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Perturbation theory approach to tunneling: Direct and resonance
transmission in super-exchange models
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In this paper we examine, within simple models, different approaches to computing tunneling
probabilities in super-exchange models of electron transfer. The relationship between tunneling
calculations that use scattering theory type formalisms and approaches based on standing waves,
which are more closely related to electron transfer between bound donor and acceptor states, is
established. Transmission probabilities computed by using truncated basis representations are
compared to exact analytical or numerical results for one- and two-dimensional models. We find
that while resonance tunneling is well approximated by truncated basis approaches, computing deep
tunneling using such basis sets can lead to large errors. Implications for calculations of bridge
assisted electron transfer are discussed1999 American Institute of Physics.
[S0021-960609)01524-X]

I. INTRODUCTION strongly truncated basiight binding approximation While
in the case of resonance tunneling it is expected that near the

Recent work on long-range electron transfer has focusethgonance peak the transmission will be dominated by the
on the super-exchange mechanism as the origin of the weal,ie5 associated with the resonance structure, once we go
falloff, with distance observed for the transmission probabil-, + ¢ resonance this becomes less obvious. The situation is
ity in many electron transfer systerhhe super-exchange analogous to that encountered in Raman scattering: Reso-
mechanism invokes electronic states in the bridge connectinlgance Raman scattering is described well in terms of one or
donor and acceptor as intermediate states in the transfer pr “few intermediate vibronic levels. while the off-resonance
cess. The overall transmission probability is then expresse rocess is usually described in ter'ms of the whole interme-
in terms of these states: their energies and the interstate colf-\ "\ . -0 nic manifold. Intuitively we expect that the en-

pling. The transfer parametgrassociated with the exponen- ergy range of relevant intermediate states is determined by

tal distance dependence of the transmission prOb"ﬂ:’i”tyfhe (inverse of characteristic time of the transmission pro-
T~exp(—pr), is obtained in terms of these quantitfes. P

Moreover, if these states are energetically close to the donocr.eSIS; h?jwle V(_ar,_Ihelfdeterming;tlgnlof t(;ns tlmet n ?” but SPe-
and acceptor states so that they are actually transiently popﬁ'—a MOCEIS 1S TISell uncertam.kelated uncertainties arise
hen we compare transitions between two continua e.g., cur-

lated, this distance dependence may become weak or disap- h h L insul i . b
pear. Also, if thermal relaxation processes erase intermedia gnt through a metal insulator—metal junction, between two

coherence, the transmission may take a diffusive characterdiScrete levels, e.g., the tunneling splitting in a double-well

The purpose of the present paper is to examine severafructure ar_1d b_etween a quasibound state anq a continuum,
issues associated with such processes in the absence of thg/d~ funneling-induced escape out of a potential well.
mal relaxation: We develop a steady-state formalism that ~The validity of the tight binding approximation for the
makes it possible to analyze electron transmission processggscnptmn of long distance bridge mediated electron transfer
in the language of scattering theory, using a representation iyas addressed in the past by Beratl:* The model con-
which perturbation theory can describe deep tunneling agidered below satisfies the criteriai>1 («~* is the expo-
well as resonance tunneling processes. This also makes ffential decay length for the electronic wave function local-
possible to connect scattering theory, which is usually repreized on a bridge site ankd is the nearest-neighbor distance
sented in terms of incoming and outgoing waves, with thedetween such sitgdor which, according to Ref. 4, the tight
usual representation of electron transfer theory in terms opinding approximation should be valid for bridge units that
initial and final states. We use this formalism within a simplesupport only one bound state. In contrast, we will show that
barrier/wells model to show that standard procedures that usven though this criterion holds, a truncated basis that uses
truncated basis representations in super-exchange models caily the lower states of the bridge sites can lead to substan-
fail badly far from resonance. Finally, we discuss the advantial errors in the computed transmission for energies far from
tages and disadvantages of different computational apresonancé,in particular when the bridge wells support more
proaches to the electronic coupling part of the electron tranghan one bound state.
mission problem. Computing tunneling probabilities is a central issue of

