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A dynamic lattice Monte Carlo (DLMC) simulation approach to the description of ion transport in dielectric
environments is presented. Conventional approaches using periodic boundary conditions are inefficient for
nonequilibrium situations in inhomogeneous systems. Instead, the simulated system is embedded in a bigger
system that determines the average electrostatic potential and the ionic concentrations at its boundaries. Two
issues are of special importance: implementing the given boundary conditions in the treatment of dynamical
processes at and near the boundaries, and efficient evaluation-eibiointeraction in the heterogeneous
dielectric medium during the Monte Carlo simulation. The performance of the method is checked by comparing
numerical results to exact solutions for simple geometries, and to mean field (Polésorst-Planck, PNP)

theory in a system where the latter should provide a reasonable description. Other examples in which the
PNP theory fails in various degrees are shown and discussed. In particular, PNP results deviate considerably
from the DLMC dynamics for ion transport through rigid narrow membrane channels with large disparity
between the dielectric constants of the protein and the water environments.

1. Introduction on the important aspects of complex systems and processes,

lon t ¢ in inh d d oh . fwhere details may be unimportant and nonessential for a
on transport in inhomogeneous condensed phases is of . cicion: description.

considerable interest in many fields of fundamental and applied Th | of th ki devel ibl
science. Electrochemical processes dominated by ion transpor% e goal of the present work 1S to develop a possivie
ramework for such a coarse-grained approach to ion transport

at interfaces;?inhomogeneous solid ionic conductdrand ion o : ; : . X
in inhomogeneous dielectric environments, using a dynamic

transport through membrane chanfélare a few prominent latt I | h s h
examples. The motivation for the present work is the ongoing 'attice Monte Carlo (DLMC) model for the description of suc
processes. In the present approach the underlying solvent

effort to develop efficient numerical tools for electrochemical ) . . .
processes in confined systems, e.g., ion transport throughm°|eC“|ar structure is replaced by a dielectric continuum and

membrane channels and dynamics of electrolytes near andthe ions are described as charged particles that move on a dense
between dielectric membranes. Full scale molecular dynamics€uPic grid. The treatment of the ierion interaction is thus
simulations of such systems are still prohibitively expensive, Promoted from the continuum mean field level used in the PB
being limited by the long time and lengths scales associated2nd PNP levels of description, and the model can describe ion
with many processes of interest. Instead, one usually resorts toOn correlations that are disregarded by mean field theories.
(a) describing the solvent as a dielectric continuum and (b) Similar DLMC models were previously used in studies O_I lon
describing the ions within the PoisseBoltzmann (PB) or the  €duilibrium dynamics in glassy and polymer electrolytes;
Poissor-Nernst-Planck (PNP) mean field approximation. Such however, these studies were limited to infinite macroscopically
approaches (see Appendix A) are widely used for describing homogeneous systems without dielectric boundaries.

ionic equilibrium at and between dielectric interfatasd in It should be emphasized that the use of a continuum dielectric
inhomogeneous dielectric environments such as protéiaad picture for the solvent and the boundaries in the present model
for studying ion transport through biological chann&ls constitutes a gross simplification, sometimes oversimplification,

Computationally feasible models of transport in ionic systems by disregarding the molecular structure of the solvent. Moreover,
that go beyond the continuum level of description have been the response of the continuum dielectric environment to the ion
largely restricted to the treatment of homogeneous sydfems motion is usually taken linear, local, and instantaneous. Still,
or to systems of very simple geometries. Recently, Brownian simulations that describe ions as individual particles constitute
dynamics studies of ion transport through membrane channelsa substantial advance over continuum mean field theories that
have been reported 2> Detailed molecular dynamics (MD)  describe ions as continuous charge distributions. Such ap-
simulations of ionic biological channels are currently limited proaches, e.g., PB and PNP approximations, are considered
to short time equilibrium simulatior®: 28 It is expected that ~ useful in many applications, and the present approach can be
such MD simulations will in the future extend and partly replace used to gauge their limits of validity. In particular, we expect
coarse-grained stochastic approaches to nonequilibrium phe-+that the proposed DLMC approach will be useful when the
nomena. It should be kept in mind, however, that well-reasoned process studied is driven, or is strongly affected, by correlations
coarse grained descriptions of large complex systems are notbetween individual ions. In this respect our method is equivalent
merely ways to save computational effort, but routes to focusing to the recently advanced Brownian dynamic schéim#&:?>aThe
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latter has the advantage that it is an off-lattice procedure and X
that it can (in principle) describe short time inertial effects. For
the applications of interest to us here (and those described in
refs 20-24 and 25a) the latter issue is not very important. The
lattice-based approach is numerically less demanding, in
particular in the on-lattice mode used here where the same lattice
is used for the ion positions and for the grid on which the
electrostatic problem is solved. It is important to note that the
methods developed here to handle potential and concentration
boundary conditions can be adapted also to the off-lattice
Langevin approach, as well as to any particle simulation that
uses these boundary conditions.

At the core of the numerical approach described below is
the embedding of a relatively small system, in which “detailed” Figure 1. Computational cell: A parallelepiped with concentration
numerical simulations (here at the DLMC level) are done, in a and potential boundaries on the planes R and L perpendicular to the
larger system whose size prohibits such detailed calculations.zaxis. Periodic boundary conditions are taken inthandy-directions.

In the latter, outer system, theory, experimental information, S€€ Section 2 for discussion.
or computation on a more coarse grained level is used. In

principle, one would like to develop a numerical procedure in potential. In contrast, imposed boundary conditions are artifi-
which coarse grained (e.g., continuum level) computations in cially introduced into a computational model in order to render

the outer system and detailed (e.g., particle) simulation on the the System into a manageable size. Periodic boundary conditions,
inner system are brought together into a consistent (idh. usually imposed in simulations of infinite homogeneous systems

The calculation described below accomplishes this goal in the O Of Systems with local inhomogeneities and short-range
following way: We assume that theory or coarse-grained ntéractions, exemplify this type.

calculation done on the outer system can provide boundary Periodic boundary conditions cannot be used to model
conditions for the motions of particles in the inner system and Processes that are (a) relatively local and (b) driven by intrinsic
examine the dynamics of the latter under these boundaryboundar'e_s that are far from the s_lgnlf!cant local region. For
conditions. The cycle would become complete when data from &xample, ion transport through a biological membrane channel
the inner system, properly coarse grained, are fed back as inputS driven by intrinsic potential and concentration boundary
to the calculation done on the outer system. Even at the presenonditions which are set farl xm) from the channel openings.

incomplete stage one can get useful information on ion transportAt the same time the process is controlled by the channel
in inhomogeneous dielectric systems, as shown below. properties. A full scale simulation that connects both the channel

This paper is organized as follows: In section 2 we briefly and the intrinsic_ poundaries is not feasiblg. Instead, one imposes
review the electrostatic background needed in later sections. InPoundary conditions at convenient locations near the channel
section 3 we sketch the general layout of systems that we wantOPenings:*° Concentrations and potentials can be imposed at
to investigate, in order to set the stage for the remaining sections.these artificial boundaries using input from theory or from a
Sections 47 elaborate on critical issues pertaining to the MOre coarse grained computation, e.g., a calculation that uses
computation of interaction energies and the DLMC simulation Mean field approximations. Problems associated with setting
and outline our approach to these issues. A simple application@d handling such imposed boundary conditions are central
is demonstrated in section 8 and concluding remarks follow in iSSues in the present work.
section 9. Explicit formulas and technical details are givenin 10 see in more detail the kind of problems that may be

the Appendices. encountered in setting up such imposed boundaries, consider a
homogeneous electrolyte solution that may be in equilibrium
2. Outline of the Problem or in a current carrying steady state. We wish to consider in

) L . ) ) . . microscopic detail ionic motion in a limited subspace denoted
We are interested in ionic motion in dielectric media. . yhe parallelepiped in Figure 1, using potential and concentra-
Dynamics in the system is driven by electrostatic interactions tion boundary conditions obtained from theory or from a mean

derived from the Poisson equation: field calculation done in the bigger system. As stated above,
periodic boundary conditions are not convenient for simulations
—V-[e(r)Ve(r)] = 4pyeer) (1) of systems that carry fluxes. Potential boundary conditions in

homogeneous systems may be replaced by a constant uniform

wherepyee is the density of free chargeg,is the electrostatic  electric field applied to the ions, but this cannot be done in
potential, and is the dielectric response. The latter is assumed nonhomogeneous systems. Similarly, concentration gradients
local in space and time on our coarse-grained scale. In ourhave to be considered explicitht As we shall see below, naive
applications we consider systems composed of different regionsapplication of such imposed boundary conditions can lead to
characterized by their dielectric constants. This implies that erroneous unphysical results.
€(r) is a discontinuous function, a fact that should be carefully ~ As an example consider the plane R in Figure 1, separating
addressed in numerical solutions of eq 1. two parts of the physical system. To its left we describe the

