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Abstract

A theoretical description of quantum mechanical steady states is developed. Applications for simple quantum me-
chanical systems described in terms of coupled level structures yield a formulation equivalent to time independent
scattering theory. Applications to steady states of thermally relaxing systems leads to time independent scattering
theory in Liouville space that is equivalent to the tetradic Green’s function formalism. It provides however a direct
route to derive particular forms of the Liouville equation applicable in steady-state situations. The theory is applied to
study the conduction properties in the super-exchange model of a metal-molecule-metal contact weakly coupled to the
thermal environment. The energy resolved temperature dependent transmission probability, as well as its coherent
(tunneling) and incoherent (activated) parts, are calculated using the Redfield approximation. These components de-
pend differently on the energy gap (or barrier), on the temperature and on the bridge length. The coherent component is
most important at low temperatures, large energy gaps and small chain lengths. The incoherent component dominates
in the opposite limits. The integrated transmission provides a generalization of the Landauer conduction formula for
small junctions in the presence of thermal relaxation. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Consider a system of classical rate equations. A
set of variables C satisfies kinetic equations of the
general form

C=F(C), (1)

where the rates F are functions of the variables C.
In many situations the set C is a continuous field
(position dependent variable) and F contains dif-
ferential and/or integral operators. As t — oo the
system will approach equilibrium if the rate laws in
Eq. (1) satisty detailed balance. When the bound-
ary conditions imposed on the system are not
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compatible with equilibrium the set (1) may ap-
proach a non-equilibrium steady state (this will
always be the case if the rates F are linear in the
variables C) in which a constant current is passing
through the system. The steady state is described
by the set of equations

F(C) =0, 2)

together with boundary conditions (e.g. the values
of some of the variables) that will characterize the
non-equilibrium nature of the steady state. For
example, the set of equations used to define the
Lindeman mechanism in chemical kinetics [1,2]

AR BX(, (3)
kpa ke

is often analyzed under the boundary condi-
tions Cy = constant and Cc = 0, where C; is the
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concentration of species i. Under these conditions
a constant flux, kapkpcCa/(ksc + kpa) is passing
through the system. In analogy, a non-equilibrium
steady state of a diffusion process described by
0C(r,1)/0t = DV*C(r,t) may be characterized by
given constant values of C(r, #) on opposite ends of
the system. The steady-state diffusion flux is
DV C(r), where Ci(r) is the solution to DV>C = 0
under the given boundary conditions.

Quantum mechanical problems are rarely trea-
ted in a similar way. Boundary value problems are
encountered mostly in the solution of the time
independent Schrodinger equation, aimed at eval-
uating eigenstates of the system’s Hamiltonian,
which in themselves have no dynamical contents.
Time dependent processes are treated as initial
value problems. A prominent exception is the
formulation of time independent scattering theory
where the resulting wavefunctions can be inter-
preted as steady-state solutions of a process char-
acterized by a constant incoming flux. Scattering
theory however is formulated in a particular
framework in which incoming and outgoing waves
become flux-carrying eigenstates of the free parti-
cle Hamiltonian far from an interaction zone. A
more general formulation of steady-state quantum
mechanics can use different basis sets, e.g. states
that by themselves do not carry fluxes. We have
recently shown [3] that such a formulation can lead
to standard scattering theory results as well as
other results usually obtained from solving initial
value quantum mechanical problems. In another
recent paper [4] we have used a similar approach
within a density matrix formalism for the analysis
of thermal effects in electron transfer problems.
Yet another important example where this ap-
proach is useful (and where an early version was
used [5]) is light scattering, where thermal effects
near resonance may increase the yield of fluores-
cence at the expense of Raman scattering. The
general principles regarding this approach are
summarized in Appendix A.

The purpose of the present paper is to point out,
and to eclucidate some subtle points in the appli-
cation of the same approach within the quantum
dynamical density matrix formalism. Our motiva-
tion is as in Ref. [4]: to develop a formalism for the
description of steady-state currents in metal-mol-

ecule-metal junctions, in particular in the presence
of thermal interactions, and thereby to evaluate the
conduction properties of such junctions. This pa-
per focuses on technical aspects associated with the
application of this technique. In a subsequent pa-
per [6] we will use this approach to study the heat
dissipation in a model for steady-state charge
transfer through a molecular bridge.

2. Simple examples

To set the stage for the more complex problems
discussed below we review in this section the ap-
plication of the steady-state technique to simple
problems involving the decay of an initially pre-
pared (“doorway”) state interacting with a con-
tinuum. Fig. 1 shows the standard model for this
process: The Hamiltonian is expressed in terms of
an orthonormal basis

H = E|0){0] + ZE/-IJ'WI + Z(Vo/-|0>(1'| + Vli)(01),
J J (4)

where the states {j} constitute a quasi-continuous
manifold, characterized by its density p,(E) =
>, 0(E — E;), which extends into energies far be-
low and above Ej. The coupling matrix elements
Vij = V; are assumed to depend weakly on E; and
to vanish near the edges of the {j} spectrum. Un-
der these (and some other well known) conditions
an initial state (¢t =0) =1]0) evolves in time

6)
0>

Fig. 1. A standard model for the decay of a prepared state
coupled to a continuum.
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according to (y(0)y(¢)) = exp (—iEot — (1/2)Iasx
(Eo)t) where Ey=E, + Aoy (Eo) and where Ay, (E)
and Iy, (E) are the real and (—) twice the imagi-
nary parts of the function

Sw(E) = limS (Vo) (E ~ E; + in). 5)

In particular,

Tos(Ey) =27y Vol (Eo — E)
7

= 2n|| VOJ‘ZPJJE:EO’ (6)

(|%s| is defined by this relation), is the well known
golden rule expression for the decay rate of an
initially prepared state coupled to a continuum,
and is the main result of this model. Here and in
the rest of the paper we have used capital char-
acters to denote manifolds of states, while the
corresponding lower case font denotes individual
states.

In order to obtain this result from a steady-state
formulation we start from the equations of motion
for the coefficients ¢ of the expansion of a general
solution of the time dependent Schrodinger equa-
tion for this model, () = co(¢)|0) + 3=, ¢;()|)):

éo = —iE()Co -1 E V(),jCj;
J
Cj = 71chj — IV},OCO. (7)

Consider the steady state obtained if the state |0)
was forced to evolve as if the coupling to the con-
tinuum did not exist while each of the states of the
manifold {;} is assigned a small damping term #/2.
This damping is an absorbing boundary condition
that can be taken zero at the end of the calcula-
tion. The corresponding equations are

co(t) = Coe™", (8)

Cj = _IEjCj — iV}ﬁCo — gcj, (9)
¢o(?) given by Eq. (8) is now a driving term in Eq.
(9) for ¢;. The latter yields, at long time c¢;(f) =
Cie 5o with C; given by

V:0Co

Ci=——""5"7-7.
' (By—E;) +1n/2

(10)

The total flux through the systems is

= }111% (”Z|Cj|2> = |Col T, (11)
7

implying a rate, I/ |C0\2, equal to I'y;. To reiterate,
the procedure just described replaces the original
Schrodinger equation by an equation that incor-
porates two boundary conditions: The driving
term, Eq. (8), corresponds to a constant incoming
flux while the absorbing boundary terms imposed
on Eq. (9) cause the (linear) system to approach a
steady state as ¢ — oo. The fact that an analysis of
the relationship between given non-equilibrium
boundary conditions and the steady-state flux
sustained by them can yield information on rates is
well known in kinetic theory. However, the steady-
state rate and the rate observed in a transient
measurement are not always the same; for a dis-
cussion of this point see Ref. [4].