Mathematically, describing the transmission process imquantum transport theofyRecently we have investigated
super-exchange models in terms of a limited number ohumerically one-electron tunneling processes through water
bridge states amounts to describing the process in terms ofand through rare gas layersising numerical grid techniques
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and a suitable pseudopotential to describe the interaction be- @ ®
tween the electron and the molecular system. A numerical
grid is a basis set chosen so as to accommodate the proper-
ties of the one-electron pseudopotential as well as the energy
range of interest. In a typical tunneling calculation of this
type, we needin 3D) 100—1000 grid points per atom. If,
alternatively, a restricted molecular basis set can be used, a
substantial reduction in computational effort may beric. 1. A simple potential for bridge assisted tunneling processeshe
achieved. For example, recent calculations of electron transorresponding tight binding modéb). Only the lowest states of the inter-
mission through conjugated organic molecBlase just the mediate wells are included in the truncated basis shown on the right.
four 2s and 2o atomic orbitals on each carbon atom and one
1s orbital on each hydrogen to construct the needed molecu-
lar orbitals on the extended kel level.(Note that, by con- theory can be reformulated as a steady-state solution of a
struction, such bases are nonorthogonal this context, the time-dependent formalism represented in terms of such
question concerning the validity of the tight binding approxi- Sémilocal functions. This becomes particularly important
mation for super-exchange transmission can be rephrased W&en perturbative solutions are sought: The Born approxi-
follows: Assuming that a reliable pseudopotential is avail-mation in standard scattering theory, as well as any finite-
able and that a set of local orbitals can also be found, to whe2rder expansion based on it, cannot describe tunneling. We
extent and under what conditions can a truncated basis Ghow in Sec. Il that, using a semilocal representation, tunnel-
local orbitals describe adequately the transmission procedgd through a potential barrief‘through space” transmis-
(and therefore be preferred over the spatial grid represent&ion can be described by perturbation theory in lowest or-
tion)? der. Moreover, the description of “through bond” trans-
In addition to choosing a convenient basis set to describg1iSsion and of resonance tunneliigec. Il) becomes a
the barrier(or, in scattering theory language, the tajgete natural higher or.der extension of the same calculation, and
may consider different representations of the initial and final®2ds to expressions used by otheriworl§ers.
states. Standard descriptions of electron transfer processes N the present paper we use a simple model of rectangu-

compute the rate associated with the decay of population ift" barreiers and wells as a starting point for discussing these
the initial electronic state that is localized on the donor, Orlssu_esl. In one-dimension, the transmission probability as-
equivalently, the growth of population in the final state lo- sociated Wlth_ such models can be obtained exactly using
calized on the acceptor. The actual process is often domffansfer matrix method¥. On the other hand, the perfor-
nated by nuclear relaxation about these states, while th@ance of a model that uses, e.g., only the lower bound states
bridge levels mediate the electronic coupling. Focusing orPf €ach well as a basis set for the same calculation, can be
the latter issue, the effective donor-acceptor electroni¢!S€d as an indication of the validity of similar tight binding
coupling can be estimated from the splittifigr shift of ~ &PProximations used in models for bridge assisted tunneling.

the corresponding energy levels from their zero-order>UCh comparisons are done in Sec. IV, leading to the con-
109 Here we adopt the alternative approach of de-clusion that far enough from resonance a strongly truncated

values. : . .
scribing the process as a scattering phenomenon. In this dB2sis of the type usually employdde., using the lowest

scription the donor and acceptor states become represenfé\r-m_ccdupieclI m(ileCUI?;_ olrbita(QLUM(?s) OT the highe;stho]:-
tives of the initial and final levels of the scattering continua®UPied molecular orbita $HOMOs) for electron and hole

(that should be summed over when evaluating total transmisc—r?nducno_n‘ dresp;eﬁtlvel]ycan fa|| badlly n prgt_mct(ljng bo(;h
sion probabilities® The resulting observable is relevant for the magnitu €o the e ectr_or.uc coupling, an Its dependence
low energy electron transmissidhEET),X° for photoemis- on the tunneling length. Similar observations are made also
sion through thin molecular film¥, for inelastic tunneling In a model two-dimensional calculat|on..\_Ne conclu@ec.
spectroscopy(ITS) and scanning tunneling microscopy V) with an assessment of our present ability to compute elec-

(STM) through adsorbed moleculBsnd in measuring the troq transfer and transmis;ion probabilities using molecular
current through molecular spacers between metal cor’i‘t%lcts.Orb'talIS and pseudopotential methods.