The Poisson eq 1 has to be supplemented by appropriateions as microscopic particles and to its right we are given the
boundary conditions. It is important to make a conceptual average electrostatic potential and ionic concentrations. A naive
distinction between two types of boundary conditions that we application of this input is to use the values of these average
term “intrinsic” and “imposed”. Intrinsic boundary conditions  potential and concentrations as boundary conditions on the plane
arise from the real physical boundaries of the system. For R in a simulation that follows the motion of individual ions on
example, a metal electrode is, in a coarse-grained electrostatidts left. However, if we attempt to move these ions with a
picture, an intrinsic boundary characterized by a given constantconstant electrostatic potential imposed on R, this plane will
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behave as a metal surface that attracts ions by image interactions [~ I
a gross distortion of the correct dynamics. This artifact will be

somewhat compensated by another artifact associated with a

naive imposition of concentration boundary conditions: ions

in the bulk of an electrolyte solution are solvated by counterions. o
When they approach a surface with a given fixed salt concentra-
tion they lose up to half of this contribution to their solvation
energy. They are therefore effectively repelled by such a

a

boundary.

These artifacts arise because, by replacing the given average 2 & £
potential and concentrations by strictly constant values of these - S
variables on a boundary, we disregard important correlations L - R
between an ion approaching the boundary and the instantaneous z

electrostatic potential and ionic concentrations on the boundary.
These considerations will guide us below in designing ways to
avoid such artifacts or to compensate for them.

Assuming that we can correctly handle these boundary issues,
eq 1 yields a solution of the electrostatic problem for a given
ionic configuration in our system. The evolution of this
configuration is carried out by a dynamic Monte Carlo procedure
that uses an energy criterion to evolve the system. This is done
by comparing energies corresponding to different configurations
of the mobile ions (see section 4). These energies are computed
from the workW required to assemble each of these configura-
tions in the presence of the dielectric

1 1 Figure 2. A cross section of the parallelepiped of Figure 1 with
W:—fD(r)-E(r) d3r :_fpfree(r)(p(r) d3r (2) particular internal structures: (a, top) a membrane, (b, bottom) a
8n 2 membrane with a pore. See section 3 for discussion. Regions | and Il

in Figure 2b are used for computational purposes (see Appendix C).

whereD, E, prree, and¢ are respectively the displacement and . . -
electric field, the density of free charge and the electrostatic PO"e passing through the slab, this is a primitive model for an

potential. Note thatis a thermodynamic quantity, the change 101 channel in a biological membrane (Figure 2b). _
in the Helmholtz free energy of the system due to the The numerical procedure described in the following sections

introduction of the mobile chargés. is not limited to any shape or dielectric properties of the
The use of eq 2 implies the need to repeatedly solve the membrane or the pore; however, simple geometries can be

electrostatic problem (1). Specifically, we will require the €Xploited to reduce numerical effort. For example, in the

potentialg— at positionr; given an ion at,. This is the Green’s ~ Simulation of ion transport through a pore in a dielectric
function, i.e., the solution of eq 1 fggedr) = O(r — ry) for membrane (Figure 2b and section 8), the boundaries L and R

the given boundary conditior37 This Green’s function are set to be at some distance from the fixed charges and
contains the effect of the dielectric and the boundary condition. dielectric interfaces that define the underlying system. (Mobile

We note in passing that the symmetry property ions can be Iopgted an_ywhgre in the.system.) Under these
conditions we divide the interior system into two regions, | and

b= by A3) Il (Figure 2b). Region | in Figure 2 comprises the pore and
Ik k= some part of the bathing regions and is in general significantly
smaller than the remaining part Il. The fact that the dynamics

holds regardless of the geometrical structure of the dielectric i ontrolled by processes which take place in region | may

iym35-37 i ; ;
][nedlulm: Iqu#anonsI C%Q Se derived }‘ron;)thg m.r;llthde;natlcal now be exploited in order to reduce numerical effort by treating
ormulation of the problem; but it can also be justified from  jnteractions involving particles in region 11 approximately (see
aphyS|caI_conS|derat|(_)n. the work of assembly_|s mdepenqlentAppendiX C). We emphasize that the boundary conditions
of the particular order in which free charges are introduced into imposed on the L and R boundaries do not represent intrinsic
5,37 i . . .. . . . .
the systent>*"The symmetry property (3) will be useful below 006 ties in the spirit discussed in section 2, and that the input

(sections 303 Er‘]”d Aﬁnpendlx (f:) r:or reducing the numerical effort ¢, ' ¢ andcg originates from information on the average
associated with evaluation of the ision interactions. magnitudes of these variables.

For computational purposes, the system is mapped onto a
discrete lattice (Appendix B). In our current implementation

The inner systems considered in this article have the generalthe same discrete lattice is used for the numerical solution of
shape of a parallelepiped contained in an outer system (Figureshe Poisson equation and for defining the configuration space
1 and 2). On the left and right boundaries of the computational for mobile ions. In particular, each ion occupies one grid cell
box, denoted L and R, constant average electric potentialsand can move to adjacent grid cells. Thus, the grid cell defines
(¢L,¢r) and salt concentrations,(cg) are prescribed. The other  the ion size and excluded volume interaction is applied by not
boundaries are treated by periodic boundary conditibrs. allowing more than one ion on a grid cell. These restrictions
some applications we will consider a dielectric slab separating could be eased to allow, e.g., treatment of different ion siZes.
the inner system into two regions (Figure 2a). The dielectric  After mapping the general geometry onto the discrete lattice,
constantes in the slab differs in general from the dielectric each of the boundaries L and R may be regarded a dielectric
constantg of the other two (“bathing”) regions. With a narrow  layer with thickness equal to the grid spacimghat adjoins a

3. System Geometry and Layout
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similar layer in the interior of the system. lons can be exchanged taken the same for all mobile ions and is assumed kn®w#.
between the boundary layers and the adjacent interior layers in10-5 cmé/s was used in all the calculations presented in this
a way that takes into account the given concentration boundarywork.
conditions.

The following sections detail issues pertaining to the dynamic 5. Energetics

Monte Carlo simulation (section 4), the different contributions  Thjs section provides a general description of the energy terms

to the electrostatic energy (section 5), numerical computation inat contribute toAW of eq 4. A detailed description of these
of electrostatic interactions (section 6), and the treatment of 1oyms and their computation is given in sections 6 and 7.

concentration boundaries (section 7). The requiredAW is the difference between the electrostatic
) _ ) free energie®V of two consecutive configurations. In principle,
4. Dynamic Monte Carlo Simulation the electrostatic free energy in a system of ions, dielectric

interfaces, and potential boundary conditions can be obtained
fby computing the energy required to charge the ions in the
presence of the given interfaces and boundaries. Such a
procedure cannot be used here in a straightforward way because
it would yield an energy that contains the unphysical image
contributions discussed in section 2. Instead we need a procedure
for calculating the electrostatic energy that will yield only the
physical contributions to the charging energy. We have found
that different procedures are needed to achieve this goal for
different contributions to the electrostatic free energy. We
therefore represe as a sum of several distinct contributions

In the dynamic lattice Monte Carlo procedudfegarticles are
placed on grid points in the system and a sequence o
configurations is generated by random changes in the positions
of the particles and acceptance of a new configuration by an
energy criterion. The total simulation length, expressed as a
number of cycles, is assumed to be proportional to the real time.
(In a cycle the number of individual MC steps is equal to the
number of particles in the system.)

