crossover from diffusive behaviofr (t))o~t, to a lo-
calized random walKr?(t)),— const as—o, as ex-
pected for a percolative network. It is expected that this
crossover takes place at some critical concentration
Cqit- A precise determination of the percolation thresh-
old cq(r) for walks through a frozen network of
chains of lengthr is beyond the scope of this article,
yet rough estimates are presented in Appendix B for
two- and three-dimensional systems. ds3 dimen-
sions,C.,;; appears to increase with indicating again
that for givenc the frozen chains are less prohibitive to
tracer diffusion than a frozen background of indepen-
dent monomers. For example, for 10, the concentra-
tion c=0.8 clearly exceeds,;(r =10); see Fig. 5 and
the estimates in Appendix B.

As already noted, the DP approximation agrees very
well with the full simulation for allr (see Fig. 6. This
remains true even in the special case of lattice dimers
(r=2). In particular, following the analysis contained
in Figs. 4 and 5, it is easy to understand the marked
drop inf(c) for largec, i.e., near and above the perco-
lation threshold, shown by the data foe5. Because

of the absence of diffusion in the frozen lattice with
>Cqit (see Fig. 3, long-range tracer motion solely re-
lies on network fluctuations which, however, become
slow in that regimesee Fig. 4. Ther-dependencer(
=5) of our results in Fig. 6 follows from the fact that
the dynamics in high-density lattice polymer systems

slow down further ag increases at constant density
30
C.

FIG. 6. Comparison of tracer correlation factors from DP theory for chainsV. SUMMARY AND OUTLOOK

of different lengthgdata pointswith results from full simulations. Full lines
represent fit functions for the simulation data, reproduced from Fig. 3.
Again, the dashed—dotted lines represents(EQ).

A method has been proposed how to map particle diffu-
sion through a fluctuating network of polymer chains onto
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dynamic percolation theoryDPT). As input quantities this the effect of the blocked site can be taken into account by
theory requires the particles’ mean-square displacemerstandard defect matrix theot§This yields an expression for
(r?(t))q in the frozen network and the waiting time distribu- ®(t) in terms of the solution of a 83 matrix equation,
tion y(t) for network renewals. We proposed to relagté) whose coefficients are determined by unperturbed lattice
to the occupational correlation function of a site next to theGreen functions up to third-neighbor distances. The calcula-
tracer particle so that it reflects the temporal distribution oftion is straightforward and will not be reproduced here.
pathway openings seen by the fixed tracer. In contrast to the In the present context it is sufficient to obtain an accurate
standard hard core lattice gag(t) decays in a highly non- approximation ford(t) only until it decays to about 1.
exponential fashion when longer chains are considered. ThiSomputationally it is then advantageous to represent its

feature of the fluctuating network appears to be crucial in_aplace transformb(s) as a continued fraction of the type
implementing dynamlf: percolation theory to chaln.systems(i)(s):ao(% b,—a,(s+--)"1)"1, generated by a short
When properly taken into account, the_DP model_g|yes qu_lte[ime expansion ofb(t).% Time derivativesb™(t=0) with
accurate results for_the tracer cprrelatlon factor in its variap<n<2N-1 are easily obtained by enumerating closed
tion with concentratiorc and chain length. We have veri-  nais of the walker which avoid the blocked site. Specifi-
fied this by comparing the results of DPT with Monte Carlo cally, we use

simulations of the complete system dynamics. Thereby it
turns out that the DPT scheme saves about one order of
magnitude in computing time relative to full simulations.

Our studies so far are limited to an athermal system and ) - o
therefore are not yet in the position to make a direct comWhere ®, is the probability of return to the origin after
parison with experiments or molecular dynamibtD) stud-  StePs- . o _
ies of diffusion through real polymer systems. Under this _ At stageN the continued fraction is terminated such that
aspect it would be very interesting to extend our studies byP(0) agrees with the exact result from defect matrix theory
applying DP theory with non-Poisson renewals to interactingdSee above which, at s=0, is determined in terms of
systems as a first step in approaching real materials. Thé/atson-type integrals. Figure 1 contains a plot of the
method in principle can also be applied to questions of disNth-order approximants fob(t) up toN=6. ForN=6 the
persive transport. simulations are accurately represented up'te-15.

Information on the mean-square displacement of guest Finally we comment on the limit— 1, where the corre-
molecules in a frozen polymer matrix with Lennard-Joneslation factor from DPT can be evaluated analytically. Obvi-
interactions has recently been obtained from MD simulausly, the mean-square displacem@r(t)), of a tracer in a
tions, and has been utilized in building a model to interprefrozen lattice is determined in that limit by successive ex-
experimental diffusion data for noble gases in polyniérs. changes with one neighboring vacancy. This give¥t)),
Tentatively, from the point of view of the present theory, we =ba*(1—c)(1—exp(-2I't))/2, whereT is the jump fre-
can regardr?(t)), to be known for that system, while in- guency. From8) together with the above-mentioned results
formation ond(t) is lacking. For purely qualitative purposes for ®(t) we obtainf(1)=0.6802 as given in Sec. ll.
we may assume a single renewal ratand employ Eq(1)

(w=0). Comparison with the measured diffusion constantAPPENDIX B: PERCOLATION IN A FROZEN NETWORK
yields a renewal tim& ~*, which turns out to be of the order
of magnitude of the crossover time, beyond which the meang

s_qua(rjt_aﬁd@plaégrrrr:gnt in the mode! of Ref. 3ﬁ Freef]!ecgsllongfracer particle in a frozen network on time scales of the order
time diffusion: IS appqrent consistency with Refs. 31 and ¢y, decay time off(t). In this Appendix we estimate the
32 supports our conclusion that the DP concept could be-

L . . e critical concentratiorcg(r) for percolation of a monomer
come a promising tool in studies of diffusion through real particle through a frozen network of chains, which distin-
polymeric systems. ’

guishes diffusive from localized behavior @f(t)), at long
times. To our knowledge, this problem of correlated percola-
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@(t):go d)n%e‘“, (A1)

Calculation of the diffusion constabt from (2) requires
wledge of the mean square displacem@g(t)), of a

APPENDIX A: HARD-CORE LATTICE
GAS-SUPPLEMENTARY RESULTS
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