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We analyze the connection between the electron transfer (ET) rate through a given molecular bridge, and the
conduction of a junction based on the same bridge between two metals. The Landauer relation between the
conduction of a junction and its transmission properties is generalized to yield a relation between conduction
and ET rate, including transfer processes dominated by thermal activation. The relation between the orders
of magnitude of these observables involves an additional length parameter, of the order of the range of the
donor wave function. We find that the functional dependence of these observables on the bridgeNength (
and on the temperaturd@)(changes from the exponential and temperature independent; @Xpfor small

N, to algebraic and thermally activated forno,; (+ aoN)~* exp(~AE/ksT), asN increases. An intermediate

range of apparent independencelNeaxists ifa; > a,. This behavior is the analogue to the quantum Kramers
(barrier crossing) problem, analyzed with respect to the barrier length.

1. Introduction

The Landauer formufafor the conduction of a small one- -
dimensional junction between two macroscopic metals, and its "~ =
generalizations to multichannel situations and to the presence . .
of dephasing phenomeR&ave been central to the development = **+ 45, ; N A
and understanding of electrical conduction in mesoscopic .2
systems. These formulations connect the conduction of a given =
junction to its transmission properties as obtained from quantum
scattering theory in the coherent transmission case, and fromgigyre 1. A schematic representation of DBA system discussed in
stochastic transport theory when dephasing becomes dominantthe text. Levels 1, ...N represent the molecular bridge. For the
These formulations have so far excluded the possibility of molecular ET problem D and A represent donor and acceptor levels
activated transport, i.e., the enhancement of conduction by (also marked 0 anll + 1), and the continuous manifolds correspond
thermal activation onto and within the junction barrier. The © molecular or solvent vibronic states. In a metaiolecular layer
possible role of thermally activated transport has been recentlymEtal junction these continua are quasi-free electron states in the metal.

. . . . CLn this case D and A may denote the positions of the corresponding
considered in attempts to understand long-range bridge-mediategegp; energies. In simplified models the effect of the acceptor

electron transfer in molecular systef$he analysis of such  continuum is sometimes replaced by assigning a dampinglate
processes usually focuses on thge of electron transfer (ET)  the acceptor level.

between donor (D) and acceptor (A) molecules connected by a

molecular bridge (B) (Figure 1). Standard theory of such DBA- tively, at high temperatur& the transmission may proceed by
ET (“superexchange”) processes follows the original formulation thermally populating the bridge states followed by hopping
of McConnell? and predicts an exponential dependence of the diffusion on the bridge. Theoretical description of the transition

AE

rate on the bridge length: from the coherent tunneling to the bridge-hopping transfer
modes usually invoke the reduced Liouville equation for the
ker = Ae PRoa (1) system’s density matrik® This makes it possible to consider

on equal footing the molecular coupling responsible for the
transfer process, as well as the systesulvent interactions that
cause dephasing and thermal relaxation.

This Letter considers the relationship between the steady state
ET rate that is the central observable in ET measurements, and
the conduction of a junction based on the same molecular bridge.
We first show that the Landauer formula can be generalized to
situations involving thermal activation and relaxation in the
bridge and thus can account for the overall current, including
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whereRp, is the donor-acceptor distance arftlis a constant
characterizing the DBA system. (We ignore here the possible
dependence oRpa Of reorganization energies associated with
the charge migration, though these are certainly important in
some cased. This is clearly a coherent tunneling process,
whereuporp increases with the energy g&k (see Figure 1).
Weak dependence dRpba is predicted for smalAE. Alterna-
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the conduction properties associated with the same molecularwith energyEr + AE. The net inelastic current is
bridge and show that while both describe essentially the same

phenomenon, their exact relationship involves a nontrivial length J"°P = ede pi(E)kZ;’p(E)[f(E + eg)(1 — f(E- + AE)) —
parameter, of the order of the size of the donor-localized

electronic wave function. Finally, we consider the bridge length fE)L — (B + AE+ eg))] (7)
(N) dependence of the ET rate and the associated conductio
and show that beyond the coherent tunneling regime they behav
like (oz + azN)™1, where a; and a, depend on molecular
properties and on the strength of coupling to the thermal

or smallg andksT < AE we may takd(E + ep)[1 — f(Er +
AE)] = f(E + ep) andf(E)[1 — f(Er + AE + ep)] = f(E),
which leads to

environment. In many situatiorts, > ayp, implying a range of Fhop
bridge length where the transmission appears almoside- gr="= eszSp(EF)p(EF) (8)
pendent. ¢