We have chosen a transition probability for a single step
which is commonly used in the treatment of the kinetic Ising
model#! Given a current configuration 1 and a random trial

configuration 2, the criterion whether the next configuration will W= WAt el - \weoal - \pdiel 4 yppeor (6)
be 2 or 1 depends on the energy differedd® between the
configurations. A uniform random deviate 8 r < 1 is The possibility to write eq 6 as a superposition of various
generated. If contributions is of course due to the linearity of the dielectric
system. The first term (the sums below are over all ions in the
[ < — exl v ) inner system)
p WAt = Z g ¢jstat @)
the next configuration is taken to be 2. Otherwise, the current !
configuration 1 is carried over. In eq 4,1 = keT, wherekg is is the energy of individual ions in the local electrostatic field
the Boltzmann constant aridis absolute temperature. arising from static charges and from the source of the imposed

The fluctuating number of particles poses a certain problem (Dirichlet) boundary condition; see section 6a. As discussed in
in dynamic Monte Carlo methods because a cycle, which definessection 6d, this term is further corrected by subtracting the effect
the time scale, is constructed relative to the number of particlesof image charge on the imposed boundary to the internal
in the system. We deal with this problem by considering our inhomogeneous charge distribution when such a distribution
system as part of a bigger system with a fixed number of exists.

particles given byN = N + N_ + Ng + Ny. N is the number of Next, the term

particles in the inner system (a fluctuating integé\),andNg 5

are the (fixed) numbers of particles on the left and right G

boundaries, obtained by integrating the given boundary con- weel = z— ¢jse" (8)
centrationsc. andcg over the volumes of the boundary layers T2

(defined in section 3). These numbers are in general nonintegers
The numbem, > 0 of external or virtual particles fluctuates
so thatN = constant, and is chosen large enough so that the
total numberN can accommodate, with high probability, the
largest fluctuation inN. This is done for counting purposes
only: A cycle is defined to consist df steps. In each step, a

is the self-energy (or solvation energy) of individual ions in
the inhomogeneous dielectric environment, computed as de-
scribed in section 6b.

Turning to the interionic Coulomb interaction, it is convenient
to separate it into two terms. The first

particle from the whole system is chosen randomly; however, 1_Gg
a new step is attempted, i.e., a new trial configuration is weeul == —¢°°“'(rij) 9)
generated, only if the chosen particle is not a virtual particle. 237 €

This normalization defines our clock time in accord with the ) . . . .
actual number of particles in the system. Based on a randomiS the energy associated with the direct Coulombic interaction
walk of noninteracting particles on a cubic lattice, and on the betvyeen pair Qf lons in a reference homoggneous d|§lectr|c
form (4) for the transition criterion, the total simulation time enwronlr_nent with dielectric constaeg. An explicit expression
Tsis then related to the number of Monte Carlo cydisby for ¢°'in our bounded grid is given by eq 14 below. A second

term
h*Ne 1 ‘
E—— iel _ — . Hdiel
TS 12D (5) V\/j 2 ; qlqj¢|~1 (10)
whereh is the grid spacing anD is the diffusion coefficient of is the energy resulting from pair of ions interacting via
a single ion moving in the dielectric environment. The latter is polarization charges induced at internal dielectric interfaces. It
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is computed as described in section 6c. Finally that affect ionic motion and equilibrium distribution. In principle,
this contribution to the potential and force experienced by the
WO = ZDI)}:O”D (11) ion can be computed by modeling the ion as a sphere of radius
]

a with chargeq distributed uniformly on its surface, and by
] ) ) solving the Poisson equation with this ion as source given the
Is a correction to the solvation energy that accounts for the system boundaries and dielectric structure. Taking an ion of
effects of ions outside the inner systems, see section 7. chargeq centered at position, as the sole single source, this
A slight modification to the configurational energy difference procedure yields the electrostatic potentigly = a(r)g on
AW =W, — W, is needed for transitions - 2 that involve  {he jon surface, where depends on the system boundaries and

the system’s boundary. If for example the ion of chaygeoves dielectric structure but not on the chargeThe self-energy is
from the inner system to the left boundary tha&his given by then

eq 6 computed foN (say) ions, whileW, is obtained from (6)
computed folN — 1 ions and supplemented by + g%(2¢,a), 1 b = la(rk) 2 (13)
wheree is the dielectric constant in the left continuum. (The 2q stk 2 d

inclusion of the solvation terrg?/(2¢.a) is done in order to be

consistent with the way the energy is computed in the interior This way for numerical evaluation of the self-energy in a finite
side.) computational box poses two problems: (1) Amposed

The following two sections deal with the technical details Dirichlet bounglary (e_.g., the L a_nd_R bouno_laries of Figures 1
and 2), on which a fixed potential is prescribed, behaves as a

associated with setting and using the boundary conditions o ; ] .
imposed on the simulated (inner) system. Section 6 deals with r_netal boundary and attracts individual ions by image interac-

implication of the electrostatic boundaries and section 7 focuses!OnS: As already discussed, this attractive interaction is not

on effects of the concentration boundaries. These analyses yieIaOhys'Cak the potential on the imposed boundary is constant
the energy terms summarized above. A reader who wishes toonly on the average, and its instantaneous value changes when

skip these technical details can proceed to section 8 an ion from the interior system approaches it. The correct self-
' energy of any individual ion should therefore not include this

image interaction. The procedure that leads to eq 13 does include
_ _ ) ) this artifact, and a way to remove it should be employed. (2)
This section details the use of eq 1 and the associatedThe result obtained from a grid-based procedure may depend
boundary conditions to obtain the configurational energy of a g the grid. This has no consequence for a uniform dielectric
given distribution of ions in our system. It is convenient to \here the difference between grid and continuum results is
consider separately four contributions to this energy: (1) The position independent; however, we should consider potential
interaction with the local field that results from the external rtifacts that may arise in grid representations of nonuniform
field imposed on the system and from the fixed charge gystems.
distribution present in the system. This contribution is repre- e have found that both these problems can be resolved by
sented byW*&tin eq 6. (2) The electrostatic self-energy of an  ¢orrecting the potential in eq 13 using the following procedure:

individual ion, Wee" in (6). (3) The electrostatic ionion 1. Define the truncated bare Coulombic potential of a singly
interactions give rise to the ternw°" and W' in eq 6. (4) charged ion

For inhomogeneous charge distributions there is an image

6. Computation of Electrostatic Interactions

response to the average charge distribution. The corresponding 1 1 <

energy is included in the termp®t All these contributions to a I r=a

the configurational energy are affected by the existence and ¢°°”'(r) =(1_1 _ _ (14)
geometry of the internal dielectric interfaces and by the imposed T r_c asr=fr;

boundaries of the simulated system. An additional energy term, 0 ro<r

WEeT in eq 6, that arises from the contribution to the ion’s
solvation energy from ions outside the inner system is discussed

; - wherer is the distance from ion centes,is the ion radiug?
in section 7.

andr. is an imposed cutoff distanééOutside the parallelepiped

(2) Single-Particle Electrostatic Energy.Given the elec- o Figyres 1 and 2, the potential (14) is mapped according to
trostatic boundary condition and the distribution of fixed iha minimum image condition in the- and y-direction

charges, the electrostatic potential in the interior inhomogeneousy e hendicular to the current. In our implementations, all ionic
dielectric system is obtained from the Poisson equation radii are set ta = h/2 andr, is taken equal td../2, whereh
stat__ fixed ) is the grid spacing andyy is the linear size of the L and R
z Li¢/ "= pi"" T (12) boundaries taken as squares.

! 2. A discretized Laplacian matrix© is constructed for our
finite lattice L© corresponds to the — 1 limit of the more
general matrix. defined in appendix B).

3. A lattice charge distribution is constructed by operating
with the lattice Laplacian on the potential (14):

where the matrixL is defined in Appendix B, is the
distribution of fixed charges on the grid, ap® is the “source”
term associated with the imposed (Dirichlet) boundary condi-
tions on the R and L surfaces. The corresponding contribution
itso thestglectrostatlc energy of an ion of chaggat grid pointj p::gllil _ zLi(jO) ¢icglil (15)
G " . . . . ]
(b) Dielectric Self-energy.In a uniform dielectric, the self-
energy of an ion is essentially its Born solvation energy. In an In eq 15,i andj are points on the 3-dimensional discrete grid
infinite uniform system this self-energy is position independent and¢j°3i' is the potential (14) computed on grid pojnfor an
and does not affect the ionic distribution and dynamics. This is ion located at positiork. The corresponding operation in
no longer true in a heterogeneous dielectric, where the positioncontinuous space would give the original charge distributfon.

dependence of the ion solvation energy translates into forcesOn the finite grid, however, where the discretized Laplacian
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LO reflects the discretization and the boundary conditfns,
this correspondence is no longer exact. Instead the resulting
charge distribution on the grid corresponds to the grid repre-
sentation of the potential (14§.

