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A dynamic lattice Monte Carlo (DLMC) simulation approach to the description of ion transport in dielectric
environments is presented. Conventional approaches using periodic boundary conditions are inefficient for
nonequilibrium situations in inhomogeneous systems. Instead, the simulated system is embedded in a bigger
system that determines the average electrostatic potential and the ionic concentrations at its boundaries. Two
issues are of special importance: implementing the given boundary conditions in the treatment of dynamical
processes at and near the boundaries, and efficient evaluation of ion-ion interaction in the heterogeneous
dielectric medium during the Monte Carlo simulation. The performance of the method is checked by comparing
numerical results to exact solutions for simple geometries, and to mean field (Poisson-Nernst-Planck, PNP)
theory in a system where the latter should provide a reasonable description. Other examples in which the
PNP theory fails in various degrees are shown and discussed. In particular, PNP results deviate considerably
from the DLMC dynamics for ion transport through rigid narrow membrane channels with large disparity
between the dielectric constants of the protein and the water environments.

1. Introduction

Ion transport in inhomogeneous condensed phases is of
considerable interest in many fields of fundamental and applied
science. Electrochemical processes dominated by ion transport
at interfaces,1,2 inhomogeneous solid ionic conductors,3 and ion
transport through membrane channels4,5 are a few prominent
examples. The motivation for the present work is the ongoing
effort to develop efficient numerical tools for electrochemical
processes in confined systems, e.g., ion transport through
membrane channels and dynamics of electrolytes near and
between dielectric membranes. Full scale molecular dynamics
simulations of such systems are still prohibitively expensive,
being limited by the long time and lengths scales associated
with many processes of interest. Instead, one usually resorts to
(a) describing the solvent as a dielectric continuum and (b)
describing the ions within the Poisson-Boltzmann (PB) or the
Poisson-Nernst-Planck (PNP) mean field approximation. Such
approaches (see Appendix A) are widely used for describing
ionic equilibrium at and between dielectric interfaces6 and in
inhomogeneous dielectric environments such as proteins,7,8 and
for studying ion transport through biological channels.9-18

Computationally feasible models of transport in ionic systems
that go beyond the continuum level of description have been
largely restricted to the treatment of homogeneous systems19

or to systems of very simple geometries. Recently, Brownian
dynamics studies of ion transport through membrane channels
have been reported.20-25 Detailed molecular dynamics (MD)
simulations of ionic biological channels are currently limited
to short time equilibrium simulations.26-28 It is expected that
such MD simulations will in the future extend and partly replace
coarse-grained stochastic approaches to nonequilibrium phe-
nomena. It should be kept in mind, however, that well-reasoned
coarse grained descriptions of large complex systems are not
merely ways to save computational effort, but routes to focusing

on the important aspects of complex systems and processes,
where details may be unimportant and nonessential for a
consistent description.

The goal of the present work is to develop a possible
framework for such a coarse-grained approach to ion transport
in inhomogeneous dielectric environments, using a dynamic
lattice Monte Carlo (DLMC) model for the description of such
processes. In the present approach the underlying solvent
molecular structure is replaced by a dielectric continuum and
the ions are described as charged particles that move on a dense
cubic grid. The treatment of the ion-ion interaction is thus
promoted from the continuum mean field level used in the PB
and PNP levels of description, and the model can describe ion-
ion correlations that are disregarded by mean field theories.
Similar DLMC models were previously used in studies of ion
equilibrium dynamics in glassy and polymer electrolytes;29-31

however, these studies were limited to infinite macroscopically
homogeneous systems without dielectric boundaries.

It should be emphasized that the use of a continuum dielectric
picture for the solvent and the boundaries in the present model
constitutes a gross simplification, sometimes oversimplification,
by disregarding the molecular structure of the solvent. Moreover,
the response of the continuum dielectric environment to the ion
motion is usually taken linear, local, and instantaneous. Still,
simulations that describe ions as individual particles constitute
a substantial advance over continuum mean field theories that
describe ions as continuous charge distributions. Such ap-
proaches, e.g., PB and PNP approximations, are considered
useful in many applications, and the present approach can be
used to gauge their limits of validity. In particular, we expect
that the proposed DLMC approach will be useful when the
process studied is driven, or is strongly affected, by correlations
between individual ions. In this respect our method is equivalent
to the recently advanced Brownian dynamic scheme.20-24,25aThe

12324 J. Phys. Chem. B2000,104,12324-12338

10.1021/jp001282s CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/01/2000



latter has the advantage that it is an off-lattice procedure and
that it can (in principle) describe short time inertial effects. For
the applications of interest to us here (and those described in
refs 20-24 and 25a) the latter issue is not very important. The
lattice-based approach is numerically less demanding, in
particular in the on-lattice mode used here where the same lattice
is used for the ion positions and for the grid on which the
electrostatic problem is solved. It is important to note that the
methods developed here to handle potential and concentration
boundary conditions can be adapted also to the off-lattice
Langevin approach, as well as to any particle simulation that
uses these boundary conditions.

At the core of the numerical approach described below is
the embedding of a relatively small system, in which “detailed”
numerical simulations (here at the DLMC level) are done, in a
larger system whose size prohibits such detailed calculations.
In the latter, outer system, theory, experimental information,
or computation on a more coarse grained level is used. In
principle, one would like to develop a numerical procedure in
which coarse grained (e.g., continuum level) computations in
the outer system and detailed (e.g., particle) simulation on the
inner system are brought together into a consistent union.32,33

The calculation described below accomplishes this goal in the
following way: We assume that theory or coarse-grained
calculation done on the outer system can provide boundary
conditions for the motions of particles in the inner system and
examine the dynamics of the latter under these boundary
conditions. The cycle would become complete when data from
the inner system, properly coarse grained, are fed back as input
to the calculation done on the outer system. Even at the present
incomplete stage one can get useful information on ion transport
in inhomogeneous dielectric systems, as shown below.

This paper is organized as follows: In section 2 we briefly
review the electrostatic background needed in later sections. In
section 3 we sketch the general layout of systems that we want
to investigate, in order to set the stage for the remaining sections.
Sections 4-7 elaborate on critical issues pertaining to the
computation of interaction energies and the DLMC simulation
and outline our approach to these issues. A simple application
is demonstrated in section 8 and concluding remarks follow in
section 9. Explicit formulas and technical details are given in
the Appendices.

2. Outline of the Problem

We are interested in ionic motion in dielectric media.
Dynamics in the system is driven by electrostatic interactions
derived from the Poisson equation:

whereFfree is the density of free charges,φ is the electrostatic
potential, andε is the dielectric response. The latter is assumed
local in space and time on our coarse-grained scale. In our
applications we consider systems composed of different regions
characterized by their dielectric constants. This implies that
ε(r ) is a discontinuous function, a fact that should be carefully
addressed in numerical solutions of eq 1.

The Poisson eq 1 has to be supplemented by appropriate
boundary conditions. It is important to make a conceptual
distinction between two types of boundary conditions that we
term “intrinsic” and “imposed”. Intrinsic boundary conditions
arise from the real physical boundaries of the system. For
example, a metal electrode is, in a coarse-grained electrostatic
picture, an intrinsic boundary characterized by a given constant

potential. In contrast, imposed boundary conditions are artifi-
cially introduced into a computational model in order to render
the system into a manageable size. Periodic boundary conditions,
usually imposed in simulations of infinite homogeneous systems
or of systems with local inhomogeneities and short-range
interactions, exemplify this type.

Periodic boundary conditions cannot be used to model
processes that are (a) relatively local and (b) driven by intrinsic
boundaries that are far from the significant local region. For
example, ion transport through a biological membrane channel
is driven by intrinsic potential and concentration boundary
conditions which are set far (∼1 µm) from the channel openings.
At the same time the process is controlled by the channel
properties. A full scale simulation that connects both the channel
and the intrinsic boundaries is not feasible. Instead, one imposes
boundary conditions at convenient locations near the channel
openings.9-16 Concentrations and potentials can be imposed at
these artificial boundaries using input from theory or from a
more coarse grained computation, e.g., a calculation that uses
mean field approximations. Problems associated with setting
and handling such imposed boundary conditions are central
issues in the present work.