Next consider another example: a model for
resonance scattering. Fig. 2 depicts a typical po-
tential model for this problem, together with a
corresponding energy level structure. The potential
scattering problem, Fig. 2a, corresponds to what
we normally refer to as resonance tunneling: A
particle with energy E;approaches the double
barrier structure from the left, and the transmis-
sion and reflection probabilities are evaluated as
functions of Ej. Fig. 2b provides an approxima-
tion to this model, based on the assumption that
the scattering process is dominated by the inter-
action of the incident and scattered waves with the
single resonant level |1) in the well between the
barriers. Fig. 2c is a generalization to the case with
many intermediate states (or wells) that will be
discussed later. Fig. 2b is also a model for ab-
sorption and resonance scattering of light: Here
level |0) represents a dressed state, e.g. the mo-
lecular ground state |g) dressed by a photon so
that E, = E, + ho, while state |1) is the molecular
excited state without the photon. The corre-
sponding Hamiltonian is

H=H,+V, (12)
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Fig. 2. Models for resonance scattering: (a) a double barrier structure with a quasi-bound level in the intermediate well. (b) A standard
approximation for resonance scattering from the potential (a), taking only the quasi-bound level in the well into account. The free
particle states on the two sides of the barrier are depicted as continuous manifolds. (c) Same as (b), for a multi-well structure.

Hy = Eo[0)(0] + Ea[1)(1] + > _E|1)(1]
10

+ Y B (13)

V="l (1] + Va0 () + (%.]0)(1
140

+ Vol (O + > (Fal) (1] + 1) (), (14)

where {r} and {/} now denote the right and left
continuous manifolds. The incident state |0) be-
longs to the {/} manifold but should be treated
separately as discussed below. In collision theory
|0) represent an incoming wave while the other {/}
states and the {r} states correspond to outgoing
waves. These incoming and outgoing waves carry
momentum, but the formalism described here can
use other representations, including one in which
these states are standing waves [3].

A general solution of the Schrodinger equation
based on the Hamiltonian (12)—(14) takes the form

V(o)=Y @l J=0,1{}{}

J

where the coefficients ¢ satisfy

¢y = —1Eyco — il ¢, (15)

¢ = —iEjc; —1Vjpco — 1 E Viger —1 E n.cr,
1 r

(16)
¢ = —iE;c; — iV ey, (17)
ér = —iErCr — in‘lcl. (18)

In analogy to Egs. (8) and (9) we study instead a
set that would lead to a steady state at long time

é‘() = —.1E()C()7 (19)

¢1 = —iEjc; — il oco —1i E Naer —1i E Vircry
1 r

(20)
¢ = —iEic; — iV e — (n/2)ey, (21)
ér = _iErCr - iVlv”,lcl - (’7/2)01 (22)

Note that while Eq. (15) is just one of Eq. (17)
(since the incident state belongs to the manifold
{1}), in Eq. (19) this state is given a special status
as the one that drives the system (see also discus-
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sion at the end of this section). As ¢t — oo all co-
efficients ¢ oscillate with this driving frequency

() = Cre ™ j=0,1,1,r (23)
using this in Egs. (20)—(22) leads to
VG . .
C=—""——= — V,C. = —121r(Ey)C
Er—Eo—lﬂ/Z lzr: 1, 1 1R( o) 1

21r(Eo) = Awr(Eo) — (1/2)il'1r(Eo) (24)

and similar equation for C; and —i)_, ¥ ,C,. Using
these results in Eq. (20) yields

_ V1.0Co
Ey— E, + (i/2)I'(Ey)’

G (25)
where F](E()) = F]L(E()) -+ FlR(E()) and E] = E1 +
Ar(Ep) + A1(Ep) is the shifted resonance energy.
Using Eq. (25) in the expression for C, in Eq. (24)
we get

|Cr|2 = |Cr|2
_ [Vl
(Er = Eo)* + (n/2)"
2 2
x |Vl,0| |C0| (26)

(Ey — Eo)* + (I'(Eo)/2)°

for the population of the r state with energy E, in
the right continuous manifold. The steady-state
flux to the right out of this level is given by nc,|”
and the corresponding rate k;_,. is obtained by
dividing by |co|*. In the limit 5 — 0 this becomes

2
ko = 2|1, PO (E, — Eg) ——— ol .
(Ey — Eo)” + (I'i(Eo)/2)
(27)
while the total rate to the right is
kOHR = Zki
e
= I'ip(Ey) — Vil (28)

(Ey — Eo)* + (I'(Eo)/2)°

Similar expressions (e.g. I'j; replaces I'jz in Eq.
(28)) are obtained for the leftward flux. The energy
conservation implied by the delta-function in Eq.
(27) is to be expected in the present case where no

thermal dissipation is taking place. These expres-
sions may be rewritten in symmetric forms more
closely related to scattering theory. The rate into
the right manifold per unit final energy is

ko—r(E) =Y ko 8(E — E,) = 'z (E)
Mol

(E\ — Eo)* + (' (Eo)/2)°
X (3(E — Eo), (29)

on the other hand, this rate is related to the
transmission coefficient 7~ by

kor(E) = % 7T (Ey,E), (30)

where ¢, is the incident carrier momentum, m the
carrier mass and where L is the normalization
length. In terms of the one-dimensional density of
states % p, (Eo) = Lm/(2ngqo) this implies

T a(Eo, E) = 2mp, (Eo)ko—r(E)

_ I (Eo)Iir(Eo) S(E — Ey)
(E\ — Eo)* + (I't(Eo) /2)* ’
(31)

(the subscript “el” is used to denote the elastic
character of the transmission process). The ex-
pression multiplying the delta function corre-
sponds to the usual definition of transmission
coefficient at energy Ej is

T a(Eo) = / dE 7 o (Ey. E)

_ I'\.(Eo)T1r(Eo)
(B — Eo)’ + (' (Eo) /2)*

(32)

Note that all the damping and shift terms in
Egs. (27)—(32) are evaluated at £ = E;. A common
approximation to the solution of Egs. (19)—(22) is

' Note that kg_z of Eq. (28) and ko_z(E) of Eq. (29),
have different dimensionalities, and in fact satisfy ky_z =
[ dEko_r(E). Similarly 7 (Ey, E) of Eq. (31) and 7 (Eo) of Eq.
(32) have different dimensionalities.

2 Note that this is the one-dimensional density of states of a
free particle, multiplied by 2 to account for spin states, and
divided by 2 to account for the fact that considered are only
positive (or only negative) momentum states.
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obtained by accounting for the interaction be-
tween level |1) and the {/} and {r} manifolds by
replacing the sums in Eq. (16) by appropriate
damping and shift terms computed at E = E;. Eq.
(20) 1s then replaced by

&1 = —iEjc; — iVigeo — (1/2)[T1L(Er) + Tig(E))]er
(33)
When used in conjunction with ¢; = Cje 0" (cf.

Eq. (23)) this leads to an equation similar to Eq.
(25), except that I'; (Ey) and A, (E,) are replaced by
I'\(E,) and A;(E;). This in turn leads to equations
similar to Eqgs. (27)—(32) with similar substitutions.
It is seen that this provides a good approximation
only in resonant cases (Ey ~ E;) and in Marko-
vian situations where I and A do not depend on E.