4. The actual potentiad;—, associated with the lattice charge
distribution (15) that corresponds to an ion placed at pkirg
obtained from solving the full Poisson equation including all
dielectric boundaries, using the charge distribution (15) as an

input
Z Lij ¢j~k
]

where the full Poisson matrik is defined in Appendix B.
5. The self-energy of the ion is given by

__ _coul

= Pi—k (16)

B L (17)
If the pointTy is not on the grid¢w—« may be obtained by
interpolation. The result (17) is for a singly charged ion. The
self-energy of an ion of charggplaced at poink is q2¢§e'f.

The method described by eqs-147 is clearly heuristic. In
essence, it describes the charged particle not by the given charg
distribution but by a lattice charge distributipff’}' that would
yield the cutoff Coulomb potential (14) fer= 1, in the presence
of the imposed potential boundary conditions. The resulting self-
energy contains contributions from all internal dielectric inter-
faces, but not the unphysical image interaction associated with
the imposed boundary.

As a test of this procedure, we compute the dielectric self-
energy experienced by an ion of size= h/2 in a system
containing a single dielectric interface

80 z<0

30}

The real space lattice size was chosgnx Ly x L, = 128 x

128 x 66 A. The system is finite in the-direction with zero
electrostatic potential (with the meaning and implications
discussed above) imposed on the L and R surfaces perpendicul
to the zdirection and positioned at = +33 A. Periodic
boundary conditions (with the minimum image convention used
for the ion charge) are used in tkeandy-direction. The lattice

(18)

spacing, which corresponds to the distance of closest approach

of two ions and to the step size for the movement of mobile
ions, was takei = 2 A. The same parameters are used for all
other applications presented in this work.

Figure 3 shows the dielectric self-energy of a singly charged
ion (g = e, whereeis the magnitude of the elementary charge)
as function of its position along theaxis in comparison with
the corresponding analytical restilbbtained for an infinite
system. The result verifies the validity of the numerical
procedure proposed above.

A similar procedure could be used also to evaluate the-ion
ion interactions on the grid, however we have opted to evaluate
the latter by a different method that is described next.

(c) lon—lon Interactions. Next consider the contribution to
the overall energy from ionion interactions. For ions of unit
charge in infinite space with uniform dielectric constarit is
(er)"* wherer is the interionic distance. In the presence of
dielectric inhomogeneities, it can be conveniently thought to
be a sum of two parts: (1) drlCoulomb interaction, essentially
(esr)~1, screened by the dielectric constant of a uniform
reference bath and (2) contributions from dielectric polarization
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Figure 3. Dielectric self-energy of a singly charged ion as a function
of its positionz in a system characterized by the inhomogeneous
dielectric constant eq 18. The computational system is finite in the
z-direction; see text for details. Circles, numerical results; full line,
analytical result in an infinite systenT = 298 K is used in the
normalization of the potential value, areds the electron charge.

relative to the uniform bath. For singly charged ions a distance
r apart, the first part igc°Weg, where¢®! is given by eq 14,
and should be multiplied by the actual ionic charggs.

@Another contribution, the interaction of one ion with the image

on the external potential boundary of another ion, is unphysical
as discussed above, and should be excluded. The following
procedure calculates the second part while excluding the
unphysical image contribution:

1. An ion of unit charge positioned on a lattice point is
represented by a charge densityx = Joi/Vh whereVy is the
volume of a lattice cell.

2. The grid Poisson equation is solved twice: once for an
ion location on a grid poink in a uniform bath with dielectric
constanteg

o}
ZLS‘ by = - (19)
] Vh

see Appendix B for the definition df®), and once for the same
on in the actual inhomogeneous dielectric

Oy
Lid=— (20)
Jz T,

3. The relative dielectric contribution to the electrostatic
interaction between singly charged iong @ndk is obtained
from the difference

Dk = G — ¢J'B~k (21)
This difference eliminates the bare ionic interaction that was
obtained separately and leaves the interaction associated with
the induced polarization charges. Note that the imposed potential
boundary conditions are used in both egs 19 and 20, so the
resulting potentials include the unphysical image contributions
of the type discussed in section 6b. These contributions are,
however, canceled in the difference (21)he overall interac-
tion energy between two ions gtandr is given as the sum of
the two contributions evaluated above:

int _ 1 |
¢|nt _¢]cguk

(. (22)

+ 5

charges that result from dielectric inhomogeneities measuredThis result is for singly charged ions and should be multiplied
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Figure 4. Dielectric contribution to the potential of an ion in the  Figure 5. Salt concentration profile in an equilibrium system simulated
inhomogeneous dielectric system defined by eq 18. The dotted line with (full line) and without (dashed line) the solvation correction
marks the interface between the two dielectric media and the source isdiscussed in section 7. The salt concentration on the boundaries is set
located 1 A to theleft of this line.ez = 80 is used in the calculation.  to ¢ = 0.1M. The standard parameters given in section 7 are used.
Full line, numerical result based on eq 21; dashed line, analytical result
for an infinite system. All parameters are as in Figure 3.

by the ionic chargesjgx of the actual ions in these positions. 012
Note that the proposed method preserves the important sym-
metry property eq 3. In particular, the symmetry < 008
<L . i
_ _ <
¢ = g (23) =
0.04 |

is due to the fact that the Poisson equation is discretized such
that the matrix is symmetric (see Appendix B). Equation 23
can be utilized to save computational effort in the dynamic
Monte Carlo simulation, as discussed in Appendix C.

A test of this procedure is shown in Figure 4. The system is
the same as that used in Figure 3. Now the ion is in a fixed Figure 6. Current vs voltage in the liquid junction described in section
positionk, one site away from the dielectric interface on the 8. characterized by the boundary conditicns= 0.1 M andcs = 0.01

; i ; _ ; M. Full line, PNP results; squares, DLMC results. Dotted line, result
highe-side. The same high value afes %g,’ Is taken for the obtained without the correction due to the image of the average charge

reference environmef?. The potential ¢ is plotted as distribution.
function of the positiorj along thez-direction. In comparison,
the analytical resul® for an infinite half-space with the same  actually be canceled by the image response to the averaged
dielectric boundary is shown. The observed small difference charge distribution.
results from the image response on the imposed boundaries to 2. The Laplace equation with the matti$®) is solved using
the polarization of the internal dielectric interface and will the potential boundary conditiaf(b) obtained in this way. This
become smaller when the distance between the imposedyields a potential in the interior system that should be canceled
boundaries and the internal dielectric interface increases. In ourby the image response to the average charge distribution.
calculations we disregard this small error. 3. The dynamic MC procedure is carried for another stretch

(d) Image Response to the Average Charge Distribution. of MC steps where now the negative of the potential obtained
We have argued above that even though we assign a givenin step 2 is added to the interior potential. This correction to
potential on an imposed boundary, this boundary condition the interior potential accounts for the image charge induced on
should not affect image response to an individual ion approach-the boundary by the interior charge distribution. This stretch of
ing such a boundary. If, however, the average steady-state chargéhe run yields a newp(b) that may be different from that
distribution in the interior system is not uniformly zero, the obtained from the previous stretch.
Coulombic potential of this charge distribution should induce 4. This procedure is repeated until convergence, which is
image response on the imposed boundary so as to keep th@chieved when the boundary potentigb) and the associated
potential on this boundary (i.e., the average potential in the real correction to the inner potential do not change appreciably
system) at its prescribed value. In contrast to the image of anbetween consecutive stretches.
individual ion at its instantaneous position, this image corre-  The effect of this correction is demonstrated below (see
sponds to a real physical interaction that has to be taken into Figures 6 and 7 and the related discussion).
account. This is done using the following procedure: ) ]

1. A MC simulation is carried for a certain stretch of steps /- Boundary Effects on lon Solvation Energies

0 100 200 300
A® [mV]

and the Coulomb potentigi(b) = Y- \/es on the boundary This section considers another effect associated with the
is accumulated and averaged over this stretﬁgﬁﬂ( is the artificial nature of the imposed boundariethe unphysical loss

value of the truncated bare Coulomb potential, eq 14, induced of ion solvation energy when it approaches a concentration
by an ion at poink, on the boundary poin). The result of boundary. For simplicity of the presentation we consider a
this calculation is the potential induced by the averaged chargehomogeneous equilibrium system.