To see in more detail the kind of problems that may be
encountered in setting up such imposed boundaries, consider a
homogeneous electrolyte solution that may be in equilibrium
or in a current carrying steady state. We wish to consider in
microscopic detail ionic motion in a limited subspace denoted
by the parallelepiped in Figure 1, using potential and concentra-
tion boundary conditions obtained from theory or from a mean
field calculation done in the bigger system. As stated above,
periodic boundary conditions are not convenient for simulations
of systems that carry fluxes. Potential boundary conditions in
homogeneous systems may be replaced by a constant uniform
electric field applied to the ions, but this cannot be done in
nonhomogeneous systems. Similarly, concentration gradients
have to be considered explicitly.34 As we shall see below, naive
application of such imposed boundary conditions can lead to
erroneous unphysical results.

As an example consider the plane R in Figure 1, separating
two parts of the physical system. To its left we describe the
ions as microscopic particles and to its right we are given the
average electrostatic potential and ionic concentrations. A naive
application of this input is to use the values of these average
potential and concentrations as boundary conditions on the plane
R in a simulation that follows the motion of individual ions on
its left. However, if we attempt to move these ions with a
constant electrostatic potential imposed on R, this plane will

Figure 1. Computational cell: A parallelepiped with concentration
and potential boundaries on the planes R and L perpendicular to the
z-axis. Periodic boundary conditions are taken in thex- andy-directions.
See section 2 for discussion.

-∇‚[ε(r )∇φ(r )] ) 4πFfree(r ) (1)
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behave as a metal surface that attracts ions by image interactionss
a gross distortion of the correct dynamics. This artifact will be
somewhat compensated by another artifact associated with a
naive imposition of concentration boundary conditions: ions
in the bulk of an electrolyte solution are solvated by counterions.
When they approach a surface with a given fixed salt concentra-
tion they lose up to half of this contribution to their solvation
energy. They are therefore effectively repelled by such a
boundary.

These artifacts arise because, by replacing the given average
potential and concentrations by strictly constant values of these
variables on a boundary, we disregard important correlations
between an ion approaching the boundary and the instantaneous
electrostatic potential and ionic concentrations on the boundary.
These considerations will guide us below in designing ways to
avoid such artifacts or to compensate for them.

Assuming that we can correctly handle these boundary issues,
eq 1 yields a solution of the electrostatic problem for a given
ionic configuration in our system. The evolution of this
configuration is carried out by a dynamic Monte Carlo procedure
that uses an energy criterion to evolve the system. This is done
by comparing energies corresponding to different configurations
of the mobile ions (see section 4). These energies are computed
from the workW required to assemble each of these configura-
tions in the presence of the dielectric

whereD, E, Ffree, andφ are respectively the displacement and
electric field, the density of free charge and the electrostatic
potential. Note thatW is a thermodynamic quantity, the change
in the Helmholtz free energy of the system due to the
introduction of the mobile charges.21

The use of eq 2 implies the need to repeatedly solve the
electrostatic problem (1). Specifically, we will require the
potentialφjrk at positionr j given an ion atrk. This is the Green’s
function, i.e., the solution of eq 1 forFfree(r ) ) δ(r - r k) for
the given boundary conditions.36,37 This Green’s function
contains the effect of the dielectric and the boundary condition.
We note in passing that the symmetry property

holds regardless of the geometrical structure of the dielectric
medium.35-37 Equation 3 can be derived from the mathematical
formulation of the problem,36 but it can also be justified from
a physical consideration: the work of assembly is independent
of the particular order in which free charges are introduced into
the system.35,37The symmetry property (3) will be useful below
(sections 6c.3 and Appendix C) for reducing the numerical effort
associated with evaluation of the ion-ion interactions.

3. System Geometry and Layout

The inner systems considered in this article have the general
shape of a parallelepiped contained in an outer system (Figures
1 and 2). On the left and right boundaries of the computational
box, denoted L and R, constant average electric potentials
(φL,φR) and salt concentrations (cL,cR) are prescribed. The other
boundaries are treated by periodic boundary conditions.24 In
some applications we will consider a dielectric slab separating
the inner system into two regions (Figure 2a). The dielectric
constantεs in the slab differs in general from the dielectric
constantεB of the other two (“bathing”) regions. With a narrow

pore passing through the slab, this is a primitive model for an
ion channel in a biological membrane (Figure 2b).

The numerical procedure described in the following sections
is not limited to any shape or dielectric properties of the
membrane or the pore; however, simple geometries can be
exploited to reduce numerical effort. For example, in the
simulation of ion transport through a pore in a dielectric
membrane (Figure 2b and section 8), the boundaries L and R
are set to be at some distance from the fixed charges and
dielectric interfaces that define the underlying system. (Mobile
ions can be located anywhere in the system.) Under these
conditions we divide the interior system into two regions, I and
II (Figure 2b). Region I in Figure 2 comprises the pore and
some part of the bathing regions and is in general significantly
smaller than the remaining part II. The fact that the dynamics
is controlled by processes which take place in region I may
now be exploited in order to reduce numerical effort by treating
interactions involving particles in region II approximately (see
Appendix C). We emphasize that the boundary conditions
imposed on the L and R boundaries do not represent intrinsic
properties in the spirit discussed in section 2, and that the input
for φL, φR, cL, andcR originates from information on the average
magnitudes of these variables.

For computational purposes, the system is mapped onto a
discrete lattice (Appendix B). In our current implementation
the same discrete lattice is used for the numerical solution of
the Poisson equation and for defining the configuration space
for mobile ions. In particular, each ion occupies one grid cell
and can move to adjacent grid cells. Thus, the grid cell defines
the ion size and excluded volume interaction is applied by not
allowing more than one ion on a grid cell. These restrictions
could be eased to allow, e.g., treatment of different ion sizes.39

After mapping the general geometry onto the discrete lattice,
each of the boundaries L and R may be regarded a dielectric
layer with thickness equal to the grid spacingh, that adjoins a

Figure 2. A cross section of the parallelepiped of Figure 1 with
particular internal structures: (a, top) a membrane, (b, bottom) a
membrane with a pore. See section 3 for discussion. Regions I and II
in Figure 2b are used for computational purposes (see Appendix C).

W ) 1
8π ∫D(r )‚E(r ) d3r ) 1

2∫Ffree(r )φ(r ) d3r (2)

φjrk ≡ φkrj (3)
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similar layer in the interior of the system. Ions can be exchanged
between the boundary layers and the adjacent interior layers in
a way that takes into account the given concentration boundary
conditions.

The following sections detail issues pertaining to the dynamic
Monte Carlo simulation (section 4), the different contributions
to the electrostatic energy (section 5), numerical computation
of electrostatic interactions (section 6), and the treatment of
concentration boundaries (section 7).

4. Dynamic Monte Carlo Simulation

In the dynamic lattice Monte Carlo procedure,40 particles are
placed on grid points in the system and a sequence of
configurations is generated by random changes in the positions
of the particles and acceptance of a new configuration by an
energy criterion. The total simulation length, expressed as a
number of cycles, is assumed to be proportional to the real time.
(In a cycle the number of individual MC steps is equal to the
number of particles in the system.)

We have chosen a transition probability for a single step
which is commonly used in the treatment of the kinetic Ising
model.41 Given a current configuration 1 and a random trial
configuration 2, the criterion whether the next configuration will
be 2 or 1 depends on the energy difference∆W between the
configurations. A uniform random deviate 0e r < 1 is
generated. If

the next configuration is taken to be 2. Otherwise, the current
configuration 1 is carried over. In eq 4,â-1 ) kBT, wherekB is
the Boltzmann constant andT is absolute temperature.

The fluctuating number of particles poses a certain problem
in dynamic Monte Carlo methods because a cycle, which defines
the time scale, is constructed relative to the number of particles
in the system. We deal with this problem by considering our
system as part of a bigger system with a fixed number of
particles given byÑ ) N + NL + NR + Nv. N is the number of
particles in the inner system (a fluctuating integer),NL andNR

are the (fixed) numbers of particles on the left and right
boundaries, obtained by integrating the given boundary con-
centrationscL andcR over the volumes of the boundary layers
(defined in section 3). These numbers are in general nonintegers.
The numberNv > 0 of external or virtual particles fluctuates
so thatÑ ) constant, and is chosen large enough so that the
total numberÑ can accommodate, with high probability, the
largest fluctuation inN. This is done for counting purposes
only: A cycle is defined to consist ofÑ steps. In each step, a
particle from the whole system is chosen randomly; however,
a new step is attempted, i.e., a new trial configuration is
generated, only if the chosen particle is not a virtual particle.
This normalization defines our clock time in accord with the
actual number of particles in the system. Based on a random
walk of noninteracting particles on a cubic lattice, and on the
form (4) for the transition criterion, the total simulation time
TS is then related to the number of Monte Carlo cyclesNC by

whereh is the grid spacing andD is the diffusion coefficient of
a single ion moving in the dielectric environment. The latter is

taken the same for all mobile ions and is assumed known.D )
10-5 cm2/s was used in all the calculations presented in this
work.