From the theoretical point of view, we deal with the same

electronic coupling problem, with the added advantage tha pepTRBATION APPROACH TO TUNNELING

the energy is well define¢thus avoiding the difficulty en-

countered in identifying the exact tunneling energy in elec-  Consider the tunneling process associated with the po-
tron transfer processdsand can be controlled. One issue, tential barrier displayed in Fig.(4). This tunneling process
however, requires special attention: For a scattering process, a one-dimensional scattering problem; however, since the
the usual representation in terms of incoming and outgoindparrier constitutes a strong perturbation in the tunneling re-
waves is natural. On the other hand, the conceptual proximgime, it cannot be easily described in low order, e.g., by
ity of electron transmission phenomena to other electroBorn theory. Instead, nonperturbative approaches are usually
transfer processes suggests that a time-dependent descriptemployed; the most generally used is the Wentzel-
in terms of semilocal initial and final states, confined to theKramers—Brillouin(WKB) approximation. For the rectangu-
left and right sidegsay) of the barrier, respectively, may be lar barrier and well structure such as that of Figa)lan
useful. Indeed, we showSecs. Il and Il] that scattering exact solution may be found using the transfer matrix
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FIG. 2. Tunneling through a simple barrié® and the potential used to
define the zero-order continuuetanding waves foE<Uyg state$ (b).
(e

method™* Alternatively, it is intuitively expected that a rep-

resentation in terms of scattering continua plus some states

associated with the intermediate wdlsig. 1(b)] may pro- gk 35

vide an adequate description of the transmission problem. g

For electron transfer in a donor-bridge-acceptor system,

where the Scattering continua are rep|aced by donor and a€lG. 3.(a A potential barrier with iptermediate yvell(&b), (C), (d) Potentials

cepor statesand supplemented by nuclear relaxalidhis  Ueed % °17e e 0o contrua o he e erorce bone

is indeed the standard approdch. lowest bound state in each intermediate vedilculation of the transmission
The fact that the transmission probability is very small inrate.

many tunneling systems suggests that a perturbation theory

of tunneling should be possible using an appropriate repre-

sentation. Indeed, Barde€nhas suggested a perturbation

scheme for a simple tunneling barrigo intermediate wells

and no resonance effegtsuch as that displayed in Fig(a.

In the Bardeen formalism the continuum wave unctions ar

defined as the eigenfunctions of the corresponding half ba

riers shown in Fig. &), and the transmission probability is =Xj.s [see Fig. &)]. Equations(1) and (2) correspond to

expressed in a golden-rule type form where the transitio tandi ith defined in the Bard
operator is the flux operator defined anywhere within the> 2NCING Waves wi energy, defined as in the Bardeen

barrier. The alternative perturbation formalism developed beformahsm using
low may be considered a combination of the Bardeen repre-

sentation of the tunneling problem with the standard quan- _1 J2m(E=U,): _E\/i_
tum chemistry representation of electron transfer. By k=7 V2B —UL); k=g v2m(Uo—Ey),

Here, and in what follows, we denote by the subscrip{er

é)) and R (or N+1) the incident/reflected region and the
'I_ransmitted region, respectively, and by the subscript
a=(j,j+1) the regions of flat potential defined by<x

carrying out this procedure in the framework of an exactly ®)
soluble model we will be able to assess the performance of 1 1
the approximations involved. K, =7 V2m(E,—Ug); Ki=% \/2m(UN_1VN— E,).