distribution on the imposed boundaries in a background solvent  Consider the parallelepiped in Figure 1, an enclosure in an
of dielectric constantg. The effects of this potential should otherwise infinite equilibrium system, inside which we wish to
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0.1 [ [@°"0= 0, inthe layer adjacent to the boundary, when
the boundary is a source, i.e. when moving from the
0.08 r boundary into that layer
_ 006} = —[@;™ inthe layer adjacent to the boundary, when
% the boundary is a sink, i.e., when moving from that
0.04 ¢ layer into the boundary
0.02 ¢ =— E'IJJ-"”"D for a site of the interior system when
ol moving to/from another site of the interior system (24)

A Next, a new simulation (“pass 1”) is carried out in the presence
z[Al of these solvation corrections. Note that the correction to the
Figure 7. Concentration profiles for the positive (upper lines) and ~energy differenceAW in eq 4 is the difference between two
negative (lower lines) ions in the system of Figure 6 for an applied g\,ch correction terms computed for the corresponding sites. The
voltageA® = ¢ — ¢r = 100 mV. Full lines, DLMC results; dashed o, ¢ yields corrections t&b°mPand [@P™] This procedure
lines, PNP results. The diamonds on the upper left and lower right of . =~ . - .
the figure are the imposed concentration boundary conditioms=at 1S iterated and convergence is achieved when the solvation
+32 A. The cross on the upper left corresponds toghe: 0.096 M, correction determined from successive simulations varies less
the bulk concentration obtained in the DLMC calculation at equilibrium than, say, 1% of the thermal energy. For our range of systems,

with ¢, = ck = 0.1 M (see Figure 5). In the inset the concentration a series of three to four passes was required to determine a
profile near the left boundary is shown: full lines are the same DLMC sufficiently converged solvation correction.
results shown in the main figure. Dashed-dotted lines, results obtained The effect of this correction is shown in Figure 5, which

ithout th tion due to the i f th h . —_— . ) .
\c,ivilstr(i)ttjution? correction due o fhe image of fhe average charge depicts the equilibrium concentration profile obtained from
carrying the dynamic lattice Monte Carlo procedure on an

follow the motions of individual ions. Accordingly, we set the interior system with & univalent binary salt for which the
) gy, concentration boundary conditions were set tocbe= cr =

equilibrium concentrations and potential (the latter can be taken0 1 M. The same parametefs= 298 K, ¢z = 80,h =2 A, L
to be zero) as boundary conditions on the L and R surfaces of ., L, y L, = 128 x 128 x 66 A as in’Figures’B and 4’w):are

the parallelepiped. The neglect of correlations between an ionseq. The full lines in the figure show the concentration profiles
in the interior system and the boundary leads to the ion seeingsqy the positive and negative ions obtained when the boundary
different environments close to the boundary and away from ggjyation correction is applied. The dashed lines show the
it. Physically, a complete ionic atmosphere cannot form around concentration profiles obtained without imposing the correction
an ion close to the boundary, and the computed energy of suchon the simulated system. Note that the exact concentration
an ion will reflect this lack of solvation. In particular, ions on  profiles for the positive and negative ions are identical in this
the boundary layer itself are not automatically subjected to inter- system.

ion interactions that lead to this contribution to their energies.  An exact procedure should give uniform equilibrium con-
Since our Monte Carlo procedure relies on the configurational centration profiles,c = 0.1 M, for both ion types. The
energy of the instantaneous ion distribution, such errors in uncorrected procedure gives interior ion densities considerably
energy will be reflected in the resulting equilibrium distribution higher than the imposed boundary concentration because of the
and nonequilibrium dynamics. This shortcoming of the com- larger solvation stabilization in the interior. This problem is
putational model may be remedied by adding a suitable averageeliminated in the simulation that includes the solvation correc-

potential, a solvation correction, to the sites near and at the tion. In fact we note that the density in the corrected system is
boundarys! about~5% lower than the prescribed density on the boundaries.

. . . . ) In principle, we could eliminate this overshoot in the correction

TQ_ d_eterm_lne th's sqlvatlon _correct|o_n we first “carry a,\’n procedure by slightly adjusting the correction energies in eq
equilibrium simulation without this correction (called "pass 0%) - 54: however, in the calculations reported below this small error
and determine the potential of mean fo@"meat grid point was disregarded.
j experienced by an individual ion. The potential of mean force  |n practical applications of the solvation correction some
determines the concentration profile in equilibrium systéfs.  further approximations are used. First, the correction is obtained
By symmetry, the potential of mean force is the same for in the way described above for a series of homogeneous
positive and negative ions of the same absolute charges, so thequilibrium systems with different salt concentrations, then
average over both types can be taken. In addition, the conditionalapplied also for nonequilibrium systems. Second, the solvation
mean potentiah@fmpg due to ion-ion interactions in the correction is applied at each boundary L and R, irrespective of
interior of the system near the boundary is determined as thethe presence and the location of the other boundary. Finally, at
average product of the electrostatic potential exerted by all other@ certain distance from the boundaries, the correction gets
ions at the position of a given ion times the charge of that ion. Smaller than, say, 1% of the thermal enekg§ and is simply

pm om . . ignored. Clearly, these approximations are better for higher

~ Both [@P" [land (@™ Jare measured relative to their values temperature and for larger system sizes inziuirection.
in the interior solution fa}r. from the |mposgq poundarles. Their  Note that there is a slight asymmetry in the treatment of the
dependence on the positipreflects the artificial nature of the energy differences between configurations when a move into
imposed concentration boundaries and should be compensate@, qut of the boundary is involved. The asymmetry is a result
for. The solvation correctioi®;*"(to the single ion energy  of the artificial nature of the imposed boundary conditions and
when moving from an initial to a final site in the inner system appears explicitly in the definition (24) of the solvation
or on the boundary is then defined by correction. In this sense, the configurational energy (6) depends
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on the next configuration in the Monte Carlo sequence. This is
consistent with the appearance in eq 4 of only energy differences 01
AW between two consecutive configurations. 0.08
8. Numerical Examples _, 006
5

In this section we present numerical results obtained using " oo4l
the procedure described above for three different systems: a
simple liquid junction, a uniform dielectric membrane, and a 0.02
membrane with a narrow cylindrical pore.

Consider first the simple liquid electrolyte junction. This is or . ‘ . )
a homogeneous electrolyte system characterized by given -30 -15 0 15 30
potentials and salt concentrations on opposite parallel bound- z[A]
aries. The solvent is a homogeneous dielectric with a dielectric
constanteg, so the system has no internal dielectric disconti- 0.125 |
nuities. This system has been extensively explored on the mean
field level53-55 It is indeed expected that mean field, i.e., 0.1 ¢
Poissor-Boltzmann (PB) and PoisseiNernst-Planck (PNP) :
theories, should provide reasonable descriptions of equilibrium =z 0.075 r
and of steady-state conduction in this case. We can therefore Py
use the comparison between the dynamic lattice Monte Carlo 0.05 ¢
(DLMC) procedure developed here and these mean field results
in order to assess the working of our particle simulation 0.025 ¢
procedure®® o

In the simulation presented below the system consists of a . . : .
monovalent salt of equal size ions dispersed in a continuum -30 -0 10 30
dielectric solvent of dielectric constaag = 80 contained in a zIAl
parallelepiped (Figure 1) whose dimensionslare Ly x L, = Figure 8. Concentration profiles for the system depicted in Figure

128 x 128 x 66 A. Periodic boundary conditions are applied 2a, withes = 80,es=2,L; =66 A, andl =8 A.c. =cxr=0.1 M
in the x- andy-directions while in thez-direction potential and ~ Was used in the DLMC calculations white = cz = 0.096 M was

. ot N used for the PB and PNP calculation. fe® = 0. Full line, result of
concentration boundary conditions are applied: we assumep o pLmc calculation; dashed line, PB calculation (the corresponding

charge neutrality on these boundaries and ke 0.1 Mand  cajculation with reflecting membrarelectrolyte interfaces gives zero
cr = 0.01 M for the salt concentrations on the left and right concentration inside the membrane); dotted line, result from a PB
boundaries, respectively. The voltagy® = ¢ — ¢r is varied calculation supplemented by the single ion dielectric self-energy. (b)

from zero up to several tenths of a volt. As before, the grid A® = 100 mV. Full line, DLMC results; dashed and dasheldtted
spacing that corresponds also to the ion size is taken 2 A. Thelines are PNP results wnhou; and with reflectm_g boundary condition
diffusion constant for all ion types was takBn= 1075 cn¥/s. on the membraneelectrolyte interfaces, respectively.