5. Energetics

This section provides a general description of the energy terms
that contribute to∆W of eq 4. A detailed description of these
terms and their computation is given in sections 6 and 7.

The required∆W is the difference between the electrostatic
free energiesWof two consecutive configurations. In principle,
the electrostatic free energy in a system of ions, dielectric
interfaces, and potential boundary conditions can be obtained
by computing the energy required to charge the ions in the
presence of the given interfaces and boundaries. Such a
procedure cannot be used here in a straightforward way because
it would yield an energy that contains the unphysical image
contributions discussed in section 2. Instead we need a procedure
for calculating the electrostatic energy that will yield only the
physical contributions to the charging energy. We have found
that different procedures are needed to achieve this goal for
different contributions to the electrostatic free energy. We
therefore representW as a sum of several distinct contributions

The possibility to write eq 6 as a superposition of various
contributions is of course due to the linearity of the dielectric
system. The first term (the sums below are over all ions in the
inner system)

is the energy of individual ions in the local electrostatic field
arising from static charges and from the source of the imposed
(Dirichlet) boundary condition; see section 6a. As discussed in
section 6d, this term is further corrected by subtracting the effect
of image charge on the imposed boundary to the internal
inhomogeneous charge distribution when such a distribution
exists.

Next, the term

is the self-energy (or solvation energy) of individual ions in
the inhomogeneous dielectric environment, computed as de-
scribed in section 6b.

Turning to the interionic Coulomb interaction, it is convenient
to separate it into two terms. The first

is the energy associated with the direct Coulombic interaction
between pair of ions in a reference homogeneous dielectric
environment with dielectric constantεB. An explicit expression
for φcoul in our bounded grid is given by eq 14 below. A second
term

is the energy resulting from pair of ions interacting via
polarization charges induced at internal dielectric interfaces. It

r < 1
1 + exp[â∆W]

(4)

TS )
h2NC

12D
(5)

W ) Wstat+ Wself + Wcoal + Wdiel + Wcorr (6)

Wstat) ∑
j

qjφj
stat (7)

Wself ) ∑
j

qj
2

2
φj

self (8)

Wcoul )
1

2
∑
i*j

qiqj

εB

φ
coul(rij) (9)

Wdiel )
1

2
∑
i*j

qiqjφirj
diel (10)

Ion Transport in Inhomogeneous Dielectric Environments J. Phys. Chem. B, Vol. 104, No. 51, 200012327



is computed as described in section 6c. Finally

is a correction to the solvation energy that accounts for the
effects of ions outside the inner systems, see section 7.

A slight modification to the configurational energy difference
∆W ) W2 - W1 is needed for transitions 1f 2 that involve
the system’s boundary. If for example the ion of chargeq moves
from the inner system to the left boundary thenW1 is given by
eq 6 computed forN (say) ions, whileW2 is obtained from (6)
computed forN - 1 ions and supplemented byqφL + q2/(2εLa),
whereεL is the dielectric constant in the left continuum. (The
inclusion of the solvation termq2/(2εLa) is done in order to be
consistent with the way the energy is computed in the interior
side.)

The following two sections deal with the technical details
associated with setting and using the boundary conditions
imposed on the simulated (inner) system. Section 6 deals with
implication of the electrostatic boundaries and section 7 focuses
on effects of the concentration boundaries. These analyses yield
the energy terms summarized above. A reader who wishes to
skip these technical details can proceed to section 8.

6. Computation of Electrostatic Interactions

This section details the use of eq 1 and the associated
boundary conditions to obtain the configurational energy of a
given distribution of ions in our system. It is convenient to
consider separately four contributions to this energy: (1) The
interaction with the local field that results from the external
field imposed on the system and from the fixed charge
distribution present in the system. This contribution is repre-
sented byWstat in eq 6. (2) The electrostatic self-energy of an
individual ion, Wself in (6). (3) The electrostatic ion-ion
interactions give rise to the termsWcoul andWdiel in eq 6. (4)
For inhomogeneous charge distributions there is an image
response to the average charge distribution. The corresponding
energy is included in the termWstat. All these contributions to
the configurational energy are affected by the existence and
geometry of the internal dielectric interfaces and by the imposed
boundaries of the simulated system. An additional energy term,
Wcorr in eq 6, that arises from the contribution to the ion’s
solvation energy from ions outside the inner system is discussed
in section 7.

(a) Single-Particle Electrostatic Energy.Given the elec-
trostatic boundary condition and the distribution of fixed
charges, the electrostatic potential in the interior inhomogeneous
dielectric system is obtained from the Poisson equation

where the matrixL is defined in Appendix B,Ffixed is the
distribution of fixed charges on the grid, andF(D) is the “source"
term associated with the imposed (Dirichlet) boundary condi-
tions on the R and L surfaces. The corresponding contribution
to the electrostatic energy of an ion of chargeqj at grid pointj
is qjφj

stat.
(b) Dielectric Self-energy.In a uniform dielectric, the self-

energy of an ion is essentially its Born solvation energy. In an
infinite uniform system this self-energy is position independent
and does not affect the ionic distribution and dynamics. This is
no longer true in a heterogeneous dielectric, where the position
dependence of the ion solvation energy translates into forces

that affect ionic motion and equilibrium distribution. In principle,
this contribution to the potential and force experienced by the
ion can be computed by modeling the ion as a sphere of radius
a with chargeq distributed uniformly on its surface, and by
solving the Poisson equation with this ion as source given the
system boundaries and dielectric structure. Taking an ion of
chargeq centered at positionr k as the sole single source, this
procedure yields the electrostatic potentialφsrk ) R(r k)q on
the ion surface, whereR depends on the system boundaries and
dielectric structure but not on the chargeq. The self-energy is
then

This way for numerical evaluation of the self-energy in a finite
computational box poses two problems: (1) Animposed
Dirichlet boundary (e.g., the L and R boundaries of Figures 1
and 2), on which a fixed potential is prescribed, behaves as a
metal boundary and attracts individual ions by image interac-
tions. As already discussed, this attractive interaction is not
physical: the potential on the imposed boundary is constant
only on the average, and its instantaneous value changes when
an ion from the interior system approaches it. The correct self-
energy of any individual ion should therefore not include this
image interaction. The procedure that leads to eq 13 does include
this artifact, and a way to remove it should be employed. (2)
The result obtained from a grid-based procedure may depend
on the grid. This has no consequence for a uniform dielectric
where the difference between grid and continuum results is
position independent; however, we should consider potential
artifacts that may arise in grid representations of nonuniform
systems.

We have found that both these problems can be resolved by
correcting the potential in eq 13 using the following procedure:

1. Define the truncated bare Coulombic potential of a singly
charged ion

wherer is the distance from ion center,a is the ion radius,42

andrc is an imposed cutoff distance.43 Outside the parallelepiped
of Figures 1 and 2, the potential (14) is mapped according to
the minimum image condition in thex- and y-direction
perpendicular to the current. In our implementations, all ionic
radii are set toa ) h/2 andrc is taken equal toLxy/2, whereh
is the grid spacing andLxy is the linear size of the L and R
boundaries taken as squares.

2. A discretized Laplacian matrixL(0) is constructed for our
finite lattice (L(0) corresponds to theε f 1 limit of the more
general matrixL defined in appendix B).