The generalization of this result to the case of N
intermediate levels (Fig. 2¢) follows the same steps.
The Hamiltonian, Egs. (12)-(14) is now
H=H,+V,

N
Hy = Eg|0)(0] + Y "E,[n)(n] + > _E|1)(1] + ZE Ir)
n=1 10
(34)

N N
V=>"> Viuln ”|+ZZ Vial D) (n

n=1n'=1 1#0 n=

+ Valm) (1) + Y (Voal0) (] + ;0lm) (0])

+ZZ

where the coupling scheme is taken to be general,
not necessarily nearest neighbor. The equations of
motion equivalent to Egs. (20)-(22) are

én = _iEncn - iV;l,OCO - 1 E Vnn’cn’

(n| + Varln) (r]), (35)

n#n
- IZVH €1 = IZVanH (36)
120
= —iEjc; — ZIVJ”C” —(0/2)c;; j=1Lr. (37)

Going to steady state, as before, and eliminating
the {/} and {r} manifolds from Eq. (36) using the

same procedure as in Eq. (24), we get (C, = c,e'?;
En,O = En - EO)

0= —iE,Cy — iV,0Co =1y VuwCy — 122,,,1 (Eo)Cr,
s (38)
where the self-energy matrix X is
2w (Ey) = Zn w(Eo) + Z,,,, (Eo),
J ViiViw
Zf,,i/ (E) = Zm
:Aﬂaa—%uﬂME% J=L,R
(39)
Defining the vectors
C Mo
C=| : |; Vo = o (40)
Cy Vo
and the effective Hamiltonian matrix in the sub-
space of intermediate states 1,...,N
H) = Eybuw + Vaw + - (41)

Eq. (38) can be recast in the form
(E() — H<N))C =V, = C
= (Eo — HY) 'y (. (42)

Eq. (42) gives the steady-state amplitudes for all
intermediate states {n} =1,...,N. The steady-
state rate is obtained from ko, = 11|C,.|2 / \C0|2
where C,. = c,e®' is obtained from the steady-state
version of Eq. (37). This leads to

n
(E, — Eo)’ + (n/2)°

2

"nd(E, — Eo)

kOHr -

1
X—

‘C0|2 ZV;JICVI

2

(43)

rm™y g Vn

Repeating the steps that lead from Egs. (27)—(31)
we now get
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T a(Eo, E) = 2mp, (o) ko, 0(E — E,)

=§(E — Eo)Z((;(N)F(L)G(NHF(R))

n

n,n

= O(E — Eo)Try (GM' TGN @),
(44)

So that the transmission coefficient is

g-el (E()) = TI'N (G(N> (E())F<L> (E‘O)GU\/%L (E())F(R)(Eo)),
(45)

in agreement with results obtained from standard
scattering theory. We note in passing that if the {/}
and {r} manifolds correspond to metal electrodes
on the two sides of a molecular constriction rep-
resented by the states {n}, the corresponding
conduction at zero bias is given by the Landauer
formula [7,8]

eZ

== T u(Ep), 46
¢ =2 T alEr) (46)

where Ef is the Fermi energy.

Up to this point our discussion may be regarded
as a reformulation of scattering theory. This re-
formulation has the important attribute that it is
not restricted to use wave functions that satisfy the
usual incoming and outgoing boundary condi-
tions. Rather, any chosen state may be taken to
drive the system and the consequences of this
driving may be studied. The need to reformulate
scattering theory in this language arises from the
nature of some applications, e.g. current in a me-
tal-insulator-metal junction, where, in the weak
coupling limit, representing a process in terms of
‘left’ and ‘right’ manifolds of standing wave states
is natural [9]. This requires, as already noted, ex-
ercising some caution in distinguishing between
the driving state and the manifold of states it be-
longs to. In the application described above, even
though the state |0) formally belongs to the man-
ifold {/}, it has a special status as the state that
drives the system into a non-equilibrium steady-
state. Any error due to double counting in sums
over states of this manifold is negligible due to the
huge number of such states.

3. Steady-state quantum mechanics of thermally
relaxing systems

The effect of thermal dephasing and relaxation
on the dynamics of a quantum system may be
studied using a suitable density matrix formalism.
Here we focus on scattering processes in which the
scattering particle interacts with the thermal envi-
ronment of the target. Raman scattering from
molecules in solution and electron tunneling in
metal-insulator-metal junctions where the metal
electrons are modeled as free particles, are example
of such processes.

It is useful to see first how steady-state phe-
nomena are described within the density matrix
framework in athermal situations. To this end
consider again the system represented by the
Hamiltonian (12)-(14). A set of dynamical equa-
tions equivalent to Egs. (15)—(18) may be written
for elements of the density matrix, p,;. Formally
they can be derived from Eqgs. (15)-(18) or from
the Liouville equation

dy _

dr _i[va]v (47)

supplemented by the damping (1) terms. This leads
to

Poo = —1Vo1p10 +1V10p0 1, (48)

Poﬁl = —iEg1py; — iVO,l(Pl,l - Po,o)

+ iz Viipo,, (49)
J
Po; = —1Eo;po,; — 1Vo1py,; + 11004
—1/2po,, (50)
P11 = —1Vopo + 1101010 — iZVl,‘iijl
J
+ iZVj,lpLja (51)
J

pLj = _iElJp]j - iVLOpO,j - iZVLj’pj’,j
jl

+iVp11 —n/2p1, (52)
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Py = =1Ejpy; = Wpapr; V0 =1y
(53)

where E,3 = E, — Ep. j and j denote states from
the {/} or {r} manifolds and the sums are over
both manifolds. For any pair of indices af}, the
equation of motion for pg, is the complex conju-
gates of that for p,g.

Within this Liouville formalism, what are the
steady-state equations that correspond to Egs.
(19)-(22)? Recalling that the system is driven by
the state |0) and that at steady state all the am-
plitudes satisfy Eq. (23), imply that all p;; are
constants at steady state. This may suggests that a
proper set of steady state equations is obtained
from Egs. (48)-(53) by (a) replacing Eq. (48) by
poo = constant and by setting all p on the left side
of Eqgs. (49)—(53) to zero. The resulting set of
equations indeed describes a quantum mechanical
steady-state driven by a maintained constant pop-
ulation in state |0). This is however not equivalent
to the steady state described by Egs. (19)-(22),
which is driven by the fixed amplitude and phase of
state |0) (cf. Eq. (23)). This can be easily realized
by using Egs. (19)-(22) together with p;; = c;c;
to derive the following set of steady-state equa-
tions

Poo = constant, (54)

po1 =0 = —iEq1po; +1V1pg0 + iZVijO,j? (55)
J

po; = 0= —iEo;p,; + 1V 01 — (1/2)po (56)

Pri = 0
= _iVl‘Op(),l + iI/O‘lpLO - IZI/]/p/vl
J

+ iZV}lel,ja (57)
J
pl,j =0
= _iEl‘jpl,j - iVl.,O,DOJ - iZVLj’Pj/,j
7

+1iM,p1 — (1/2)py (58)

pr;=0=—1Ep;p,; —Wp1py; +1Vipp 0 —npy -
(59)

Comparing to Egs. (49)-(53) reveals that two
terms, ¥y p;; from the RHS of Eq. (49) and
iV9,1p,; from the RHS of Eq. (50), are absent in
Egs. (55) and (56). Since Egs. (54)-(59) are
equivalent to Egs. (19)—(22) they would lead to the
same results, e.g., Egs. (27) and (28) as above. See
also Appendix B.