Figures 6 and 7 compare the results obtained from the DLMC ¢onstantg, now divided by a dielectric layer, a membrane, of
simulations and PNP calculation on this system. Figure 6 shows gielectric constants, with s < eg. The dielectric profile of
the current-voltage characteristic of this junction. Good agree- hjs system satisfies
ment is seen between the two calculations. Figure 7 shows the
average concentration profiles of the positive and negative ions €g 112 <7 <LJ2
obtained for the same boundary concentrations and\fbr= 2= €s |z <112
100 mV. Good agreement between the PNP and the DLMC
results is seen on the right, low concentration side, but deviationswherel is the membrane thickness. In the calculation described
between the two sets of results appear toward the higherbelow we usedeg = 80 and| = 8 A, and boundary
concentration left side. Some of this deviation is due to the concentrations. = cg = 0.1 M?” The applied voltage\® =
remaining~5% error in the response of the bulk salt concentra- ¢, = ¢ is varied between zero and several tenth of a volt. The
tion to the imposed boundary condition in equilibrium (see electrolyte is a monovalent salt and the lattice is constructed as
Figure 5 and the related discussion). The ionic concentrationsin the previous example. Figure 8a shows the results obtained
near the left boundary tends toward the salt concentration 0.096for this model fores = 2 andA® = 0. This is an equilibrium
M (marked with a cross in Figure 7), which is the equilibrium  sjtuation that in the mean field level is often analyzed using
interior concentration obtained when a boundary concentration the PoissorBoltzmann (PB) theory. Figure 8a depicts the salt
0.1 M is imposed (see Figure 5), rather than toward the real concentration profile obtained from the PB theory (dashed line)
boundary concentration 0.1 M (marked with a diamond in Figure and from the DLMC calculation (full line). Note that the PB

(25)

7). approximation predicts a uniform salt concentration even across
Also shown in Figure 6 and the inset to Figure 7 is the effect the membrane. This approximation involves only the local
of neglecting the correction discussed in section-8uk effect charge density that remains zero everywhere, while the salt

of the image, on the imposed boundary, to the average chargedensity is constant. This is an artifact resulting from the absence,
distribution in the inner system. It is seen that neglecting this in this approximation, of short-range repulsion between ions.
effect leads to an unphysical behavior of the ion concentration In reality, the membrane constitutes a high dielectric barrier
profiles near the boundary, and to a substantial deviation in the that repels ions because of the loss in self-energy (Born solvation
current-voltage characteristic in Figure 6. energy) in the lowe-region. It is important to note that this
Next consider the system represented by Figure 2a: arepulsion extends into the high dielectric constant region. A
parallelepiped containing an electrolyte in a solvent of dielectric common approximation that supplements the PB procedure by



lon Transport in Inhomogeneous Dielectric Environments J. Phys. Chem. B, Vol. 104, No. 51, 20002333

03 0.6 -
[ 02t
< = 047}
< =
-3 =
= [2)
0.1
02}
o]
0 100 200 300 0 . . : . .
AD [mV] -30 -15 o 15 30

Figure 9. Current vs voltage characteristic of a system similar to that zIAl

of Figure 8, except thats = 60. Full line, DLMC results. Dashed line, Figure 10. Concentration of positive ions along the channel axis for

PNP result. the system of Figure 2b. The pore’s radiusjs= 4 A and its length
is| =24 A. Equal salt concentrations= 0.1 M were set on the L and

. . . o, R boundaries at = +33 A. The dielectric constant is 80 everywhere.
imposing zero flux (reflecting) boundary conditions at the Full and dashed lines are respectively results of the DLMC and the

membrane boundaries € +1/2) yields a salt distribution that  pnp calculations. The lower pair of curves is fo® = 50 mV and
is represented outside the membrane by the dashed line in Figurene upper pair of curves correspondss® = 300 mV. The two vertical
8a and is zero inside the membrane. If, instead, we computelines mark the positions of the channel openings.

the ion self-energy as described in section 5.2 (this is a single-
particle property that can be computed and stored at the start There are several ways in which the confined nature of the
of the calculation) and use it to supplement the ion’s energy in ion passage through the channel may be misrepresented by the
the PB calculation, we obtain the result represented by the dottedPNP approximation. First, the pore radius is not much bigger
line of Figure 8a. than the ion size (represented by the DLMC grid spacing); thus

Similar results for the nonequilibrium steady-state character- the effective pore cross section is overestimated in the PNP
ized byA® = 100 mV are shown in Figure 8b. Here the DLMC  calculation that does not take into account short-range interac-
result (full line) is compared to the results obtained from the tions that define the ion size. Similarly, the PNP theory also
mean field PNP calculation without (dashed line) and with disregards the short-range part of the-igon interaction. Next,
(dashed-dotted line) reflecting boundary conditions at the at the core of the PNP (and the PB) mean field approximation
membrane surfaces. This lines represent the concentrafi@), lies the interaction of any given ion with the average distribution
of the positive ions. Because of the symmetry of the problem, of all other ionsjncluding the gien ion itself This unphysical
the negative ion concentration is given by the mirror reflection contribution to the ion energy is negligible in bulk systems
about the center of these lines. containing many ions, but constitutes a substantial error in a

For the examples shown in Figure 8, the dielectric barrier narrow channel which sometimes contains no more than one
computed from the single ion self-energy is found to be ion (see below). Finally, the dielectric self-energy that appears
~11kgT (T = 300 K). (For a thick membrane this barrier can as a substantial energy barrier to ion motion through a narrow
be estimated from the difference between the Born self-energies channel is strongly underestimated by the PNP procefiufe3®
(0?/(2a))(1/es — 1leg). With our parameters it yields 137gT). This happens because in the PNP and PB theories ions are
This barrier is too high to yield any appreciable current in the represented only by their average distribution, that is much
situation described by Figure 8b. Indeed no barrier crossings broader than individual ion sizes.
were observed in the DLMC simulation during simulatier(? In order to distinguish between these different effects we
Monte Carlo cycles), which therefore essentially describes two consider first a homogeneous dielectric channel witly 80
disjoint equilibrium subsystems. In contrast, the PNP calculation everywhere. Figure 10 shows the average positive ion concen-
yields under these conditions a net current of Afcn?. In tration as a function of position along the channel at two steady
this respect the imposition of reflecting boundary conditions at states withA® = 50 mV (lower lines) andA® = 300 mV
the membrane-electrolyte interfaces, blocking current in and (upper lines). The PNP (dashed lines) and DLMC (full lines)
across the membrane, reflects the correct physics. This cannotesults differ from each other by20%. When the system is
be done, however, when the dielectric barrier is lower so driven by the higher potential there is an accumulation of ions
appreciable current can flow. Figure 9 shows current vs voltage near and inside the channel and the ion density in the channel
curves obtained for such a situation. Hege= 80 as before becomes substantially higher. The PNP result is lower in this
while es was taken 60, yielding a dielectric barrier of about case than the DLMC result because it incorporates the unphysi-
1ksT for T = 300 K. The deviation of the PNP result (dashed cal self-interaction of the ions which essentially resists the
line) from the DLMC result (full line) is again related to the “squeezing” of an ion through the channel. We note that the
fact that PNP cannot sample the correct dielectric barrier in this integrated average ion numbers for these cases~&&1
situation. (DLMC) and ~0.29 (PNP), substantially less than 1.