3. A lattice charge distribution is constructed by operating
with the lattice Laplacian on the potential (14):

In eq 15,i and j are points on the 3-dimensional discrete grid
andφjrk

coul is the potential (14) computed on grid pointj for an
ion located at positionk. The corresponding operation in
continuous space would give the original charge distribution.44

On the finite grid, however, where the discretized Laplacian

Wcorr ) ∑
j

〈Φj
corr〉 (11)

∑
j

Lijφj
stat) Fi

fixed + Fi
(D) (12)

1
2
qφsrk ) 1

2
R(r k)q

2 (13)

φ
coul(r) ) {1

a
- 1

rc
r < a

1
r

- 1
rc

a < r < rc

0 rc < r
} (14)

Firk
coul ) ∑

j

Lij
(0)

φirk
coul (15)
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L(0) reflects the discretization and the boundary conditions,45

this correspondence is no longer exact. Instead the resulting
charge distribution on the grid corresponds to the grid repre-
sentation of the potential (14).46

4. The actual potential,φjrk, associated with the lattice charge
distribution (15) that corresponds to an ion placed at pointk, is
obtained from solving the full Poisson equation including all
dielectric boundaries, using the charge distribution (15) as an
input

where the full Poisson matrixL is defined in Appendix B.
5. The self-energy of the ion is given by

If the point rbk is not on the grid,φkrk, may be obtained by
interpolation. The result (17) is for a singly charged ion. The
self-energy of an ion of chargeq placed at pointk is q2φk

self.
The method described by eqs 14-17 is clearly heuristic. In

essence, it describes the charged particle not by the given charge
distribution but by a lattice charge distributionFirk

coul that would
yield the cutoff Coulomb potential (14) forε ) 1, in the presence
of the imposed potential boundary conditions. The resulting self-
energy contains contributions from all internal dielectric inter-
faces, but not the unphysical image interaction associated with
the imposed boundary.47

As a test of this procedure, we compute the dielectric self-
energy experienced by an ion of sizea ) h/2 in a system
containing a single dielectric interface

The real space lattice size was chosenLx × Ly × Lz ) 128×
128 × 66 Å. The system is finite in thez-direction with zero
electrostatic potential (with the meaning and implications
discussed above) imposed on the L and R surfaces perpendicular
to the z-direction and positioned atz ) (33 Å. Periodic
boundary conditions (with the minimum image convention used
for the ion charge) are used in thex- andy-direction. The lattice
spacing, which corresponds to the distance of closest approach
of two ions and to the step size for the movement of mobile
ions, was takenh ) 2 Å. The same parameters are used for all
other applications presented in this work.

Figure 3 shows the dielectric self-energy of a singly charged
ion (q ) e, wheree is the magnitude of the elementary charge)
as function of its position along thez-axis in comparison with
the corresponding analytical result48 obtained for an infinite
system. The result verifies the validity of the numerical
procedure proposed above.

A similar procedure could be used also to evaluate the ion-
ion interactions on the grid, however we have opted to evaluate
the latter by a different method that is described next.

(c) Ion-Ion Interactions. Next consider the contribution to
the overall energy from ion-ion interactions. For ions of unit
charge in infinite space with uniform dielectric constantε it is
(εr)-1 where r is the interionic distance. In the presence of
dielectric inhomogeneities, it can be conveniently thought to
be a sum of two parts: (1) a 1/r Coulomb interaction, essentially
(εBr)-1, screened by the dielectric constantεB of a uniform
reference bath and (2) contributions from dielectric polarization
charges that result from dielectric inhomogeneities measured

relative to the uniform bath. For singly charged ions a distance
r apart, the first part isφcoul/εB, whereφcoul is given by eq 14,
and should be multiplied by the actual ionic chargesqiqj.
Another contribution, the interaction of one ion with the image
on the external potential boundary of another ion, is unphysical
as discussed above, and should be excluded. The following
procedure calculates the second part while excluding the
unphysical image contribution:

1. An ion of unit charge positioned on a lattice point is
represented by a charge densityFirk ) δik/Vh whereVh is the
volume of a lattice cell.

2. The grid Poisson equation is solved twice: once for an
ion location on a grid pointk in a uniform bath with dielectric
constantεB

(see Appendix B for the definition ofLB), and once for the same
ion in the actual inhomogeneous dielectric

3. The relative dielectric contribution to the electrostatic
interaction between singly charged ions atj andk is obtained
from the difference

This difference eliminates the bare ionic interaction that was
obtained separately and leaves the interaction associated with
the induced polarization charges. Note that the imposed potential
boundary conditions are used in both eqs 19 and 20, so the
resulting potentials include the unphysical image contributions
of the type discussed in section 6b. These contributions are,
however, canceled in the difference (21).49 The overall interac-
tion energy between two ions atr j andr k is given as the sum of
the two contributions evaluated above:

This result is for singly charged ions and should be multiplied

∑
j

Lijφjrk ) Firk
coul (16)

φk
self ) 1

2
φkrk (17)

ε ) {80 z < 0
2 z > 0} (18)

Figure 3. Dielectric self-energy of a singly charged ion as a function
of its position z in a system characterized by the inhomogeneous
dielectric constant eq 18. The computational system is finite in the
z-direction; see text for details. Circles, numerical results; full line,
analytical result in an infinite system.T ) 298 K is used in the
normalization of the potential value, ande is the electron charge.

∑
j

Lij
B

φjrk
B )

δik

Vh

(19)

∑
j

Lijφjrk )
δik

Vh

(20)

φjrk ) φjrk - φjrk
B (21)

φjrk
int ) 1

εB
φjrk

coul + φjrk
diel (22)
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by the ionic chargesqjqk of the actual ions in these positions.
Note that the proposed method preserves the important sym-
metry property eq 3. In particular, the symmetry

is due to the fact that the Poisson equation is discretized such
that the matrixL is symmetric (see Appendix B). Equation 23
can be utilized to save computational effort in the dynamic
Monte Carlo simulation, as discussed in Appendix C.

A test of this procedure is shown in Figure 4. The system is
the same as that used in Figure 3. Now the ion is in a fixed
position k, one site away from the dielectric interface on the
high ε-side. The same high value ofε, εB ) 80, is taken for the
reference environment.50 The potential φjrk

diel is plotted as
function of the positionj along thez-direction. In comparison,
the analytical result48 for an infinite half-space with the same
dielectric boundary is shown. The observed small difference
results from the image response on the imposed boundaries to
the polarization of the internal dielectric interface and will
become smaller when the distance between the imposed
boundaries and the internal dielectric interface increases. In our
calculations we disregard this small error.

(d) Image Response to the Average Charge Distribution.
We have argued above that even though we assign a given
potential on an imposed boundary, this boundary condition
should not affect image response to an individual ion approach-
ing such a boundary. If, however, the average steady-state charge
distribution in the interior system is not uniformly zero, the
Coulombic potential of this charge distribution should induce
image response on the imposed boundary so as to keep the
potential on this boundary (i.e., the average potential in the real
system) at its prescribed value. In contrast to the image of an
individual ion at its instantaneous position, this image corre-
sponds to a real physical interaction that has to be taken into
account. This is done using the following procedure:

1. A MC simulation is carried for a certain stretch of steps
and the Coulomb potentialφ(b) ) ∑kφbrk

coul/εB on the boundary
is accumulated and averaged over this stretch (φbrk

coul is the
value of the truncated bare Coulomb potential, eq 14, induced
by an ion at pointk, on the boundary pointb). The result of
this calculation is the potential induced by the averaged charge
distribution on the imposed boundaries in a background solvent
of dielectric constantεB. The effects of this potential should

actually be canceled by the image response to the averaged
charge distribution.

2. The Laplace equation with the matrixL(0) is solved using
the potential boundary conditionφ(b) obtained in this way. This
yields a potential in the interior system that should be canceled
by the image response to the average charge distribution.

3. The dynamic MC procedure is carried for another stretch
of MC steps where now the negative of the potential obtained
in step 2 is added to the interior potential. This correction to
the interior potential accounts for the image charge induced on
the boundary by the interior charge distribution. This stretch of
the run yields a newφ(b) that may be different from that
obtained from the previous stretch.

4. This procedure is repeated until convergence, which is
achieved when the boundary potentialφ(b) and the associated
correction to the inner potential do not change appreciably
between consecutive stretches.

The effect of this correction is demonstrated below (see
Figures 6 and 7 and the related discussion).

7. Boundary Effects on Ion Solvation Energies

This section considers another effect associated with the
artificial nature of the imposed boundariessthe unphysical loss
of ion solvation energy when it approaches a concentration
boundary. For simplicity of the presentation we consider a
homogeneous equilibrium system.

Consider the parallelepiped in Figure 1, an enclosure in an
otherwise infinite equilibrium system, inside which we wish to

Figure 4. Dielectric contribution to the potential of an ion in the
inhomogeneous dielectric system defined by eq 18. The dotted line
marks the interface between the two dielectric media and the source is
located 1 Å to theleft of this line.εB ) 80 is used in the calculation.
Full line, numerical result based on eq 21; dashed line, analytical result
for an infinite system. All parameters are as in Figure 3.