It may seem peculiar that the set of equations
(48)—(53), a formally rigorous representation of the
Liouville equation (47) has to be replaced by the
set (54)—(59) in which particular terms are missing.
We should keep in mind however that we are
dealing with a reformulation of scattering theory
where states |0) and {|j)} are normalized in an
infinite volume. Therefore all matrix elements V7,
or Vi scale like Q72 where Q — oo is the nor-
malization volume. Therefore, in evaluating trans-
mission coefficients as in Eqs. (44) and (45) only
terms of two kinds survive: either coupling of in-
termediate (bridge) states (here |1)) to the contin-
uous manifolds that appear in damping and shift
terms, e.g. |Vi,°p,, or coupling of the driving state
|0) to an intermediate state, that appear in the
influx term |Vio|°p(Eo). Both combinations are
independent of Q. The terms discarded in Eqgs.
(54)—(59) are those that contribute terms like
peIViol"; € > 2 that vanish in the limit Q > co. *

Next consider a thermal system described by the
Hamiltonian

A =H + Hg +F, (60)

where H is the Hamiltonian (12)—(14) that corre-
sponds to the generic model for resonance scat-

3 When the intermediate state manifold contain N, rather
then 1 state (see Section 4) the following terms in the
corresponding Liouville equations are relevant to this discus-
sion: py, = ... Viopo, and po, = ... Voipr, (@ =1,....N). In
the corresponding steady-state equations the first of those
corresponds to a flux out of state |0), and in the final analysis
will yield a term |V;|* multiplied by the density pL of initial
states in manifold L. This product is of order Q°. The second
equation corresponds to the backward flux from state n back
into state 0. In the final analysis the specific term written above
has to contain Fj; to higher order, that will vanish (even when
multiplied by p, when Q > occ.
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tering of Fig. 2b, Hp is thermal bath Hamiltonian
and F — a system-bath coupling, here taken to be
coupled diagonally to the resonance state |1)

F=Fyl1)(1]. (61)

The exact form of F is not important, but in the
present discussion we will assume that this cou-
pling to the thermal environment is weak. * This
coupling is characterized by its correlation func-
tion, whose Fourier transform satisfies the detailed
balance relation

/OO dee (Fy1(t)Fi1(0))

o0

— eho /OO dtei‘“t<Fll(0)Fll(t)>;
B = (ksT) ", 2

where 7T is the temperature and f is the Boltzmann
constant. For specificity we will sometime use

K
(Fin(0Fn(0)) = 5~ exp(=rl/zo), (63)
C
which becomes xd(¢) in the Markovian, 1. — 0,
limit.
We write the Liouville equation p = —i[#, p] in
the form

5 = _I[Haﬁ] - 1[F7 :5]7 (64)

where we have applied the transformation
p—p= eiHBtpe—iHBt; F—>F= eiHBtFe—iHBt’ and
where the two terms on the RHS of Eq. (64) cor-
respond to ‘deterministic’ and ‘thermal’ contribu-
tions. In what follows we omit the tilde sign above
the operators, keeping in mind that the following
equations are written for the transformed opera-
tors. Our ultimate goal is to obtain the evolution
of the reduced system’s density matrix o = Trgp.

4 The choice of a harmonic thermal bath with F = > Avgy
where the sum is over the harmonic bath modes with coordi-
nates ¢, and coupling strengths A, corresponds to the standard
model where the equilibrium positions of these modes are
linearly shifted when the tunneling system is in the intermediate
state |1). However on the level of our treatment (i.e. in the
Redfield approximation) an explicit form of F is not needed,
since only correlation functions such as (F1;(¢)Fi1(0)) enter the
reduced equations of motion.

In other words, we want to find the steady state in
the o subspace that is determined by the same
boundary conditions as in Eqgs. (19)—(22) that led
to Egs. (54)—(59) in the athermal case.

It is easy to see that in the corresponding
steady-state equations the deterministic part of Eq.
(64) leads again to Egs. (54)—(59). These should be
supplemented by terms arising from the interac-
tion with the thermal bath, leading to

Poo = constant, (65)
Po1 = 0= —iEo1p1 +1V,1000 + iZVj,lﬂo,j
j
—i[F, ply, (66)

po./ =0= _iEOJpO.j + iVl,jPo,l - (’7/2)90.,- —i[F, p]O‘ja

(67)
pr1 =0
= —iNopos +1Vo1pio — iZVI,ij,l
J
+ iZV/vlpl.,j —1i[F, p]1,17 (68)
J
pl,j =0
= —iEy;py; — W0po; — iZVlJ’p/’J
j/
+ i p1s = (1/2)p1; = ilF, oy, (69)

pj’,j =0= _iEj’vjpjg/ - iV;",lpl,j + ileipj’,l — NPy
(70)

where, as before, the index j corresponds to both
the left and the right manifolds.

Next we make a simplifying approximation by
assuming that thermal interactions can be disre-
garded in the evolution of matrix elements of p
that involve the continuous manifolds {;}. This
implies that the commutators involving F in Egs.
(67) and (69) are neglected. (The absence of such a
term in Eq. (70) is a consequence of the form (61)
of F.) The rational for making this approximation
is based on the expectation that because our ther-
mal interactions are localized in the subspace of
intermediate (bridge) states (here |1)), disregarding
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them in Egs. (67) and (69) should not affect the
dynamics in the continuum, while the effect on the
bridge dynamics should be weak in the weak
coupling limit used below (see also Section 5).

This in turn also implies that the procedure for
replacing the sum over the {;} states (i.e. over the
left and right manifolds) by damping terms can be
done as if the thermal interactions were absent.
This is an important technical detail, because it
makes it possible to carry out this reduction pro-
cedure in the amplitude representation, starting
from Egs. (19)—(22), then use the reduced ampli-
tude equations to evaluate the corresponding
equations for the density matrix; see Appendix B.
The resulting steady-state equations are

pos = 0= —i(Ey — E1)po, +1Vo1p00 — 3 1P0,
—i[F, P]ma (71)

P11 =0=—iVopo; +1Vo1p1o — Tipy —i[F, pl; 4,

(72)
pO.j =0=—i(E — E.i)ﬂo,j + iVl,jpo,l - (’7/2)904,-7
(73)
pi;,=0= —i(E) - Ej)py; —1Vopo,; +1V1,01 4
_%Flpl,ja (74)

pj&,j =0=—i(E; - Ej)pj’,j - iVjﬂlPl,/ + iVl,jiojf,l
— NPy (75)

where I't = I'(E,) and where E, = E, + A1(Ep)
are defined above and in Appendix B. In Eq. (74)
we took I'+#n — I,

The following points are notable: first, in the
absence of thermal interactions, i.e. when the
commutators involving F are absent in Egs. (71)
and (72), Egs. (71)—(75) lead to (see Appendix B)
the steady-state result

np;; = 2n|Vi [ 8(E; — Eo)

V10> oo
(Ey — Eo)* + (I /2)

This will yield, e.g., Eq. (27) if applied to j € R
(i.e., a state of the right manifold).

(76)

Secondly, under our approximations, the two
Egs. (71) and (72) that, together with the boundary
condition p,, = constant, describe a steady state in
a damped and thermally relaxing two-level system,
can be solved independently from Egs. (73)—(75).

Third, the latter equations can be used to obtain
a complete description of the scattering process: as
before yp; ;, which depends on the incident energy
Ey, the resonance energy E; and the scattered en-
ergy E;, is the steady-state flux out of, hence also
into, the final state ;. This is a transmission flux for
j€{r} and a reflection flux for j € {/}. In the
athermal situation (Eq. (76) np,; ~ 6(Ey — E;).
This is no longer true in the thermal case.