Finally, consider the membrane with a narrow cylindrical pore ~ The current-voltage characteristic of this channel is shown
(Figure 2b). In the following calculations the system geometry in Figure 11. The nominal channel cross sectiornis,4= 50.3
and the boundary concentrations are as befoye=(66 A, | = A2, and this is the cross section relevant to the PNP calculation
24 A, cr = ¢, = 0.1 M), and the pore radius was taken to be (dashed line). When the ion radius (1 A) is taken into account,
rp =4 A. It should be emphasized that this pore is represented the effective channel cross section becomes 28.3Because
only crudely by our low resolution grid: The grid spacing were of our grid structure this is only a rough approximation to the
taken to be 0.50 and 2.0 A, respectively, for the PNP and the effective cross-section on the grid.) In fact, two errors in the
DLMC computations. PNP model compensate each other in the numerical calcula-
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Figure 11. 1/V characteristic for the same system as in Figure 10. z[A]

Equal salt concentratiorts= 0.1 M were set on the L and R boundaries . . ) . .
atz=+33 A. Full line: result of the DLMC calculation. Dashed line: ~ Figure 12. Concentration profiles along the pore axis, obtained for a

result of the corresponding PNP calculation. Dotted line: result of a POre radiug, =4 A, with permanent charges distributed on the pore
PNP calculation with a pore radius = 3 A. boundary surface as described in the text. The dielectric constant is 2

in the membrane, and 80 in the pore and the bathing solutions. The

. . . . . concentration boundaries = cr = 0.1 M. The applied voltage
tion: First, the effective channel radius is overestimated by the boundary condition isA® iCESOO Rmv. Full and dagﬁed lines %re

lack of an intrinsic ion size, and, second, the unphysical self- respectively the DLMC and the PNP results, with filled circles
repulsion inhibits its penetration into the channel. If we correct describing the cations and open circles the anions. The two vertical
for the first error by taking a pore radius = 3 A in the PNP lines mark the positions of the channel openings.

calculation (dotted line in Figure 11) the resulting current is ;
lower than in the corresponding DLMC calculation because of 40t
the second error.

Of conceptual interest is the superlinear dependence of the 30 &
current on the voltage seen (Figure 11) in both the PNP and
the DLMC calculations. This behavior results from the fact that
most of the voltage dropA® occurs on the membrane (and
across the channel), so for a constant ion concentration in the
channel it leads to a linear dependencd oh A®. The fact 10 ¢
that the ion density in the channel increases whth, as seen
in Figure 10, gives rise to the superlinddA® characteristic 0r
seen in Figure 11. . . , .

. . . 0 100 200 300

It should be emphasized that, given the considerable con- A® [mV]
ceptual differences betw_een the PNP and DLMC mGthOdOlog'es’Figure 13. Current vs voltage results obtained from the DLMC
the_ re_s_l"lts seen In Flgu_res 10 and 11 show rema_rkable simulation (full line with filled circles, associated with the right-side
similarities. Far greater differences are encountered in the scale) and from the PNP approximation (dashed line with blank circles,
inhomogeneous dielectric case discussed below. left scale). The channel geometry, its dielectric structure, and the

Next consider a channel with nonhomogeneous dielectric permanent charge distribution are as in Figure 12. These full and dashed

R . o _ . lines are results obtained for a pore radiys= 4 A. As discussed in
distribution, given byes o 2 n the membrane ar_ld, =80 in the text, this pore radius should correspon%l to a smaller effective radius,
the rest of the system, including the pore. As discussed above, '— 3 A 'in the PNP calculation (dotted line with blank squares, left
and as already noted by several auttérs>*8 a high single-  scale). The dashdotted line with filled squares (right scale) is the
ion barrier in narrow channels, associated with the dielectric result of a DLMC calculation in which the Coulombic interaction
Se|f-energy of the ion, is Strong|y underestimated in the PNP between mobile ions where eliminated (i.e., each mobile ion moves

theory. For the geometry used befote & 66 A, | = 24 A, independently of other mobile ions).

andrp = 4 A) we find this barrier to be 4.8sT (T = 300 K). Figures 12 and 13 show, respectively, the ion concentration
Consequently, no appreciable current can go through this pore . ofiles and the curremtvoltage characteristic of this model
In contrast, a PNP calculation yields a finite current due to the system. The concentration profiles obtained from the PNP and
absence of the self-energy barrier. A more realistic configuration \ne pi.MC calculation are shown in Figure 12 to be markedly
should take into account also permanent charges on the chann€jjigerent from each other. In particular it is seen that in the PNP
wall.9~1218These charges lower the channel barrier for ions of gynamics positive ions are attracted by the permanent charge
the proper charge, enhancing the channel permeability andgjstripution to the mid-pore region, but are repelled from this
selectivity for this type of ions. region in the DLMC dynamics which is still dominated by the
We have included such permanent charges in the model indielectric barrier. These substantial differences in the description
the following way: the cylindrical pore'§ = 4 A) is surrounded  of the ionic distributions are expected to lead to similar
by two cylindrical shells. An inner shell, < r < ry, that carries differences in the currentvoltage behavior of these models.
a homogeneous charge distribution with a total ch&pgand Indeed, Figure 13 shows that the PNP calculation overestimates
an outer shellf; < r < rp, with a homogeneous distribution of  the total current by more than an order of magnitude, and is
charge—Q. In the simulations described below we have used also unsuccessful in reproducing the super-linear behavior seen
ri=5A,r,=6A,andQ = —1.5 e. Such a charge distribution  in the DLMC calculatior?® On the other hand, it is seen that
by itself yields a potential well for the positive ion in mid- neglecting the interactions between mobile ions altogether (i.e.,
channel, of depth-1.6 kgT, making the net potential barrier ~moving the ions under the effect of all but their mutual
for this ion 2.7kgT. Coulombic interactions) provide a relatively good approximation

| A}

20
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in this system, where the average ionic occupation in the channelis sufficient for studying the limitations of mean field continuum
is less than 1. theories (PB, PNP) of ionic systems. It leaves much to be desired
To summarize this section, we found that for a simple liquid in constructing realistic models for such systems. It obviously
junction with no geometrical restrictions on the ions’ motion disregards the molecular nature of the solvent, but even as a
and no internal dielectric interfaces, the mean field (PNP) continuum model it does not account for hydrodynamic flows
approximation and the particle lattice Monte Carlo dynamics and associated contributions to interionic interactions. On the
give results that are in good agreement with each other. Sinceother hand, we emphasize again that the methods developed
PNP is expected to be a reasonable approximation in this systemhere for handling concentration and potential boundary condi-
(where correlation between ionic motions do not have a strong tions will be useful also when more detailed microscopic
effect on dynamics) this could be regarded as a test of validity descriptions of the inner system are used.
of our DLMC procedure. In the other situations considered the
PNP theory shows various degrees of deviation from the more
realistic description provided by the DLMC simulation of the

By comparing the results of our simulation procedure to these
obtained from applying the PNP scheme on a system in which
. ; o . mean field approximation should provide a reasonable descrip-
particle-lattice model. These deviations are particularly severe tion, and by performing the other calibration tests described

in the description of ion transport _through narrow dielectric above, we have verified that our numerical scheme performs
channels, and casts doubts on previously published PNP results

for ion transport through narrow membrane chanfiel8. It reasonably within the limitations of our numerical model.
should be emphasized that other factors, not taken into accountchL:argr]Sig?#zu:ﬁg?:fiég?gsggizg ?;nz(:{g;mzcgehghﬁ?gehzzp

in the present model, may lead to lower barriers in realistic . . )
Some severe shortcomings of the mean-field approach to ion

channels (else ion transport through narrow channels such at tininh dielectri dia. | t with
gramicidin would not occur). This may result from a larger than ransport in INhomogeneous dielectric mzes 1a. Ih agreement wi
trecent Brownian dynamics simulatioffs?> we have to con-

assumed channel polarizability or from structural rearrangemen : . . .
in the channel in response to the passing ion. clude that earlier PNP work on ion transport through biological
channel%18 have to be reassessed with care.