Using the potential barrier of Fig.(8 as an illustrative
example, we first associate the incident and transmitted re-
gions with the half barriers shown in Figgb3and 3d), and ~ Second, with each intermediate well we associate the set of

introduce the corresponding manifold of states, lower bound states in the corresponding isolated well shown
in Fig. 3(c). In the present treatment we limit ourselves to
ALk x4 ARgmikix=x0): oy =x just one(lowes) energy level in each well, e.g., for the well
V(X E))= , X1<X=X, with the lowest energy staté;,,
(6 Ep) Be M X);  x=xo=x, 1 2 ay 12
@ (1) ik (2) o= ik
Aje X APe™ M X <x=<X,
A(l)eikr(x_xR)+A(Z)e_ikr(x_XR); X Xp = X 1) e Diyx.
\wx:Er):[ o). ye R Vi) =4 Bpew2 X x<x . @
B e”r Ry XSEXN=XR (2) e 2 (x—x0).
2 Bize "2 X=X
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2m _ |ARIZ kg 16(Ug—E)V(E-U)(E-Ug)
iz \/(F>(E12_U12)’ TE APk U UDUs U  °
8
Do \/ 2m (Ugs—E1): 5) Consider now the perturbation theory approach to the
12 p2Z) oo =12k same problem. Instead of using incoming and outgoing

eigenstates of the free particle Hamiltonian, we consider the
2m process as a transition between two interacting continua of

\/(?)(Uzs_ E1). the standing waves defined by Ed4) and (2). The cou-

plings and overlaps between these states are given in Appen-
Finally, the HamiltonianHij=(\I'i|H|\Ifj> and the overlap dix A. The transmission probler(.rﬁ.rom left to right., say can
S;=(¥|'¥;) matrix elements are evaluated in terms of thenow be represented as a transition from a particular state,
variousk and x parameters and th&andB coefficients(see, ~ Of energyE, , from the left({l}) manifold, to the continuum
e.g., Appendix A Assuming that the intermediate barriers manifold of states on the right. Within this subspace of states
are high/thick enough, it is possible to disregard these elethe operatoH-El takes the form

2)_
K(lz)—

ments for all but nearest-neighbor wells, i.e., E, .~ H,,—ES,
Him=H110m1;  Sim=Si10m1, S 0 0 9
Hr)\_ ES’)\ 0 Er O
Him= HeramNN; Srm:SrNW5ml\{Na (6) : 0 0
H. =0 unlessm’'=m=1, Note that the submatrix that excludes the first row and col-

umn, which corresponds to th@} manifold, is taken

where N,, is the number of intermediate wells and diagonally™® For the initial value problem with the system in
m=1,..N,, is the well index. This completes the reduction of StateX at t=0, the transition rate to the right manifold is
the full tunneling problem associated with the multibarriergiven by the generalized golden-rule expressigee Appen-
potential in Fig. 3a) to the restricted coupled state basis dix B),
rgpresentation.of the type displayed in Fige)3 Since non- Kh{r}Z27T(|HM—EASM|ZPR)E e, (10)
diagonal coupling and overlap elements are very small when rooa
the intermediate barriers are high/thick enough, perturbatiowhere the subscrigE, =E, indicates, as usual, that all quan-
theory should work. This is in contrast to the usual scatteringdities associated with thig} manifold should be computed at
theory, which uses free particle states in zero order, wherenergiesE, equal toE, .>’ pg is the density of states in the
low-order perturbation theory fails for the present problem. right manifold associated with the spectrum of one-

As discussed above, representing the effect of intermedimensional free particle states. It is giventby
diate wells in the barrier by one or a few states per well is

) ) m
equivalent to the standaro_l que_mtum che_m|st_ry approach to PR(Er)=(27T|AR|2)71ﬁ;
electron transfer. Less obvious is the applicability of the con- Atk (B —Uy)
tinuum states chosen above for calculating dil(_éthrough k. (E)=[#"22mE]Y2 (11)
space’) tunneling by standard perturbation theory. . ] o
Bardeen’s perturbation thedfyis not easily generalized to Also, the relation between the inverse lifetime of the sigte
the more complex situations discussed below, and we preselit—(r} Of EQ. (10) and the transmission probabiliiy(E) at
here an alternative approach. For this purpose we consid&N€r9yE=E, is given by
the problem of tunneling through a simple rectangular poten- fik,
tial barrier[Fig. 2a). Note that the general notation of Fig. 3~ 'Ky =T(E,) X |Ax|zw- (12
is simplified here by using the notatiocg=x, , Xx;=Xg, and
Uo;=Ug]. The standard calculation of the transmission co-Using the expressions in Appendix A and E(l) and(12)
efficient for a particle of mass1 and energyE incident from  in Eqg. (10) leads again to the resui8). Note that we have

the left proceeds by writing the wave function in the form limited ourselves to deep tunneling situations by assuming
that e “9<1 in the standard tunneling calculation, and by