"% depends onAE like exp(—AE/kgsT), and the first
correction to (8) is of order exp(2AE/kgT). It follows that in
For simplicity we focus on the single channel Landauer the |owest order in this thermal activation parameter, the form
formula (3) of the Landauer formula is satisfied also in the presence of
5 inelastic processes that result in occupying the bridge, where
g= e—T(E ) @) kss is the rate associated with the total: elastic, quasi-elastic,
ah v F and inelastic flux.

The ratekss that appears in eq 3 depends, in addition to the
which constitutes a relation between the (linear) conductgnce molecular bridge, also on the electronic structure of the donor
and the transmission probabiliyin a system without thermal  and acceptor molecules and on the interaction between them
relaxationin the junction An equivalent form is obtained by  and the bridg€.When the “bulk metal donor” is replaced by a
invoking the formal relationshifbetweerT and thesteady state  molecular donor, the bridge electronic structure and charging
transition ratekss ks{E) = L~} (Aqi(E)/m)T(E), wherehg is the state may change in a way which is specific to the particular
incident momentum andl is the normalization length in the  system considered. Here we focus on generic aspects and
metal (so that.~* is the single electron density). Using also  disregard this possible change of electronic structure. The other
= Lm(zh?q;) "1, wherem is the effective electron mass in the main effect enters in the relationship between the matrix
metal, for the density of initial electron states (including spin elementsVgp between the bridge and the donor molecule and

2. Thermal Landauer Formula

degeneracy) we get Vem between the bridge and the metal, connecting the corre-
sponding initial states to the neighboring bridge state. The ratio
g= eszS(EF)pi(EF) (©) between these elements should scale kgl )2, whereL is

the normalization length introduced above ahg is the
When the transfer involves thermal activation onto the bridge, characteristic size of the donor state, typically the size of a
the energy of the transmitted electron can be different from that molecular site. Consequenty
which enters the junction. We have recently shéfffrihat kss

can be approximated in this case as a sum of coherent tunneling & _ |ﬂ 2 _ I_M 9)
and sequential hopping contributions Ker  Vap L

ko= KU+ KIOP (4) Using alsopi(Ep) = (L/27h)./(2nVE,) leads to
tusn depengs expor_lent_ially on the bridge lenthThe depen- g= éTeff (10)
dence ofk!?? on N is discussed below. Assume now thdf’ 7h

corresponds to an elastic or quasi-elastic process so that th%vith an effective transmission probabilit
energy of the transmitted electron is essentially the same as the P y

incident one. Taking into account the Fermi occupatit{& m
on the two sides, the net quasi-elastic tunneling current for a Toit = luker /
given voltage drogp across the junction is 25

(11)

wn wn Notice that, as is physically required, the final result is
JU"= e ['dE p,(E)Ke(E)(F(E + ep)(1 — f(E)) — independent of the normalization length Using typical
f(E)(1 — f(E + e9)) numbers we findy(Q21) ~ 10 2%gr (s71). This implies that a
measurable current in, e.g., an STM junction can be observed
~ 92¢Pi(EF) tUS”(EF) (5) only if the eIectron-trénsfer rate through the same electronic
structure exceeds 8@

This leads to the familiar expression (3) for the elastic tunneling .
part of the conductance 3. Bridge Length Dependence
The Hamiltonian for the system depicted in Figure Hig
wun __ Jun 2 wn = Ho + V, where H corresponds to the states shown &hid
g9 = 7_ k;S (Er)oi(Er) ) the coupling between them. The Hamiltonian for the overall
system isH = Hy + Hg + F, whereHg is the Hamiltonian of
Consider now the hopping contribution. This part of the the free thermal environment (“bath”) afdis the molecule-
transmitted flux results from electrons that physically occupy bath coupling. The steady state Liouville equation for the
the bridge, and we may assume that they emerge from the bridgeaeduced system density matrixin the local representation
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Figure 2. ker plotted against the bridge lengh, for the model of
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Figure 1, using parameters given in the text. The steady state electron
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Figure 3. ker (full line, left axis), andker (dotted line, right axis),

transfer rate is obtained by holding the population of level 0 fixed, Plotted againsN. Parameters are the same as in Figuré 2.300 K.

and assigning a damping rat&,, to levelN + 1. Full line, T = 250
K; dashed line;T = 350 K.