φjrk
diel ≡ φkrj

diel (23)

Figure 5. Salt concentration profile in an equilibrium system simulated
with (full line) and without (dashed line) the solvation correction
discussed in section 7. The salt concentration on the boundaries is set
to c ) 0.1M. The standard parameters given in section 7 are used.

Figure 6. Current vs voltage in the liquid junction described in section
8, characterized by the boundary conditionscL ) 0.1 M andcR ) 0.01
M. Full line, PNP results; squares, DLMC results. Dotted line, result
obtained without the correction due to the image of the average charge
distribution.
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follow the motions of individual ions. Accordingly, we set the
equilibrium concentrations and potential (the latter can be taken
to be zero) as boundary conditions on the L and R surfaces of
the parallelepiped. The neglect of correlations between an ion
in the interior system and the boundary leads to the ion seeing
different environments close to the boundary and away from
it. Physically, a complete ionic atmosphere cannot form around
an ion close to the boundary, and the computed energy of such
an ion will reflect this lack of solvation. In particular, ions on
the boundary layer itself are not automatically subjected to inter-
ion interactions that lead to this contribution to their energies.
Since our Monte Carlo procedure relies on the configurational
energy of the instantaneous ion distribution, such errors in
energy will be reflected in the resulting equilibrium distribution
and nonequilibrium dynamics. This shortcoming of the com-
putational model may be remedied by adding a suitable average
potential, a solvation correction, to the sites near and at the
boundary.51

To determine this solvation correction we first carry an
equilibrium simulation without this correction (called “pass 0”)
and determine the potential of mean force〈Φj

pmf〉 at grid point
j experienced by an individual ion. The potential of mean force
determines the concentration profile in equilibrium systems.52

By symmetry, the potential of mean force is the same for
positive and negative ions of the same absolute charges, so the
average over both types can be taken. In addition, the conditional
mean potential,〈Φj

cmp〉, due to ion-ion interactions in the
interior of the system near the boundary is determined as the
average product of the electrostatic potential exerted by all other
ions at the position of a given ion times the charge of that ion.

Both 〈Φj
pmf〉 and〈Φj

cmp〉 are measured relative to their values
in the interior solution far from the imposed boundaries. Their
dependence on the positionj reflects the artificial nature of the
imposed concentration boundaries and should be compensated
for. The solvation correction〈Φj

corr〉 to the single ion energy
when moving from an initial to a final site in the inner system
or on the boundary is then defined by

Next, a new simulation (“pass 1”) is carried out in the presence
of these solvation corrections. Note that the correction to the
energy difference∆W in eq 4 is the difference between two
such correction terms computed for the corresponding sites. The
result yields corrections to〈Φcmp〉 and 〈Φpmf〉. This procedure
is iterated and convergence is achieved when the solvation
correction determined from successive simulations varies less
than, say, 1% of the thermal energy. For our range of systems,
a series of three to four passes was required to determine a
sufficiently converged solvation correction.

The effect of this correction is shown in Figure 5, which
depicts the equilibrium concentration profile obtained from
carrying the dynamic lattice Monte Carlo procedure on an
interior system with a univalent binary salt for which the
concentration boundary conditions were set to becL ) cR )
0.1 M. The same parameters,T ) 298 K,εB ) 80,h ) 2 Å, Lx

× Ly × Lz ) 128 × 128 × 66 Å as in Figures 3 and 4 were
used. The full lines in the figure show the concentration profiles
for the positive and negative ions obtained when the boundary
solvation correction is applied. The dashed lines show the
concentration profiles obtained without imposing the correction
on the simulated system. Note that the exact concentration
profiles for the positive and negative ions are identical in this
system.

An exact procedure should give uniform equilibrium con-
centration profiles,c ) 0.1 M, for both ion types. The
uncorrected procedure gives interior ion densities considerably
higher than the imposed boundary concentration because of the
larger solvation stabilization in the interior. This problem is
eliminated in the simulation that includes the solvation correc-
tion. In fact we note that the density in the corrected system is
about∼5% lower than the prescribed density on the boundaries.
In principle, we could eliminate this overshoot in the correction
procedure by slightly adjusting the correction energies in eq
24; however, in the calculations reported below this small error
was disregarded.

In practical applications of the solvation correction some
further approximations are used. First, the correction is obtained
in the way described above for a series of homogeneous
equilibrium systems with different salt concentrations, then
applied also for nonequilibrium systems. Second, the solvation
correction is applied at each boundary L and R, irrespective of
the presence and the location of the other boundary. Finally, at
a certain distance from the boundaries, the correction gets
smaller than, say, 1% of the thermal energykBT and is simply
ignored. Clearly, these approximations are better for higher
temperature and for larger system sizes in thez-direction.

Note that there is a slight asymmetry in the treatment of the
energy differences between configurations when a move into
or out of the boundary is involved. The asymmetry is a result
of the artificial nature of the imposed boundary conditions and
appears explicitly in the definition (24) of the solvation
correction. In this sense, the configurational energy (6) depends

Figure 7. Concentration profiles for the positive (upper lines) and
negative (lower lines) ions in the system of Figure 6 for an applied
voltage∆Φ ) φL - φR ) 100 mV. Full lines, DLMC results; dashed
lines, PNP results. The diamonds on the upper left and lower right of
the figure are the imposed concentration boundary conditions atz )
(32 Å. The cross on the upper left corresponds to thecL ) 0.096 M,
the bulk concentration obtained in the DLMC calculation at equilibrium
with cL ) cR ) 0.1 M (see Figure 5). In the inset the concentration
profile near the left boundary is shown: full lines are the same DLMC
results shown in the main figure. Dashed-dotted lines, results obtained
without the correction due to the image of the average charge
distribution.

〈Φj
corr〉 ) 0, in the layer adjacent to the boundary, when
the boundary is a source, i.e. when moving from the

boundary into that layer

) -〈Φj
cmp〉, in the layer adjacent to the boundary, when

the boundary is a sink, i.e., when moving from that
layer into the boundary

) - 〈Φj
pmf〉, for a site of the interior system when

moving to/from another site of the interior system (24)
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on the next configuration in the Monte Carlo sequence. This is
consistent with the appearance in eq 4 of only energy differences
∆W between two consecutive configurations.

8. Numerical Examples

In this section we present numerical results obtained using
the procedure described above for three different systems: a
simple liquid junction, a uniform dielectric membrane, and a
membrane with a narrow cylindrical pore.

Consider first the simple liquid electrolyte junction. This is
a homogeneous electrolyte system characterized by given
potentials and salt concentrations on opposite parallel bound-
aries. The solvent is a homogeneous dielectric with a dielectric
constantεB, so the system has no internal dielectric disconti-
nuities. This system has been extensively explored on the mean
field level.53-55 It is indeed expected that mean field, i.e.,
Poisson-Boltzmann (PB) and Poisson-Nernst-Planck (PNP)
theories, should provide reasonable descriptions of equilibrium
and of steady-state conduction in this case. We can therefore
use the comparison between the dynamic lattice Monte Carlo
(DLMC) procedure developed here and these mean field results
in order to assess the working of our particle simulation
procedure.56

In the simulation presented below the system consists of a
monovalent salt of equal size ions dispersed in a continuum
dielectric solvent of dielectric constantεB ) 80 contained in a
parallelepiped (Figure 1) whose dimensions areLx × Ly × Lz )
128 × 128 × 66 Å. Periodic boundary conditions are applied
in thex- andy-directions while in thez-direction potential and
concentration boundary conditions are applied: we assume
charge neutrality on these boundaries and takecL ) 0.1 M and
cR ) 0.01 M for the salt concentrations on the left and right
boundaries, respectively. The voltage∆Φ ) φL - φR is varied
from zero up to several tenths of a volt. As before, the grid
spacing that corresponds also to the ion size is taken 2 Å. The
diffusion constant for all ion types was takenD ) 10-5 cm2/s.