AVekix4 AlDgmikix: <y, using lowest order in the corresponding perturbation theory
V(x:E)={ AlMe™+APe " x <X<Xg, ) approach.
Ak y=x I1l. BRIDGE ASSISTED TUNNELING AND RESONANCE
o R TUNNELING
with k|, k,, and « defined by Eq(3), with E replacingE, Consider now the barriers displayed in Figs. 1 or 3. As

andE, . The coefficients in Eq(7) are determined from the discussed above, the transmission through such barriers is an
four continuity relations for the wave function and its deriva- exactly soluble problem. Here we focus on the approximate
tives at the two boundaries. Puttinlg= xg— X, and neglect- perturbation theory description of this problem. In this ap-
ing terms of order exp{2«d) relative to terms of order 1 proach, the asymptotic motions to the left and to the right of
leads to the following result for the transmission coefficient:the barrier are described by standing wave continua as in
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Sec. I, while each well is represented by some lower bound In a time-dependent initial value problem, the set of Egs.
states of the corresponding well in FigicB For simplicity, (13)—(15) would be solved for the time-dependent coeffi-
we present the following development in the simplest tightcientsc(t), given that all coefficients vanish &0 except
binding approximation, using one bound state per well. c,(t=0)=1. Here we seek a steady-state solution with
Again we note that while we deal with a scattering pro-|c,(t)|=1 at all time. To obtain this solution we repeat the
cess, the scattering continua are represented by standipgocedure described in the second part of Appendix B, dis-
waves that carry no flux. The steady-state formalism usedegarding the time-dependent equation éQft) [one of the
below leads to scattering theory results in this representatiorquations in the setl3)], and assuming instead thej(t)
Also, because our representation has nonzero overlap be=c,e”'Exl. In steady state the same holds for all intermedi-
tween basis functions, expressions for the transmission crosge state amplitudes, i.&mn(t)=cye B, m=1,..N,,. Us-
section will be modified. Similar issues are encountered iring this in Eq.(15) leads to
tsr;ttztei:‘grré (;frslﬁggg;gtransfer when overlapping basis repre &= —E,C,—i(H,—E,S,,)c e B
Denoting the continuous manifolds Ky and{r} as be- ) e
fore, and the states in the intermediate wéitg, with (ap- —I % (Hm—ExSm)cme™ ™, (16)
proximatg energiesE,,=H,m, m=1,..N,,, the solution of
the time-dependent Schitimger equation associated with a which, following the procedure that leads to E@11),
particular initial state\, the incident state in th@} manifold, ~ Yields

can be represented byW(t)=c,(t) ¢\ +Z.0Ci(1) _ ~ e iErt_ g-iEt
+3,¢, ()¢, +Z () ¥, Where the coefficients(t) sat- c,(t)=(vmcx+2 V,mcm>T 7
isfy m r \
and
CI+2 SImbm'{'z Slrbr 1 d ~ ~ Cm 2
" ' g |G OP=2m prl Vi + X Vi :
|C)\| dt r m C}\
Ny E=E,
= —iEici—i 2 HimCm—12 HyC,, (13 (18)
=1 ~
" r where the effective coupliny is defined by
Ny, ~
bm+ 2 Sﬂm’bm’+sm)\b}\+|2 Sﬂlbl+2 Smr(.:r Vab(E)\):Hab_ E}\Sab’ azb. (19)
(m#m’)=1 X ' Similarly, for | #\, we get from(13),
: Y _ 5 e Elt_ g—iExt
=—IEnCm—i E Hmm Cmr —THm\Cy C|(t)=2 Vi ———=———=— (20
(m#m’)=1 m El_E)\
. . ) _ From(17) and(20) it is evident that only states frofn} with
_'% Hm|c|—|2 HmCri m=1..Nu, (14 E,=E, and only states fronfl} with E;=E, are populated
significantly, so that we can put (t)=—iE,c, and c(t)
N _ . _ =—IiE\,c, in the left-hand sid€l.h.g) of Eq. (14). This leads
C+ 2 Srmcm+Sr)\C>\+E Sic to
m=1 I#N
. N . . —(Ex—Em)Cm=—iVmCr—i 2 Vinm Coy —i€EN
=—iE,c,—i > HmCm—iHnCr—i1> Hyc. (15 m'%m
m=1 [EDN
Note that the left and right manifolds were assumed to X;}\ VmICI(t)_ieiE‘tg VimrCr(1). (21)