For simplicity we will disregard in what follows
the energy dependence of the functions I'; (E) and
D\ (E). Also, for simplicity of notation we will
disregard the tilde above E|, keeping in mind that
E, represents the shifted resonance energy. Con-
sider first Egs. (73)—(75). Since these equations do
not involve interaction with the heat bath, taking a
trace over the bath states simply amounts to re-
placing p by ¢ everywhere in these equations. We
focus on transitions into the ‘right’ manifold (e.g.
in a metal-insulator-metal junction we study
transfer from a particular level |0) on the metal on
the left to the manifold of levels on the right).
Eliminating oy, using Eq. (73) yields

no,, =2Im(¥, 01,), (77)
VI.OVIJ‘ 1
o1, = — - o
L E(),l +1F1/2 E(),—ll’[/z 01
n 27 V1000,

El,,—i(Fl -|—1’])/2 0-1’1 _E()J +1F1/2 ’
(78)

where E,,, = E, — E,,.

To obtain 7o, , we need to get g and g, from
Egs. (71) and (72). Before imposing p = 0 these
equations describe the time evolution of a damped
two-level system interacting with a heat bath; the
corresponding Liouville equation is

b= —ilHo+ V.p) ilF, ] ~3Tu{1)(1]p} (79

where from here on we use H, to denote the zero
order Hamiltonian in the ‘system’ subspace
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Hy = Eo|0)(0] + Ey[1)(1] (80)
and
V = oal0) (1] + Fol1) 0], (81)

p is the density operator in the system—bath space,
and [ , Jand { , } denote commutator and anti-
commutator, respectively. To obtain the time
evolution in the system subspace we follow the
procedure of Ref. [4], which relies on the Redfield
approximation [10-12]. This implies the assump-
tion of weak coupling between the system and its
thermal environment. As discussed in Ref. [4], this
approximation can be invoked only in the repre-
sentation that diagonalizes the effective system’s
Hamiltonian H*" = Hy, + V — (i/2)I'|1)(1]. The
procedure therefore includes transformation to the
representation which diagonalizes this Hamilto-
nian, following the Redfield procedure in this
representation then transforming back to the rep-
resentation defined in terms of states |0) and |1). It
yields [4]

. 1
O.-n,n’ =0= _I[HO + V’ O-]:Ln’ - Erl (5n,1 + 5n’71)6n,n’

1 1
+3 > RuwmmOnmi; mn' =0,1,  (82)

n1=0n=0

where the prime on the commutator denotes that it
has been modified by eliminating the terms in-
compatible with a steady-state driven by state |0)
as discussed above, and where the tetradic ele-
ments Ry, ,, .., May be expressed in terms of the
correlation function (Fi(¢)F1(0)). Solving Eq.
(82) for the steady state defined by a fixed pg, fi-
nally yields the steady-state values of gy, o1 and
o1.1; see Appendix C for more details.

Having obtained explicit expressions for
go1 and o1, Egs. (77) and (78) can be used to
obtain o, and ¢,,. From these we get the energy
resolved flux (or steady-state rate) ko_., = 70, /00,
and the total flux ky_z = 2, ko_, into the right
manifold. Numerical results for these observables
are shown below. The analytical expressions are
very cumbersome, but can be simplified in the limit
where the energy gap, E| — E, is much larger than
all other energy parameters in the system, i.e.,

E\ — Ey > |Nyl, k, I'1 (x is defined in Eq. (63)). In
this limit we get

2
k()*,r = |V2’l| 2 27175(E0
(Ey —Eo) +(I'1/2)
—E)Vi.l + |, e PEED)
T (B —E) +(1)2)
(83)
and
2
kogr = |V0‘]2| 'z > [ - ﬂ(ElE[)>:| .
(Ey — Eo)” +(I'1/2) I
(84)

We can also repeat the procedure of Egs. (29)—(32)
to find an expression for the transmission coeffi-
cient:

T (Eo, E) = T a(Ey) |0(Ey — E)
(K/Zrc)ze*ﬁ(ErEo) 2] (85)
(Ey—E)Y +(I'/2)

T (E) = / dE T (Eo, E)
= yel(Eo) |:1 + Fieﬁ(ElEO):| s (86)
1

where, as before (cf. Eq. (32))
F]LFIR

Tl = Ry (nE2

(87)

These results show clearly the coherent and the
incoherent-activated components of the flux and
the transmission. We note that similar results, but
without the temperature dependent exponential,
were obtained previously for the use of a similar
model for resonance Raman scattering [5]. The
erroneous absence of this term can be traced to the
improper use of the Redfield approximation in a
basis set that does not diagonalize the system’s
Hamiltonian, as explained above and in Ref. [4].

Consider again the use of this system as a model
for a molecular conductor bridging between two
metal contacts. In the absence of thermal relaxation
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the conduction of the resulting junction is given by
the Landauer formula (46). Here the issue is more
complex because the transmitted electron can carry
energy different from Ej. A generalization of Eq.
(46) for the present situation can be obtained in the
weak metal-bridge coupling limit where the cur-
rent can be written in the form >

I=— i dEO/O dE 7 (Ey, E)
X [f(Eo)(1 — f(E +e®)) — f(Ey+ e®)
x(1 — f(E)], (88)

where f(E) is the Fermi-Dirac distribution and &
is the potential drop between the right and left
electrodes. For small bias and low enough tem-
perature (so that f(E+ e®)~ f(E) — ePS(E—
Er)) this leads to

g(Eo) =

3581~

7e1(E0)(1 + (1 - f(E1))F£1eﬁ(E‘E°)).
(89)

While this result was obtained for a simple model
of a single state bridge in the weak coupling limit,
its structure is characteristic, displaying an elastic
tunneling and thermally activated components.

4. Flux through an N-site bridge

The steady-state density matrix formalism de-
scribed in Section 3 is easily formulated also for
more general situations. As an example we outline
here the generalization of the model discussed
above (transmission through one intermediate
state to a model for transmission through N in-
termediate levels, Fig. 2c). We will continue to use

3 Note that for the case under discussion 7 (Ey, E) does not
depend on the directionality (left-to-right or right-to-left). It has
been argued (see Ref. [13]) that simple expressions based on the
Pauli principle such as Eq. (88) are not valid in the presence of
inelastic processes including thermal relaxation. It seems that it
may still be used in the weak metal-bridge coupling limit where
the transmission process can be described as taking place
between states localized on the two metals.

the language corresponding to transport of non-
interacting electrons through a simple molecular
bridge connecting two simple metal electrodes.
The metal electrodes are represented by the con-
tinuous manifolds of states L ={|/)} and R=
{|r)}. The molecular bridge now consists of N
states, {|n)}; n=1,2,...,N. The Hamiltonian is

H = Hy + Hg + F + Hc + Hew, (90)
where, as before Hgp + F represent the thermal

environment and its coupling to the electronic
system, Hy is the bridge Hamiltonian

Hy=Hy+V

N
Hy = ZEn|n)<n|,
n=1

N—1
V=" Veuiln)(n+ 1|+ Vyyraln + 1){n].

n

o1

H¢ is the Hamiltonian for the metal electrodes,
our scattering continua

He =Y E/|1)(I| + ZErIVWI (92)

and Hcy is the electrode—molecule coupling
Hoy =Y Vi+ > Vo Vi=Val)(1[+ K1)(];
! r

4

Von|r) (N |+ VN (] (93)

Note that in Egs. (91) and (93) we assume nearest
neighbor coupling, and in particular the metal
states are taken to be coupled only to the nearest
molecular states, 1 and N. The molecule-thermal
bath coupling is assumed to be of the form

F= Z&nlw (nl, (94)

where the bath operators F, , are characterized by
their average and correlation functions. For the
present model we take (F,,) =0 and (F,,(0)F,
(1)) = C(¢)0,,, where ( ) denotes here equilibrium
thermal average. As in Eq. (63) we sometimes use
C(1) = w(2%)™" exp(—|t]/7e)-

Our problem is again to compute the steady-
state flux into a right-continuum level |r), given that
the system is driven by state |0), a representative
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state of the L manifold. To this end we consider the
Liouville equation

p = —i[Hw + Hc + Hew, p] — i[F, p), (95)

where, without changing notation, F and p now
denote the transformed operators,

F(t) = exp (iHpt)F exp (—iHpt)
and
p(t) = exp (iHpt)pexp (—iHgt).