Figures 6 and 7 compare the results obtained from the DLMC
simulations and PNP calculation on this system. Figure 6 shows
the current-voltage characteristic of this junction. Good agree-
ment is seen between the two calculations. Figure 7 shows the
average concentration profiles of the positive and negative ions
obtained for the same boundary concentrations and for∆Φ )
100 mV. Good agreement between the PNP and the DLMC
results is seen on the right, low concentration side, but deviations
between the two sets of results appear toward the higher
concentration left side. Some of this deviation is due to the
remaining∼5% error in the response of the bulk salt concentra-
tion to the imposed boundary condition in equilibrium (see
Figure 5 and the related discussion). The ionic concentrations
near the left boundary tends toward the salt concentration 0.096
M (marked with a cross in Figure 7), which is the equilibrium
interior concentration obtained when a boundary concentration
0.1 M is imposed (see Figure 5), rather than toward the real
boundary concentration 0.1 M (marked with a diamond in Figure
7).

Also shown in Figure 6 and the inset to Figure 7 is the effect
of neglecting the correction discussed in section 6dsthe effect
of the image, on the imposed boundary, to the average charge
distribution in the inner system. It is seen that neglecting this
effect leads to an unphysical behavior of the ion concentration
profiles near the boundary, and to a substantial deviation in the
current-voltage characteristic in Figure 6.

Next consider the system represented by Figure 2a: a
parallelepiped containing an electrolyte in a solvent of dielectric

constantεB, now divided by a dielectric layer, a membrane, of
dielectric constantεS, with εS < εB. The dielectric profile of
this system satisfies

wherel is the membrane thickness. In the calculation described
below we usedεB ) 80 and l ) 8 Å, and boundary
concentrationscL ) cR ) 0.1 M57 The applied voltage∆Φ )
φL ) φR is varied between zero and several tenth of a volt. The
electrolyte is a monovalent salt and the lattice is constructed as
in the previous example. Figure 8a shows the results obtained
for this model forεS ) 2 and∆Φ ) 0. This is an equilibrium
situation that in the mean field level is often analyzed using
the Poisson-Boltzmann (PB) theory. Figure 8a depicts the salt
concentration profile obtained from the PB theory (dashed line)
and from the DLMC calculation (full line). Note that the PB
approximation predicts a uniform salt concentration even across
the membrane. This approximation involves only the local
charge density that remains zero everywhere, while the salt
density is constant. This is an artifact resulting from the absence,
in this approximation, of short-range repulsion between ions.
In reality, the membrane constitutes a high dielectric barrier
that repels ions because of the loss in self-energy (Born solvation
energy) in the lowε-region. It is important to note that this
repulsion extends into the high dielectric constant region. A
common approximation that supplements the PB procedure by

Figure 8. Concentration profiles for the system depicted in Figure
2a, withεB ) 80, εS ) 2, Lz ) 66 Å, andl ) 8 Å. cL ) cR ) 0.1 M
was used in the DLMC calculations whilecL ) cR ) 0.096 M was
used for the PB and PNP calculation. (a)∆Φ ) 0. Full line, result of
the DLMC calculation; dashed line, PB calculation (the corresponding
calculation with reflecting membrane-electrolyte interfaces gives zero
concentration inside the membrane); dotted line, result from a PB
calculation supplemented by the single ion dielectric self-energy. (b)
∆Φ ) 100 mV. Full line, DLMC results; dashed and dashed-dotted
lines are PNP results without and with reflecting boundary condition
on the membrane-electrolyte interfaces, respectively.

ε(z) ) {εB l/2 < |z| < Lz/2
εS |z| < l/2

(25)

12332 J. Phys. Chem. B, Vol. 104, No. 51, 2000 Graf et al.



imposing zero flux (reflecting) boundary conditions at the
membrane boundaries (z ) (l/2) yields a salt distribution that
is represented outside the membrane by the dashed line in Figure
8a and is zero inside the membrane. If, instead, we compute
the ion self-energy as described in section 5.2 (this is a single-
particle property that can be computed and stored at the start
of the calculation) and use it to supplement the ion’s energy in
the PB calculation, we obtain the result represented by the dotted
line of Figure 8a.

Similar results for the nonequilibrium steady-state character-
ized by∆Φ ) 100 mV are shown in Figure 8b. Here the DLMC
result (full line) is compared to the results obtained from the
mean field PNP calculation without (dashed line) and with
(dashed-dotted line) reflecting boundary conditions at the
membrane surfaces. This lines represent the concentration,c+(z),
of the positive ions. Because of the symmetry of the problem,
the negative ion concentration is given by the mirror reflection
about the center of these lines.

For the examples shown in Figure 8, the dielectric barrier
computed from the single ion self-energy is found to be
∼110kBT (T ) 300 K). (For a thick membrane this barrier can
be estimated from the difference between the Born self-energies,
(q2/(2a))(1/εs - 1/εB). With our parameters it yields∼137kBT).
This barrier is too high to yield any appreciable current in the
situation described by Figure 8b. Indeed no barrier crossings
were observed in the DLMC simulation during simulation (∼106

Monte Carlo cycles), which therefore essentially describes two
disjoint equilibrium subsystems. In contrast, the PNP calculation
yields under these conditions a net current of 103 A/cm2. In
this respect the imposition of reflecting boundary conditions at
the membrane-electrolyte interfaces, blocking current in and
across the membrane, reflects the correct physics. This cannot
be done, however, when the dielectric barrier is lower so
appreciable current can flow. Figure 9 shows current vs voltage
curves obtained for such a situation. HereεB ) 80 as before
while εS was taken 60, yielding a dielectric barrier of about
1kBT for T ) 300 K. The deviation of the PNP result (dashed
line) from the DLMC result (full line) is again related to the
fact that PNP cannot sample the correct dielectric barrier in this
situation.

Finally, consider the membrane with a narrow cylindrical pore
(Figure 2b). In the following calculations the system geometry
and the boundary concentrations are as before (Lz ) 66 Å, l )
24 Å, cR ) cL ) 0.1 M), and the pore radius was taken to be
rp ) 4 Å. It should be emphasized that this pore is represented
only crudely by our low resolution grid: The grid spacing were
taken to be 0.50 and 2.0 Å, respectively, for the PNP and the
DLMC computations.

There are several ways in which the confined nature of the
ion passage through the channel may be misrepresented by the
PNP approximation. First, the pore radius is not much bigger
than the ion size (represented by the DLMC grid spacing); thus
the effective pore cross section is overestimated in the PNP
calculation that does not take into account short-range interac-
tions that define the ion size. Similarly, the PNP theory also
disregards the short-range part of the ion-ion interaction. Next,
at the core of the PNP (and the PB) mean field approximation
lies the interaction of any given ion with the average distribution
of all other ions,including the giVen ion itself. This unphysical
contribution to the ion energy is negligible in bulk systems
containing many ions, but constitutes a substantial error in a
narrow channel which sometimes contains no more than one
ion (see below). Finally, the dielectric self-energy that appears
as a substantial energy barrier to ion motion through a narrow
channel is strongly underestimated by the PNP procedure.20-24,58

This happens because in the PNP and PB theories ions are
represented only by their average distribution, that is much
broader than individual ion sizes.

In order to distinguish between these different effects we
consider first a homogeneous dielectric channel withε ) 80
everywhere. Figure 10 shows the average positive ion concen-
tration as a function of position along the channel at two steady
states with∆Φ ) 50 mV (lower lines) and∆Φ ) 300 mV
(upper lines). The PNP (dashed lines) and DLMC (full lines)
results differ from each other by∼20%. When the system is
driven by the higher potential there is an accumulation of ions
near and inside the channel and the ion density in the channel
becomes substantially higher. The PNP result is lower in this
case than the DLMC result because it incorporates the unphysi-
cal self-interaction of the ions which essentially resists the
“squeezing” of an ion through the channel. We note that the
integrated average ion numbers for these cases are∼0.31
(DLMC) and ∼0.29 (PNP), substantially less than 1.

The current-voltage characteristic of this channel is shown
in Figure 11. The nominal channel cross section is 4πrp

2 ) 50.3
Å2, and this is the cross section relevant to the PNP calculation
(dashed line). When the ion radius (1 Å) is taken into account,
the effective channel cross section becomes 28.3 Å2. (Because
of our grid structure this is only a rough approximation to the
effective cross-section on the grid.) In fact, two errors in the
PNP model compensate each other in the numerical calcula-

Figure 9. Current vs voltage characteristic of a system similar to that
of Figure 8, except thatεS ) 60. Full line, DLMC results. Dashed line,
PNP result.