9. Concluding Remarks Finally, the observation that self-energy of the mobile ion in
) ] . ) the inhomogeneous dielectric environment is a major factor in
This paper has described a particle-level numerical approachine gitference between results obtained from the DLMC and
to the study of ionic equilibrium and transport in systems that 1o pNP methodologies offers a way to substantially improve
are (a) bounded by potential and concentration boundaries, andpe performance of the latter mean field approximation. This is

(b) rfnay htz)ave mternalll dlele?t(r;.(f:f mhon;pg;;engﬂes, mcludlngr;] based on the fact that the dielectric self-energy, being a single
Interfaces between solvents of different dielectric constants. T '®jon property, is included as an additive term in the energy used
use of concentration and potential boundaries is standard in

lculati based ined del h th in the PB and PNP calculations; see dotted line in Figure 8a.
g?)icsl;géogjltzrizin gr?d i?]ZrSF?oiggrri:\leern;nt—oPI?iﬁclfu(((:jriftas Surthermore, including, on the mean field level, effects of finite
e . ) ) . . ion sizes can also increase the accuracy and applicability of
diffusion) theories. It is not straightforward in particle-level

. . - ; . . ; this approximation. These issues will be discussed in detail
simulations, in particular those involving charged particles, and LT . -

. . - elsewhere. At the same time it should be emphasized again that
this paper has discussed some of the problems involved and

has suggested ways to handle them. the c_:alculatlons presen_te(_j here gnd in refs 23, predict solva_tlon

. . o - barriers that are unrealistically high. For a narrow channel like
An important feature of our simulated system is its identifica- - - . o

. ; Gramicidin A (radius of about 2 A), the solvation barrier is

tion as a small part of a larger embedding system. Focused20_4o ksT if the dielectric constant of the aqueous region is

attention on this small “inner” system is needed for numerical 80 evervwhere and that of the protein-m mb? ne r i?’?? 5

efficiency and is natural in the study of systems that are driven Th'e effy : ere ? aho be prote ed ba € reg qf 'ts :

by local processes (i.e., ion transport through membrane IS eftect must somehow b€ Suppressed, because IT it were

channels). The resulting concentration and potential boundarynOt’ no 1ons could permeate through the GA c.hannell unde'r any
conditions imposed on the inner system are restrictions only physiologically relevant conditions, whereas in reality cations

on theaveragevalues of these variables. We found that this Permeate easily through GA under such conditions. This
has important consequences, in particular for the way the suggests that other factors, not taken |_nto accqunt by the_ pre_sent
potential boundary is handled: a constant potential boundary elec_trostat_lc models,_myst play a role in lowering the activation
condition responds to the individual motions of charged particles Parrier for ion transmission through narrow membrane channels.
as a metal, while a constant average potential plane such as>uch additional mechanisms may include the following: (1)
any plane cut in an equilibrium electrolyte solution does not. configurational fluctuations of the protein channel, (2) a higher
On the other hand, image effects associated with real internaldielectric constant in the protein, due to a larger polarizability
dielectric boundaries have to be considered in full. Other, than that of the lipid bilayer membrafi¢,and (3) strong
somewhat more subtle, issues include the need to account forattractive chemical interactions between the permeating ion and
the response of the imposed boundaries toatleragecharge particular function groups in amino acids lining the walls of
distribution in the inner system and for the partial loss of the pore. Further investigation of these features would be of
solvation energy by an ion approaching these boundaries.  considerable interest.

These and some other issues discussed in this work result
from the artificial nature of the imposed interface between an Appendix A. The PNP Equations
external, continuum system characterized by average concentra-
tions and electrostatic properties and an inner system described Here we briefly outline the structure of the steady-state
on the microscopic level. In the present work the simulation of Poissor-Nernest-Planck (PNP) equations. These equations
the inner system is still restricted to a rather coarse grained combine the Poisson eq 1 for the electrostatic potential
level: the solvent is represented by a dielectric continuum and associated with a given distribution of fixed chargesand
the ions are restricted to move on a grid. This level of description averagecharge distribution of mobile ions
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and the steady-state drift-diffusion equations for the fluxes of This can be generalized to the discretization of eq 1. Moving
the mobile ions fixed boundary terms to the right this finally yields

0= V-, =V [-Dy(Vc(r) + Bc(r)VV(r))];, i=1,..,N

(A2)

> Li¢, = b + b (A7)
J

where the index now denotes a lexical index identifying a site
on the 3-dimensional latticg;; is the 3-dimensional generaliza-
tion of the matrix defined by eq A6 becomes the dielectric
constant on sitg), bi(”) = —Ampredl) and bi(D) are effective
source terms associated with the Dirichlet (potential) boundary
condition. In addition to eq A7 we sometimes solve identical
reference equations for systems in whicls uniformly 1 (the
%orresponding matrix is then denotm{f)) or some other
uniform valueeg (with the corresponding matriki?).

whereVi(r) = zeg(r) accounts for the interionic interaction on
the mean field level. A reasonable modification takes

Vi(r) = U(r) + zep(r) (A3)
whereU is the single particle potential (local solvation energy)
associated with the inhomogeneous solvent. In these equation
G, Ji, z, and D; are repectively the concentrations, fluxes,
valences, and diffusion constants of the ion spedies 1, ...,

N). e is the magnitude of the electron charge ghe (ks T)™L.
The one-particle potentidl is sometimes taken into account

only implicitly by using reflecting boundary conditions that  The main numerical difficulty encountered in simulating
prevent ion entrance into nondielectric environments. An inhomogeneous electrolyte systems is the calculation of the
implementation of Eqs (A1,2) to ion diffusion through mem-  glectrostatic response associated with the dielectric inhomoge-
brane channels was described in our earlier wérkinder neity, i.e.,¢% of section 6¢c. Repeated numerical solution of

equilibrium conditions, where gjilvanish andti ~ exp(-fzeg), the Poisson equation during each Monte Carlo cycle is not
these equations reduce to the PoissBoltzmann equations. practical. Precalculating and storing, e-@ff.'( for all lattice
sitesk and restoring it during the Monte Carlo simulation also
stretches the limits of computational and memory resources.
We note that in related studi@s2 cylindrical symmetry was
Here we briefly describe the procedure used for solving the used to reduce the storage memory problem. Here we describe
Poisson equation on a cubic grid. This is a standard méthod another method that does not rely on geometrical symmetry (the
and is included here in order to define our notation. The latter can be used in addition). We assume that the interior
following outline is written using a one-dimensional language system may be divided into two regions | and Il, as in Figure
but is easily generalized to any number of dimensions. The real 2b; the dynamics is controlled by ion motion in region | and
space coordinates (up to a translation) of the lattice sites are interactions involving ions in this region are captured exactly.
The dynamics is less sensitive to ionic motion in region II, and
their interactions may be considered in some approximation (that
becomes better when region | is larger). For the particular system
depicted in Figure 2 the following procedure can be used:

The functionsgp®®, eq 21, are precalculated and stored for

Appendix C. Numerical Efficiency Issues

Appendix B. Numerical Solution of the Poisson Equation
on a Lattice

x=jh, j=1,2,..n (A4)
with h > 0. A lattice cell extends fromj (— 1/2)) to (j + Y2)h.
The volume of one lattice cell is denoted by. For periodic ko
boundary conditions, the formal identitigg = X, andxn+1 = all lattice sitesk in region | (Figure 2). This involves storage of
x are employed. For a direction in which the system is bounded, (Ni + Nii)Ni numbers, wherél, andN, are the number of grid

Xo andx,+1 are identified with the boundaries L and R introduced Points in region | and |1 of the interior system. This number is
in section 3. In both cases, the cells associated with the sitessubstantially smaller than the numbed (+ Ny)? that is the
labeled byj = 1, ..., n cover the interior system. The value order of magnitude required to store all relevant electrostatic
f(x), which a functionf assumes on a lattice siteis denoted ~ information.

by fj.

Next, the Poisson eq 1 is discretized on this grid. The finite

volume method is suitable for discretization of differential
equation with discontinuous paramet&sn this method, the

The pair interaction between two ions is computed as follows:

If either of the two ions is located within region I, then the
precalculated function$jd'fﬂ< are available, and the interaction

potential is given by eq 22 multiplied bgqx Because of the

differential equation is integrated over a lattice cell and symmetry property (23), the same function can be used for
interfacial continuity conditions are utilized across the surface computing the “dielectric polarization interaction” of an ion

of lattice cells. For our problem, this method corresponds to |ocated inside region | with another ion at an arbitrary location
allowing discontinuities in the dielectric profile at the surfaces and vice versa.

of lattice cells, while assuming continuous variatiore@j) over

If both ions are located in region Il, their interaction is

the interior of the cells. When applied to the differential equation ¢ajcylated as if there was no pore. The system without a pore

d
ek

this method, with the requirement of continuityuk) anda(x)
du(x)/dx yields

=b(¥) (A5)

(bathslabjbath) is highly symmetric, and only a small set of
functions«pf’ff( has to be precalculated and stored for such a
system. This approximation becomes better when the size of
region | is larger; the ensuing error for the system of Figure 2
can be made of the order of a few percent of the thermal energy
ksT at room temperature.
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