satisfyH,,=E,§,» andH,,,=E, ;.. Note also that while

the initial statex belongs to thél} manifold, we have written  Using Eq.(17), the last term of21) takes the form
it explicitly in Egs. (14) and(15). Equations(13)—(15) con- 5

stitute the most general form, where all interstate coupling—ieiEAtE VG (1)

and overlap terms are included. As already pointed out, when '

the basis functiongm} are spatially localized, a good ap- -~ 1—gl(Ex—Ept

proximation is often obtained by setting to zero coupling and = —i E ervrx? Cy

overlap terms involving centers far enough from each other ' o

or from the left and right continua. For large systems this -~ -~ 1—gl(BEx—Ept

simplification can be numerically significant because it —i > Vi m T E g Cm | (22
makes the coupling matrix sparse. In addition, the direct cou- m'Af Mo

pling between thél} and the{r} manifolds will be taken only ~ Since we are taking the direct coupling between {iheand

in the lowest order. This amounts to disregarding the termshe {r} manifolds only in the lowest order, the first term on
3,:S,C; and=H,c, in Eq.(13) and the term&,..,S; ¢, and  the right hand sidér.h.s) of (22) may be disregarded, and
2 Hyc in Eq. (15). Eq. (22) can be rewritten in the form
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e Lo vmrvrm’
— —1 I|m2 (Er mCmr

e—0m’

——|E AR cor s (23

where the self-energy matrix associated with the right-hand
manifold is

(EA —IlmE r—

Transmission probability

enor Ex—E(tie
1
DLF(E)) — 5T (B, (24

ar rb

(EA)—PPE —

(25
I H(E)= 2w2 VarVipd(Ex—E,),

and whereP P denotes principal part of the integral that rep-

resents the summation over the continuum. Similarly, from 0 | ) 3 4 S 6
(20),
E (eV)
PRI NNy — (L)
e Z Vim(€i(t) I% Amm’cm' FIG. 4. Transmission probabilities for tunneling through the potential of

Fig. 1(a). Full lines—exact results. Dashed lines—results obtained from Eq.
(28) using a truncated basis. See text for details of the potential surface and

=—j 2 (Dg;m, (1/2)|1“n'1‘2n,)cm, . of the truncated basis used.
m
260 . . . . . .
indirect component associated with the intermediate states
Using these results i21)" leads to {m!.2° The latter term,VGV, is most important near reso-
5 3 nance, i.e., when the incident enerfgy is close to an inter-
Cm=2 [(Exl=H=A) " mmViaCr; A=AL+AR), mediate state energl,,, but may dominate the transition

also in off-resonance situations. The transition rate is deter-
@) mined by contributions from these two routeswell as from

where the matrixH is given by Hymw=Endmm+ (Vo  iNterference between therfthe transmission probability is
—E,Siy) (1= 8. Inserting Eq.(27) in (18) finally re-  then found from Egs(28) and (12). Note that because all
sults in intermediate state couplings are in principle included in the

calculation that leads to E8), this result can be used also
Ky—g= 2 2 e (O)|2=2m(prl Trr|?)e e (28) ior_ two,: _and three-dimensional mc_)dels, e.g., when the
ley|? dt < " bridge” is a molecular layer separating two electrodes.

with T=V+VGV, and Gy =[(E\]l —H—=A) Y is
evaluated in thdm} subspace. In the calculations described
below the level shiftsD were disregarded and was re- Figure 4 compares the electron transmission probabili-
placed by—iT. ties as functions of the incident energy, obtained from Egs.
Equation(28) is the final result for the steady-state tran- (28), to the exact results calculated using the transfer matrix
sition rate from an initial leve|\) in the {I} manifold to the  method, for the symmetric model of Fig. 1 with one inter-
{r} manifold. The transition amplitudé+VGYV is seen to be mediate well. Here we usdg—U, =Ug—Ug=6 eV, Ug
a sum of a director “through space’ contribution and an —Uy=3eV for the barrier height, and;—Xy=X3— X5