Figure 10. Concentration of positive ions along the channel axis for
the system of Figure 2b. The pore’s radius isrp ) 4 Å and its length
is l ) 24 Å. Equal salt concentrationsc ) 0.1 M were set on the L and
R boundaries atz ) (33 Å. The dielectric constant is 80 everywhere.
Full and dashed lines are respectively results of the DLMC and the
PNP calculations. The lower pair of curves is for∆Φ ) 50 mV and
the upper pair of curves corresponds to∆Φ ) 300 mV. The two vertical
lines mark the positions of the channel openings.
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tion: First, the effective channel radius is overestimated by the
lack of an intrinsic ion size, and, second, the unphysical self-
repulsion inhibits its penetration into the channel. If we correct
for the first error by taking a pore radiusrp ) 3 Å in the PNP
calculation (dotted line in Figure 11) the resulting current is
lower than in the corresponding DLMC calculation because of
the second error.

Of conceptual interest is the superlinear dependence of the
current on the voltage seen (Figure 11) in both the PNP and
the DLMC calculations. This behavior results from the fact that
most of the voltage drop∆Φ occurs on the membrane (and
across the channel), so for a constant ion concentration in the
channel it leads to a linear dependence ofI on ∆Φ. The fact
that the ion density in the channel increases with∆Φ, as seen
in Figure 10, gives rise to the superlinearI/∆Φ characteristic
seen in Figure 11.

It should be emphasized that, given the considerable con-
ceptual differences between the PNP and DLMC methodologies,
the results seen in Figures 10 and 11 show remarkable
similarities. Far greater differences are encountered in the
inhomogeneous dielectric case discussed below.

Next consider a channel with nonhomogeneous dielectric
distribution, given byεs ) 2 in the membrane andεb ) 80 in
the rest of the system, including the pore. As discussed above,
and as already noted by several authors,20-25,58 a high single-
ion barrier in narrow channels, associated with the dielectric
self-energy of the ion, is strongly underestimated in the PNP
theory. For the geometry used before (Lz ) 66 Å, l ) 24 Å,
andrp ) 4 Å) we find this barrier to be 4.3kBT (T ) 300 K).
Consequently, no appreciable current can go through this pore.
In contrast, a PNP calculation yields a finite current due to the
absence of the self-energy barrier. A more realistic configuration
should take into account also permanent charges on the channel
wall.9-12,16These charges lower the channel barrier for ions of
the proper charge, enhancing the channel permeability and
selectivity for this type of ions.

We have included such permanent charges in the model in
the following way: the cylindrical pore (rp ) 4 Å) is surrounded
by two cylindrical shells. An inner shell,rp < r e r1, that carries
a homogeneous charge distribution with a total chargeQ, and
an outer shell,r1 < r e r2, with a homogeneous distribution of
charge-Q. In the simulations described below we have used
r1 ) 5 Å, r2 ) 6 Å, andQ ) -1.5 e. Such a charge distribution
by itself yields a potential well for the positive ion in mid-
channel, of depth-1.6 kBT, making the net potential barrier
for this ion 2.7kBT.

Figures 12 and 13 show, respectively, the ion concentration
profiles and the current-voltage characteristic of this model
system. The concentration profiles obtained from the PNP and
the DLMC calculation are shown in Figure 12 to be markedly
different from each other. In particular it is seen that in the PNP
dynamics positive ions are attracted by the permanent charge
distribution to the mid-pore region, but are repelled from this
region in the DLMC dynamics which is still dominated by the
dielectric barrier. These substantial differences in the description
of the ionic distributions are expected to lead to similar
differences in the current-voltage behavior of these models.
Indeed, Figure 13 shows that the PNP calculation overestimates
the total current by more than an order of magnitude, and is
also unsuccessful in reproducing the super-linear behavior seen
in the DLMC calculation.59 On the other hand, it is seen that
neglecting the interactions between mobile ions altogether (i.e.,
moving the ions under the effect of all but their mutual
Coulombic interactions) provide a relatively good approximation

Figure 11. I/V characteristic for the same system as in Figure 10.
Equal salt concentrationsc ) 0.1 M were set on the L and R boundaries
at z ) (33 Å. Full line: result of the DLMC calculation. Dashed line:
result of the corresponding PNP calculation. Dotted line: result of a
PNP calculation with a pore radiusrp ) 3 Å.

Figure 12. Concentration profiles along the pore axis, obtained for a
pore radiusrp ) 4 Å, with permanent charges distributed on the pore
boundary surface as described in the text. The dielectric constant is 2
in the membrane, and 80 in the pore and the bathing solutions. The
concentration boundaries arecL ) cR ) 0.1 M. The applied voltage
boundary condition is∆Φ ) 300 mV. Full and dashed lines are
respectively the DLMC and the PNP results, with filled circles
describing the cations and open circles the anions. The two vertical
lines mark the positions of the channel openings.

Figure 13. Current vs voltage results obtained from the DLMC
simulation (full line with filled circles, associated with the right-side
scale) and from the PNP approximation (dashed line with blank circles,
left scale). The channel geometry, its dielectric structure, and the
permanent charge distribution are as in Figure 12. These full and dashed
lines are results obtained for a pore radiusrp ) 4 Å. As discussed in
the text, this pore radius should correspond to a smaller effective radius,
rp ) 3 Å, in the PNP calculation (dotted line with blank squares, left
scale). The dash-dotted line with filled squares (right scale) is the
result of a DLMC calculation in which the Coulombic interaction
between mobile ions where eliminated (i.e., each mobile ion moves
independently of other mobile ions).
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in this system, where the average ionic occupation in the channel
is less than 1.

To summarize this section, we found that for a simple liquid
junction with no geometrical restrictions on the ions’ motion
and no internal dielectric interfaces, the mean field (PNP)
approximation and the particle lattice Monte Carlo dynamics
give results that are in good agreement with each other. Since
PNP is expected to be a reasonable approximation in this system
(where correlation between ionic motions do not have a strong
effect on dynamics) this could be regarded as a test of validity
of our DLMC procedure. In the other situations considered the
PNP theory shows various degrees of deviation from the more
realistic description provided by the DLMC simulation of the
particle-lattice model. These deviations are particularly severe
in the description of ion transport through narrow dielectric
channels, and casts doubts on previously published PNP results
for ion transport through narrow membrane channels.9-18 It
should be emphasized that other factors, not taken into account
in the present model, may lead to lower barriers in realistic
channels (else ion transport through narrow channels such as
gramicidin would not occur). This may result from a larger than
assumed channel polarizability or from structural rearrangement
in the channel in response to the passing ion.

9. Concluding Remarks

This paper has described a particle-level numerical approach
to the study of ionic equilibrium and transport in systems that
are (a) bounded by potential and concentration boundaries, and
(b) may have internal dielectric inhomogeneities, including
interfaces between solvents of different dielectric constants. The
use of concentration and potential boundaries is standard in
calculations based on coarse grained models such as the
Poisson-Boltzmann and the Poisson-Nernst-Planck (drift-
diffusion) theories. It is not straightforward in particle-level
simulations, in particular those involving charged particles, and
this paper has discussed some of the problems involved and
has suggested ways to handle them.

An important feature of our simulated system is its identifica-
tion as a small part of a larger embedding system. Focused
attention on this small “inner” system is needed for numerical
efficiency and is natural in the study of systems that are driven
by local processes (i.e., ion transport through membrane
channels). The resulting concentration and potential boundary
conditions imposed on the inner system are restrictions only
on theaVeragevalues of these variables. We found that this
has important consequences, in particular for the way the
potential boundary is handled: a constant potential boundary
condition responds to the individual motions of charged particles
as a metal, while a constant average potential plane such as
any plane cut in an equilibrium electrolyte solution does not.
On the other hand, image effects associated with real internal
dielectric boundaries have to be considered in full. Other,
somewhat more subtle, issues include the need to account for
the response of the imposed boundaries to theaVeragecharge
distribution in the inner system and for the partial loss of
solvation energy by an ion approaching these boundaries.

These and some other issues discussed in this work result
from the artificial nature of the imposed interface between an
external, continuum system characterized by average concentra-
tions and electrostatic properties and an inner system described
on the microscopic level. In the present work the simulation of
the inner system is still restricted to a rather coarse grained
level: the solvent is represented by a dielectric continuum and
the ions are restricted to move on a grid. This level of description

is sufficient for studying the limitations of mean field continuum
theories (PB, PNP) of ionic systems. It leaves much to be desired
in constructing realistic models for such systems. It obviously
disregards the molecular nature of the solvent, but even as a
continuum model it does not account for hydrodynamic flows
and associated contributions to interionic interactions. On the
other hand, we emphasize again that the methods developed
here for handling concentration and potential boundary condi-
tions will be useful also when more detailed microscopic
descriptions of the inner system are used.