In Eq. (95) the first commutator corresponds to
the deterministic part of the time evolution and the
second to the thermal part. In analogy with the
development of Section 3, the deterministic part of
the equations should be modified when applied to
a steady-state driven by |0).® In fact, this part is
most straightforwardly derived from the ampli-
tude equations (analoga of Egs. (19)—(22))

é’o = —iEoco, (96)

¢ = —iEjc; — i pco — iVacr — iZVuCl, (97)

1#£0
é'n = _iEncn - iV;l,nflcnfl - iVnJl«HCnJrI;
n=2...,N—1, (98)
¢y = —1Eyey — iVN,N—lCN—l - iz W rCrs (99)
é‘] = —iE]CI — iV]JCl — (11/2)01, (100)
& = —iE,c, — iVyey — (n/2)cr, (101)

using the procedure described in Appendix B. For
the thermal part, we assume (as in Egs. (71)—(75))
that it can be omitted from all equations for den-
sity matrix elements involving / or r states. The
resulting equations for the time evolution of the
density matrix are

Poo = constant, (102)

Pon =0
= —1Eo P00 + 1V-1.0P0 -1
+ iVn+1ﬁn,00,n+1 = ((I't/2)6u.
+ (I'r/2)0un)po, — 1IF s plo s (103)

pntn’ =0

- 71E”«,’1'pn‘n’ - I(V"JI*]pnfl,n’

+ Vn.,n+1pn+l4n’ - pn,n’fl Vn’—l,n’
— Pun+1 Vn’+1,"') - (FL/Z)(5”,1 + 5”’,1)pn‘,n’
- (FR/2)(5H,N + 5""1\’):071,# - 1[F7 p]n,n”

(104)

po, = 0= —iEo,.py, +1Vy,pon — (1/2)po,, (105)

Pur =0
= —i nrPny = Wns 1P s
—1Vn1Pp1, H VNP
= ((I't/2)0n1 + (I'r/2)8uN)Po s (106)

pr‘r =0= 7in,NpN‘r + iVN,"pr,N - ’7Pr‘,r7 (107)

where I, =2n), |V171|25(E0 —E) and I=
213, [V, ['0(Ey — E,). Associated with these are
energy shifts of states 1 and N that were absorbed
into E; and Ey. As before we will disregard the
energy dependence of these widths and shifts. Note
that equations similar to Egs. (105)—(107) exist
also for elements involving the L manifold, how-
ever in what follows we focus on transmission into
the R manifold.

The following steps are identical to those taken
to solve Egs. (71)—(75). Again we note that these
equations are grouped so that Eqgs. (102)-(104)
describe a pumped (by the driving state |0)) and
damped thermally relaxing N level system, while
Egs. (105)—(107) do not depend on the interaction
with the heat bath. Consider first Egs. (102)—(104).
They are solved by carrying out the same reduc-
tion procedure (transforming to a representation
in which the effective system’s Hamiltonian is di-
agonal, following the Redfield procedure modified
for steady state and transforming back to the lo-
cal, site state, representation) as described in Sec-
tion 3 and in Appendix C. The final result is an
equation similar to Eq. (82).
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. 1
O.-n‘n’ =0= _I[HO + Va O-]:Ln’ + |:§FR (511,N + 5n"N)

A-y=x, (109)

where x and y are the vectors

1
B EFL (5n,l + 5n’,1):| U’l,n/ GO,F O-OA'N
N N Y= 6).1,r ; X = _iVN‘r O N 5 (1 10)
+ Z ZRn,n’,nl,nzo-nl,nza .
n1=0 n,=0 GZ'V §
N, ONN
nn' =0,...,N (nxn #0), (108) and A is the matrix
“iEy, — /2 0 0 0 0
-l —iE,, —I/2  —iN,
0 -
A= _iVn,n—l _iEn‘r - 77/2 _iVnJH—l
- 0 0
—iVyin2 —1Ey-1,—1/2 =iy 1y
0 0 _iVN,N—l —iEN‘r — FR/Q,

where again the primed commutator is modified to
satisfy the steady-state restrictions ® and where the
tetradic elements R, ,, », », are linear combinations
of Fourier and Fourier-Laplace transforms of the
correlation functions (F,,(#)F,,.(0)) (explicit ex-
pressions are given in Ref. [4]). Eq. (108) (with
g0, = constant) constitute a set of linear equations
for the elements o¢,,” of the reduced molecular
density matrix, and in particular will yield explicit
expressions for the elements g, 5, n =0, ..., N that
are needed below.

Turning now to Egs. (105)—(107), we note that
they do not depend on the interaction with the
heat bath, and can therefore be converted into
equations for ¢ by tracing over the bath. In par-
ticular, taking this trace in Egs. (105) and (106)
leads to equations for ¢ elements that can be put
into the form

© The terms corresponding to the primed commutator may
be derived from Egs. (96)—(99) by replacing p by ¢ and by using

O = CnCy.

(111)

In Eq. (111) the element marked 0* is a zero that
replaces a term —i); in the original Liouville
equation 3 (see also discussion below Eq. (59)).
Solving for y and using Eq. (107) in the form
no,. = 2Im(¥, yoy,) yields an expression for 5o,
in terms of the elements a,y, n =0,...,N, that
were obtained before. This provides a straight-
forward numerical procedure for evaluating 7o, ,,
i.e., the energy resolved flux transmitted into the
right manifold, i.e. into the right electrode.
Examples of results predicted by this model (see
Fig. 2¢) for transmission through a thermally re-
laxing bridge are shown in Figs. 3-5. Fig. 3 depicts
the energy resolved transmission probability,
I (Ey,E) for electrons incident with energy E, at
several temperatures. The following model pa-
rameters were used: N =3, AE=E, =E,—
Ey=3000 cm !, (n=1,...,3), V01 =200 cm™!,
I'=Tg=160 cm™!, 7, =0 and x =10 cm™!.
The transmitted flux plotted against £ — E| is seen
to consist of two components: elastic tunneling at
energy £ = E, and activated tunneling in an en-
ergy range corresponding to the bridge states. To
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Fig. 3. Energy resolved transmission through a molecular
bridge represented by the model of Fig. 2c (N = 3), supple-
mented by coupling to a heat bath as described in the text. The
incident energy is Ej and the transmission is depicted as a
function of the transmitted energy for several temperatures. The
curves showing increasing inelastic transmission near the bridge
energy (E — Ey ~ 3000 cm™!) corresponds to the temperatures
T =0, 300, 400, 500 K, respectively. See text for the other pa-
rameters used in this calculation.

7(Eo)

1.5 2 25 3

T ) x10”

Fig. 4. The integrated elastic (---) and activated (- - -) com-
ponents of the transmission, and the total transmission prob-
ability (—) displayed as function of inverse temperature.
Parameters are as in Fig. 3.

avoid numerical problems, the displayed results

were obtained at finite resolution by using n = 10
-1

cm™!,

N

Fig. 5. The integrated elastic (---) and inelastic (- - -) compo-
nents of the transmission, and the total transmission probability
(—) displayed as function of bridge length. Parameters are as in
Fig. 3.