IV. RESULTS AND DISCUSSION
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FIG. 5. Results of tunneling calculations for the potential barrier of Fig. FIG. 6. g(E) as a function of the transmission enerfyfor the model of

1(a). Full lines—exact results. Dashed lines—results obtained using a trunrig. 1. See text for details of the potential surfaces and the truncated basis.
cated basis with the lowest bound stdteith the potential parameters | ine notation is as in Fig. 5.

used—the only bound stati each well. Dotted line in Fig.(®&)—result of

the truncated basis approximation with the additional approximation that

replace§/12(E) by \~/12(E1)=\~/12(E2). See text for details of the potential . . . .
surfaces. 4 A for all intermediate barriers and wells. The barrier used

in Figs. Gb) is an extension of that used in Figgb#and

4(c), with width parameters equab & A for all intermediate
=4 A for the barrier width parameters. In Figiatthe inter-  barriers ad 8 A for all intermediate wells. Thus, the total
mediate well width was taker,—x;=4 A. This well sup-  widths (in A) of barriers withN,, intermediate wells are
ports one bound level. Figureg and 4c) correspond to an  d=4(2N,,+1) in the model used in Fig.(6) andd=8N,,
intermediate well widthx,—x,=8 A, which supports two +4(Ny+1) in the model used in Fig.(6), respectively. All
bound levels. The calculation that leads to Figb)4uses the bound states of each wétine in Fig. a), two in Fig.
only the lower of these two intermediate levels in the trun-6(b)] are included in the truncated basis set.
cated basis set, while Fig(e) is obtained using both. Fig- Finally, Fig. 7 shows a simple application of the present
ures %a) and 3b) show similar results for two and four formulation for a two-dimensional model: transmission of an
intermediate wells, respectively, where all barrier width pa-incident plane wave traveling in tredirection through the
rameters are taken to bg—x;_,;=4 A (again supporting modified two-dimensional rectangular barrier shown in Fig.
one bound level per well 7(a). The barrier height is 6 eV and its size in the transmis-

Figures 6a) and &b) display, as a function of electron sion direction isd,=12.4 A. In order to conform to the nu-

energyE, the “beta parameter,3(E), which describes the merical calculation, we also impose periodic boundary con-
distance dependence of the transition probability accordinglitions in the perpendicular direction with a periodd,

to the ansatz =100A. Two identical cylindrical wells of rad&i2 A and
. _ depth 3 eV relative to the barrier top are positioned so that
Ka—ir(Ex.d)=Aexd = B(Eyd], 29 their centers are atx(z)=(0,—2.2) and(0,2.2 A, respec-

whered=xy—X, is the barrier width,8 is obtained as the tively, wherez=0 corresponds to the barrier center. Such a
slope of the line describing IK{_.;;1(E, ,d)) as a function of  well, in an otherwise constant two-dimensional potential sur-
d. A linear dependence, indicating exponential dependencface, supports one bound state. A numerically exact evalua-
of K on d, is obtained as long aE, is not too close to tion of the transmission probability may be obtained using
resonance with the quasibound levels in the intermediatéhe absorbing boundary conditions Green’'s function
wells. Figure 6a) corresponds to an extension of the modelmethod?* The numerical results shown in Fig(bJ were
used in Fig. 4a). The barrier(Fig. 1) is made ofN,, seg- obtained using a grid of 200210 points with spacinga x
ments of barriers and wells, characterized by equal widths of0.5 andAz=0.177 A and periodic boundary conditions as
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calculation, together with those based on the truncated basis
approximation. For the latter we show the total transmission
probability as well as the independent contributions of the
direct (T=V) and the indirect T=VGV) components of

Eq. (28). Figure 7c) shows similar results for a one-
dimensional barrier obtained by taking a straight path along
z=0, the line connecting the two well centers. Note that the
peaks in Fig. {) lie at higher energies due to the larger
value of the two-dimensional zero-point energy.