By comparing the results of our simulation procedure to these
obtained from applying the PNP scheme on a system in which
mean field approximation should provide a reasonable descrip-
tion, and by performing the other calibration tests described
above, we have verified that our numerical scheme performs
reasonably within the limitations of our numerical model.
Further calculations that compare the performance of the PNP
theory to the more rigorous DLMC dynamics have highlighted
some severe shortcomings of the mean-field approach to ion
transport in inhomogeneous dielectric media. In agreement with
recent Brownian dynamics simulations,20-25 we have to con-
clude that earlier PNP work on ion transport through biological
channels9-18 have to be reassessed with care.

Finally, the observation that self-energy of the mobile ion in
the inhomogeneous dielectric environment is a major factor in
the difference between results obtained from the DLMC and
the PNP methodologies offers a way to substantially improve
the performance of the latter mean field approximation. This is
based on the fact that the dielectric self-energy, being a single
ion property, is included as an additive term in the energy used
in the PB and PNP calculations; see dotted line in Figure 8a.
Furthermore, including, on the mean field level, effects of finite
ion sizes can also increase the accuracy and applicability of
this approximation. These issues will be discussed in detail
elsewhere. At the same time it should be emphasized again that
the calculations presented here and in refs 23, predict solvation
barriers that are unrealistically high. For a narrow channel like
Gramicidin A (radius of about 2 Å), the solvation barrier is
20-40 kBT if the dielectric constant of the aqueous region is
80 everywhere and that of the protein-membrane region is 2.58

This effect must somehow be suppressed, because if it were
not, no ions could permeate through the GA channel under any
physiologically relevant conditions, whereas in reality cations
permeate easily through GA under such conditions. This
suggests that other factors, not taken into account by the present
electrostatic models, must play a role in lowering the activation
barrier for ion transmission through narrow membrane channels.
Such additional mechanisms may include the following: (1)
configurational fluctuations of the protein channel, (2) a higher
dielectric constant in the protein, due to a larger polarizability
than that of the lipid bilayer membrane,60 and (3) strong
attractive chemical interactions between the permeating ion and
particular function groups in amino acids lining the walls of
the pore. Further investigation of these features would be of
considerable interest.

Appendix A. The PNP Equations

Here we briefly outline the structure of the steady-state
Poisson-Nernest-Planck (PNP) equations. These equations
combine the Poisson eq 1 for the electrostatic potential
associated with a given distribution of fixed chargesFf and
aVeragecharge distribution of mobile ions
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and the steady-state drift-diffusion equations for the fluxes of
the mobile ions

whereVi(r ) ) zieφ(r ) accounts for the interionic interaction on
the mean field level. A reasonable modification takes

whereU is the single particle potential (local solvation energy)
associated with the inhomogeneous solvent. In these equations
ci, ji, zi, and Di are repectively the concentrations, fluxes,
valences, and diffusion constants of the ion species (i ) 1, ...,
N). e is the magnitude of the electron charge andâ ) (kBT)-1.
The one-particle potentialU is sometimes taken into account
only implicitly by using reflecting boundary conditions that
prevent ion entrance into nondielectric environments. An
implementation of Eqs (A1,2) to ion diffusion through mem-
brane channels was described in our earlier work.16 Under
equilibrium conditions, where allji vanish andci ∼ exp(-âzieφ),
these equations reduce to the Poisson-Boltzmann equations.

Appendix B. Numerical Solution of the Poisson Equation
on a Lattice

Here we briefly describe the procedure used for solving the
Poisson equation on a cubic grid. This is a standard method61

and is included here in order to define our notation. The
following outline is written using a one-dimensional language
but is easily generalized to any number of dimensions. The real
space coordinates (up to a translation) of the lattice sites are

with h > 0. A lattice cell extends from (j - 1/2)) to (j + 1/2)h.
The volume of one lattice cell is denoted byVh. For periodic
boundary conditions, the formal identitiesx0 ≡ xn andxn+1 ≡
xi are employed. For a direction in which the system is bounded,
x0 andxn+1 are identified with the boundaries L and R introduced
in section 3. In both cases, the cells associated with the sites
labeled byj ) 1, ..., n cover the interior system. The value
f(xj), which a functionf assumes on a lattice sitej, is denoted
by fj.

Next, the Poisson eq 1 is discretized on this grid. The finite
volume method is suitable for discretization of differential
equation with discontinuous parameters.62 In this method, the
differential equation is integrated over a lattice cell and
interfacial continuity conditions are utilized across the surface
of lattice cells. For our problem, this method corresponds to
allowing discontinuities in the dielectric profile at the surfaces
of lattice cells, while assuming continuous variation ofε(rb) over
the interior of the cells. When applied to the differential equation

this method, with the requirement of continuity ofu(x) anda(x)
du(x)/dx yields

This can be generalized to the discretization of eq 1. Moving
fixed boundary terms to the right this finally yields

where the indexj now denotes a lexical index identifying a site
on the 3-dimensional lattice,Lij is the 3-dimensional generaliza-
tion of the matrix defined by eq A6 (aj becomes the dielectric
constant on sitej), bi

(F) ) -4πFfree(rb) and bi
(D) are effective

source terms associated with the Dirichlet (potential) boundary
condition. In addition to eq A7 we sometimes solve identical
reference equations for systems in whichε is uniformly 1 (the
corresponding matrix is then denotedLij

(0)) or some other
uniform valueεB (with the corresponding matrixLij

B).

Appendix C. Numerical Efficiency Issues

The main numerical difficulty encountered in simulating
inhomogeneous electrolyte systems is the calculation of the
electrostatic response associated with the dielectric inhomoge-
neity, i.e.,φdiel of section 6c. Repeated numerical solution of
the Poisson equation during each Monte Carlo cycle is not
practical. Precalculating and storing, e.g.,φjrk

diel for all lattice
sitesk and restoring it during the Monte Carlo simulation also
stretches the limits of computational and memory resources.
We note that in related studies20-25 cylindrical symmetry was
used to reduce the storage memory problem. Here we describe
another method that does not rely on geometrical symmetry (the
latter can be used in addition). We assume that the interior
system may be divided into two regions I and II, as in Figure
2b; the dynamics is controlled by ion motion in region I and
interactions involving ions in this region are captured exactly.
The dynamics is less sensitive to ionic motion in region II, and
their interactions may be considered in some approximation (that
becomes better when region I is larger). For the particular system
depicted in Figure 2 the following procedure can be used:

The functionsφjrk
diel, eq 21, are precalculated and stored for

all lattice sitesk in region I (Figure 2). This involves storage of
(NI + NII)NI numbers, whereNI andNII are the number of grid
points in region I and II of the interior system. This number is
substantially smaller than the number (NI + NII)2 that is the
order of magnitude required to store all relevant electrostatic
information.

The pair interaction between two ions is computed as follows:
If either of the two ions is located within region I, then the

precalculated functionsφjrk
diel are available, and the interaction

potential is given by eq 22 multiplied byqjqk Because of the
symmetry property (23), the same function can be used for
computing the “dielectric polarization interaction” of an ion
located inside region I with another ion at an arbitrary location
and vice versa.

If both ions are located in region II, their interaction is
calculated as if there was no pore. The system without a pore
(bath|slab|bath) is highly symmetric, and only a small set of
functionsφjrk

diel has to be precalculated and stored for such a
system. This approximation becomes better when the size of
region I is larger; the ensuing error for the system of Figure 2
can be made of the order of a few percent of the thermal energy
kBT at room temperature.

-∇‚[ε(r )∇φ(r )] ) 4π[Ff(r ) + ∑
i)1

N

zieci(r )] (A1)

0 ) ∇‚j i ) ∇‚[-Di(∇ci(r ) + âci(r )∇Vi(r ))]; i ) 1, ...,N

(A2)

Vi(r ) ) U(r ) + zieφ(r ) (A3)

xj ) jh, j ) 1, 2, ...,n (A4)

d
dx[a(x)

du(x)
dx ] ) b(x) (A5)

1

h2

2ajaj+1

aj + aj+1
(uj+1 - uj) - 1

h2

2aj+1aj

aj-1 + aj
(uj - uj-1) ) bf (A6)

∑
j

Lijφj ) bi
(F) + bi

(D) (A7)
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