(eigenstates oflp) is of the forn?:8
—lw,ohy — i[V,0ly + ZZRnrfII’OII’ =Jn (12)

where J,y represent the boundary conditions, and where the
dephasing and relaxation terni® are obtained as Fourier
transforms of time correlation functions involving system matrix
elements of the operatdf. For the present application the
relevant boundary conditions are

Jop = —J
Jan = T'a0nn

Jan = Y L A0an Jna = Y A0

Jy=0 fornn=A (13)
wherel is the total current through the system dhgdrepresents

the decay of the acceptor stafe’ = |N + 1L We note that the

derivation of egs 12 should be done with care because the

Redfield approximatidhis valid only in the molecular repre-
sentation (eigenstates bfy) so that repeated transformations

The parameter determines the relaxation and dephasing rates
in the model. In the following calculations we take it to be 0.03
eV. A similar value is assigned to the paramdtgrin eq 13.
Assuming the process to be Markovian overestimates the
relaxation and dephasing rates, but it does not change the
gualitative effects of relaxation and is relatively simple to
analyze. (See ref 8 for a discussion of the non-Markovian
se.)
Figure 2 shows the resulting steady state rate displayed as a
function of the bridge lengtiN for temperatures 250 and 350
K. For N < 3 the superexchange transfer mode prevails, and
the dependence oN is exponential. Beyond the crossover
region, the rate depends on temperature and the dependence on
N is very weak. This weak dependence on the bridge length
may seem odd, since in the hopping transport regime one may
expect an Ohmic behavior, i.é&gT ~ N~1. Further analysis of
the numerical results yields the following functional form

ker = (0 + azN)ileiAE/kBT (16)
This N dependence is clearly seen in Figure 3 that depicts both
kssandkss* as functions ofN. Only whenN is large enough
we obtain the OhmicN™1, behavior.o, is the characteristic
hopping time that may be approximatedtby

between the molecular and the local representations are néeded.

Solving (12) yields the steady state elementscofind in
particularopp andoaa, the populations in the donor and acceptor

A

a.
2 K

17)

states. The steady state electron transfer rate is obtained from

ker = Jopp = L'p0pnl0pp (14)

andoy may be identified as the inverse rate associated with the
transition between the donor the bridge levels, given ap-
proximately by

Figure 2 shows some model results based on this procedure.

In this calculation we took the donor and acceptor energies
equal, EQ = E® = 0, and all bridge levels placed 0.1 eV
above them. A tight-binding model was taken for the molecular
coupling, Vay = VOn w1 with V = 0.02 eV. The molecule

bath coupling was taken to be diagonal in the local representa-
tion (i.e., F = Y Fnn/nln|, with |n> eigenvectors oHy) and
correlations between thermal operators on different sites were
assumed to vanish, i.€En(t)F;(0)C= 0 if j = n. This implies

the existence of correlations in the molecular states representa
tion. Temperature and thermal relaxation enter through the
detailed balance property of such correlation functions. In the
Markovian limit this is taken to be of the form

S dt €”'IF(0) F()Z= k; 0 = 0

= cexpllolksT); @ <0 (15)

PRV

oy (18)

=

This leads, for our choice of parametersotp= 5.5 x 10713

s ando, =1.2 x 10714 s, in reasonable agreement with the
numerical findings@; = 8.2 x 107 s ando, = 1.4 x 10714

s). The apparent nondependence on the bridge Iddgththe
intermediateN regime results fromo> o, and reflects the
existence of a range d¥ for which the electron transfer is
dominated by the rate to thermally occupy the bridge. This rate
is obviously independent @. This behavior is reminiscent of
the underdamped limit of the Kramers’ barrier crossing problem.
In fact, the model considered here is a discrete level analogue
of the quantum Kramers problem, except thatliberier length

is here a controlled variable. In this respect the present
discussion provides the first analysis of the transition from the
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