Obviously, the tunneling and activated compo-
nents seen in Fig. 4 should depend differently on
system parameters. To see this we have used the
corresponding quantities 7, and 7, obtained
numerically as integrals over the corresponding
peaks in Fig. 3. Fig. 4 shows the dependence
of these components as well as the overall trans-
mission probability 7 (Ey) = 7 (Ey) + 7 .(Eo) on
temperature, using the same system’s parameters
as above. Fig. 5 shows their behavior as functions
of the bridge length N. It is seen that the tunneling
component is temperature independent and de-
creases exponentially with increasing bridge
length, while the activated component does not
depend (in the range displayed) on the bridge
length, and depends exponentially on the inverse
temperature. The overall transmission probability
shows the characteristic temperature and bridge
length dependence already studied in Ref. [4]. In
particular the apparent insensitivity of the acti-
vated component to bridge length holds only at the
intermediate length regime, and actually reflects a
dependence on N of the form (o 4 o,N)™' with
o > op [4]. It is also important to note that
the insensitivity of the tunneling component to
temperature is a property of the present model;
appropriate for the weak thermal coupling case.
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(This roughly corresponds to the situation where
either the energy gap, |Ey;|, or the ‘bandwidth’
characterized by V), .| are much larger than level
broadening due to thermal interactions.) In the
opposite limit we find [6] that destruction of co-
herence due to thermal interactions affects the
tunneling probability in a way that depends on
temperature.

For fixed system parameters, the relative impor-
tance of the coherent and incoherent transmission
components changes with the distance from reso-
nance. Both time and energy scale considerations
suggest that as the energy gap AE becomes smaller
the relative importance of the incoherent compo-
nent increases. This is indeed seen in Fig. 6 that
shows the relative magnitudes of these compo-
nents as functions of AE. It should be emphasized
that close to resonance it is no longer possible to
represent the overall transmission as an additive

1000 2000 3000
AE (em™)
4
10
w1o®
=
10°
1000 2000 3000
AE (cm'1)

combinations of coherent and incoherent contri-
butions.

5. Summary and conclusions

In this paper we have developed frameworks for
the description of steady states of open quantum
mechanical systems. In the absence of thermal
relaxation the developed formalism provides a re-
formulation of standard time independent scat-
tering theory that is more flexible in the way in
which the state that drives the system (the equiv-
alent of the incoming wave in the standard for-
malism) is defined. When thermal interactions are
included in the target model the theory yields a
description of the scattering process in Liouville
space yielding a scattered flux that includes a
thermal incoherent component. We have used

0.2
~
~ 0.1
i,
0
1000 2000 3000
AE (cm'1)
0.8
S 04
=
0
1000 2000 3000
AE (cm™)

Fig. 6. Left panels: the integrated elastic (---) and inelastic (- - -) components of the transmission, and the total transmission prob-
ability (—) displayed as functions of the distance AE from resonance. Right panels: The ratio R = 7,/ between the activated
component and the total transmission showing that far from resonance elastic transmission dominates. 7 = 300 K. Parameters are as

in Fig. 3 except that the thermal coupling x is 10 cm™' (as in Fig. 2) in the upper panels and is 100 cm

~!in the bottom panels.
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this approach in conjunction with the Redfield
approximation to study tunneling through a me-
tal-molecule-metal junction, including thermal
relaxation and dephasing in the molecular com-
ponent. We have found that zero bias conduction
through such junctions involves both tunneling
and activated components. This leads to a gener-
alization of the Landauer formula of conduction
to situations involving thermal interactions. The
coherent tunneling and the incoherent activated
components depend differently on the temperature,
the barrier height and the molecular chain length.

These results capture the essential phenom-
enology of molecular conduction in the linear
(ohmic) regime in the presence of thermal inter-
actions. We should keep in mind that the simpli-
fications used in constructing and analyzing Egs.
(102)—(107) (or Egs. (71)-(75)). These were the
neglect of thermal interactions in all equations for
density matrix elements involving states of the
continuous manifolds (see paragraph below Eq.
(70)) and the use of the Redfield approximation
that limits the validity of our result to the weak
thermal coupling limit. In particular, as noted in
Section 4, the apparent insensitivity of the coher-
ent part of the transmission to the thermal inter-
actions holds (approximately) only in this limit.
These issues will be discussed further in a subse-
quent publication.
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Appendix A

It is important to keep in mind that a “steady
state’” in an open system is not unique and depends
on the choice of the boundary system. (In the
general case of non-linear equations even this does
not guarantee uniqueness, but in our quantum
mechanical applications the equations are linear so
this will not be a point of concern.) One should
choose these boundary conditions so as to corre-

spond to the physical realization that we want to
describe. Suppose for example that Eq. (1), written
explicitly as C; = F;({C;}), represents a master
equation that describes a transition from an initial
state 0 to a final state N 4+ 1 through a state of
intermediate states n =1,2,...,N. The variables
{C;}, j=0,1,...,N +1 may represent densities
or probabilities. The N steady-state equations
F,({C;};Cy) =0, j=1,...,N, obtained by replac-
ing the equation for Cy by the boundary condition
C, = constant and the equation for Cy.; by
Cyy1 = 0, can be used to obtain the corresponding
steady-state values of Cy, ..., Cy. The steady-state
flux, J, can then be obtained as the rate at which
population flows into (and out of) Cy,; and the
corresponding steady-state rate is Jy/Cp. This or
an equivalent procedure is often used to evaluate
asymptotic (i.e. long time) decay rates of transient
processes, provided that conditions for an early
formation of a quasi-steady-state situation are
satisfied. (See Ref. [4] for a more detailed discus-
sion of this point).

In the quantum mechanical examples discussed
in Section 2 an analogous approach is taken,
however it differs from the procedure just de-
scribed in two important aspects. First, the vari-
ables C are quantum mechanical amplitudes, and
do not describe completely the initial state.
Therefore, the ‘boundary condition’ Cy = constant
is supplemented by the term exp (—iEyf), see e.g.
Eq. (8), that set the energy scale of the process
studied. Second, while in many applications a
continuum of states represent a bath whose state
is not specified explicitly, in other situations a
knowledge of the flux into a specific final state of a
continuum is needed; for example in an experiment
that monitors the final energy of an emitted pho-
ton or a scattered free particle. In the latter case
each energy state of the continuum should be
considered as a part of the system (in the classical
analogy — as part of the N-state system discussed
above) and the sink is introduced artificially by
adding a small imaginary part to the correspond-
ing energy, see e.g. Eq. (9). (The details of this
imaginary addition do not affect the final result; it
just serves to set the correct directionality of the
process in much the same as a similar term is used
in the Green’s function of scattering theory.)
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Again, it should be emphasized that one could
investigate in principle other steady states, for ex-
ample a process where |Cy| is given but the energy
is not or processes where other C;’s are restricted in
some ways — if a relevant physical case could be
identified. The particular procedure used in Sec-
tion 2 is set so that state 0 plays the part of an
incoming state, while {;} is a manifold of outgoing
states. Indeed we find in Section 2 that this ap-
proach reproduces basic results of scattering the-
ory.

Appendix B

Here we show that the density matrix Egs. (54)-
(59), or Egs. (71)—(75) without the terms involving
F lead to Eq. (76). First we show that Egs. (71)-
(75) are consistent with the amplitude equations.
The latter are (cf. Eqgs. (19)—(22) with {j} standing
for both {r} and {/} manifolds)

= _iEOC'07 (Bl)

¢ = —iEjc; — iV — iZV]_jc,-, (B.2)
J

C.’j = —iEjCj - ir/j,lcl - (’7/2)01 (B3)

At steady state (Eq. (23)) Eq. (B.3) becomes
i(Eo — Ej)c; —iVjaer — (n/2)e; = 0. (B.4)

Inserting ¢; from Eq. (B.4) into Eq. (B.2) and using
Eq. (24) yields

& = —iEjc; — iWgco — (1/2)Tey, (B.5)
where

Iy =Ti(E) =2rYy W[ 0(E, — E))
7

= I'iL(Eo) + I'ir(E)
and
Ey = E) + A (Ey)
and

A1(Ey) = PPZ|VU|2/(E0 —E))

= A1.(Eo) + Air(Ey).

(PP stands for principal part). Using p; ; = ¢;c; and
focusing on steady state this yields

,boﬁl =0
. ~ . 1
= —I(Eo - El)ﬂm +10.1p00 =5 1p0s, (B.6)
/7171 =0= _iVLOpO,l + iVo,lpl,O —T'ipy, (B.7)
pOAj =0

= —i(Ey — E})po; +1V1po1 — (n/2)po,, (B.8)

lblj =0
= —i(E| — Ej)py,; —1Viopo, + 1V 014

7['1le'7 (B9)

pp; =0
= _i(Ej’ - Ej)ﬂjkj - iVj’,lle

+ 100 — 0Py - (B.10)

Next we use Egs. (B.6)—(B.10) to derive Eq. (27)
and hence Eq. (28). Using Eq. (B.10) with j =/
yields

np,; = 2Im(Vjipy;). (B.11)

Also, Egs. (B.7)~(B.10) lead to (with Eo; =
Ey - E)

p _ VO,lPO,O (B 12)
" Eoy — (1)2)i6 (Eo)’
Do = VOJVIJIOO,O
" (Eox — (1/2)il1(Eo)) (Eo; — (1/2)in)’
(B.13)
V 2
pl 1 ‘ 0-,1‘ p040 (B14)

TR+ ((1/2T(E))

We note in passing that comparing Egs. (B.7) and
(57) suggests the following identity

_iZV]Jpj,l + iZVjJPu = —TI'\(Eo)py;- (B.15)
J J
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Eqgs. (B.13) and (B.14) yield after some algebra
_ 0,1 |2 NP0
P, = =~ B N
B3+ (1/2)T1(E)Y] (Boy — (1/2)in)
(B.16)

Using Eq. (B.16) in Eq. (B.11) leads to Eq. (27).

Appendix C

Here we outline the procedure used to obtain
system’s density matrix elements from Egs. (71)
and (72) within the Redfield approximation. First
we find the transformation that diagonalizes
H = Hy+ V — (i/2)I"1|1)(1]. In the new repre-
sentation, defined in terms of eigenstates |a) and
|b) (with corresponding eigenvalues E, — (1/2)il’,
and E, — (1/2)iI'y) the overall system—bath Ham-
iltonian is H* 4+ Hy + F, where

H = (E, —iI,/2)|a)(a| + (E, — il',/2)|b)(b|

(C.1)
and
F =F,a)(al + Fop|b)(b] + Fupla)(b] + Fyalb){al
(C.2)
with
1 IA]
Faa: 7_7~Fa
[2 oF | T
1 IA]
F = *+7~F, C3
3453 |F €3
Vol
E,=F,=—2F
Y
and

~ R (c4)
E=\/|Vo.l” + 4]

In this representation the Liouville equation
p = —i[HT, p] —i[F,p] is reduced to four equa-
tions for the system’s density matrix o/,

(n,n’ = a,b) using a variation of the Redfield for-

malism [4] (we use ¢’ to denote this density matrix
in the diagonal basis). The difference from the
standard procedure [12] lies in the fact that in the
Redfield theory a;4(t) exp (—iE;f) with E;; =
E; — E; is assumed ‘slow’, while, as discussed
above, at steady state o;; does not depend on
time, so such a transformation is not needed. We
get

¥ = — KD, + Ad}, — (VAD — VACK)

a,a

a,a’

Gy = 4K, — A, + (VAD — VACK)

/ / /
X (%,b + Gb,a) —TI',o

% (0 + 4a) = ol

O = \/EKGZW - ma;‘b + 4oy,
—iE. 40, — (2VBCK + 4 — 2\/D—B)a£1_’b
— (Fa+1T)/20,,

Oha = \/EKGZW - mo_;,b + 4oy,

—iEy,0,, — (2VBCK + 4 — 2VDB)a, ,

—(Fa+14)/20),,
(C.5)
where
Vol 4]°
TR AT
(C.6)

/1 AN e (T A K
C(i*EE)Z’D 2728) 4
and where, in the Markovian (t. — 0) limit of Eq.
(63)

K= [m e_iE"“(F]J(O)Fu(r)}dr; )

Ea,b = Ea - Eb-
Also in Eq. (C.5) K = e P with f = 1/kgT.

Eq. (C.5) is a set of linear differential equations
for elements of ¢’. Transforming back to the rep-
resentation spanned by states |0) and |1) we get



334 D. Segal, A. Nitzan | Chemical Physics 268 (2001) 315-335

Gpw =0

. 12 ]
- _I[HO + Vv O-]n,n’ - EFI (517,1 + 5n’41)6n,n’

1 1
+ Z ZRntn’.n],nzo—nhnz; n7 n, = 07 17 (C'8)

n1=0 ny=0

where the prime on the commutator denotes that
it has been modified by eliminating the terms
incompatible with a steady-state driven by state
|0); see discussion below Egs. (54)—(59). The ex-
plicit expressions for the R elements are quite
cumbersome, but are easily calculated for any
choice of model parameters. The desired steady-
state solution is obtained by solving the set of
equation (C.8) (excluding » =n' = 0) for a con-
stant 00,0

Again, explicit general results for ¢ are cum-
bersome but numerical results are easily com-
puted. Simple expressions can be obtained in the
limit where the energy gap is larger than all the
other parameters, i.e. £y — Ey > |Vio|, k, I'1. We
get

V10 G300 AK

011 :m+r—laao, (C.9)
00,1 = %- (C.10)
In the same limiting case
so that

_ Pl KT (C.12)

E2 + (I'/2)

Inserting Egs. (C.9) and (C.12) into Egs. (78) and
(77) and taking the limit # — 0 leads to Egs. (83)
and (84). To obtain Eq. (84) we use

L s
>om S| o relB)dE
T EL A+ (/27 S B+ (11/2)

_ 20N, pr(Er) _ Tix
I Iy’
(C.13)

Note that Eq. (84) could also be obtained by using
Egs. (70) and (B.15) to get

WZGH = Z2Im(V;,161,r) =TI'1z01,1 (C.14)

and then using Eq. (C.12) for g, ;. We were able to
carry this procedure also to the next order in the
small parameter |V |’ /Ej - The results are

JV = ’/lar,r

_ |V0,1|20'o,o
E2, + (I'/2)°

|Vl‘r|2Ke—/fEl.o
+— 511
E%,r + (Fl/z)

210(Eoy — E) |V,

)

A
E3 +(I'/2)°
(C.15)

for the energy resolved flux, and

2’70 _ |VO,1|260,0F1R
— B+ ()2

2
1+£e*ﬁ51,0 1_},_% ,
I, E2 +(I'1/2)

(C.16)

X

for the total flux.
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