We note again that in the calculations, which lead to
Figs. 4-7, we have disregarded the small energy shifts asso-
ciated with the real part oA [Eq. (24)], i.e., we have ne-
glected the term® defined in Eq(25). While this approxi-
mation has a very small effect on the quality of the results
displayed in Figs. 4-6, its effect is clearly seen in Fig. 7,
which corresponds to a system in which narrower barriers,
therefore larger couplings, exist between the zero-order well
states and the continua.

It is evident from all the results displayed above that
tight binding models for bridge assisted tunneling can pro-
vide a good description of the transmission process at and
not too far from resonance. The quality of this description
obviously depends on the number of intermediate quasi-
bound barrier states that are included in the truncated basis.
Because of the exponential dependence of tunneling on bar-
rier height, one tends to assume that a truncated basis based

Transmission probability

(@

E (eV)

FIG. 7. (a) A sketch of a two-dimensional barrier with two cylindrical wells

(see text for details (b) Transmission probability vs incident energy of a
plane wave traveling in the direction through the two-dimensional barrier
shown in Fig. 2a). Note that periodic boundary conditions are employed in
the direction(x) perpendicular to the tunnelinc) Transmission through the
one-dimensional barrier which corresponds to a straight path perpendicular
to the tunneling direction connecting the centers of the two wells. Full(b)
lines—exact results based on a numerical grid calculation in Fly.ahd

on the known analytical result in Fig(d@. Dashed lines—results based on

the truncated basis approximation using the single bound state in each well.
Densely spaced and sparsely spaced dotted lines correspond to the direct and
the indirect contribution$Eq. (28)], respectively.

described above. The following absorbing potential was ap-
plied at the edges of thedomain:e(z) =0 for |z|<d,/2 and
e(2)=1.7(|z - d,/2)/(L—d,/2)]" for L=|z|>d,/2, where

L is half the grid length in thez direction. The resulting
transmission probability is compared to a calculation based
on a truncated basis set analogous to that used in Figj. 5
the left and right continua and the two zero-order bound
levels in the wells. The latter calculation uses E28) in the
same way as before, except that two-dimensional wave func-
tions and integrals are used to calculate the ne¢tl@ethdS (¢
matrix elements. Figure () shows the results of the grid

on the lower energy bridge states should provide a good
description for deep tunneling below the resonance regime.
This assumption is shown to be wrong. Its failure is seen in
Figs. 4—7 in several ways.

Figure 4a) shows that the deviation of the truncated
basis(using the lowest state of each intermediate well
model from the exact result increases as the incident
energy decreases below the resonance energy. This de-
viation increases considerably when the intermediate
well supports more than one bound state but only the
lowest one is taken in the truncated baéisg. 4b).
Increasing the basis by taking more zero-order well
states may improve the quality of the result at some
energies, but may create other probldisee poinib)].
Using truncated bases associated with a finite number
of intermediate barrier levels may give rise to interfer-
ence artifacts that result in unphysical features in the
transmission spectrum. This is seen in Fi@)4as well

as in Figs. §a) and 5b). With our choice of zero-order
basis functions, the dip &=2.3 eV in Fig. 4c) results
from destructive interference between the two path-
ways associated with the two intermediate levels, while
the origin of the unphysical dip &=3.2eV in Fig. 5

is simply related to the vanishing of the effective cou-
pling V,,=H.;,—ES;, between the two intermediate
levels atE=H,,/S;,. [It is interesting to note that a
cruder approximation which replace¥;(E) by
V15(E1) (hereE;=E,) eliminates this dip, but yields a
worse approximation to the exact result in the near
resonance regiofFig. 5a)].

The behavior of the 8 parameter” as a function of the
incident energyE (Fig. 6) shows a dramatic discrep-
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ancy between the exact result and the result obtainetinuum states with energies above the barrier top when we go
from the truncated basis representation. The exact ddar below resonance.

pendence of3 on the tunneling energy shows a rapid

decrease of3 whenE increases from zero toward the V. CONCLUSIONS

energy of the f|rst.re.son§1nc.e. The vanishingsofor i In this paper we have addressed two issues concerning
resonance transmission indicates that the exponentlehlmne"ng transmission across a potential bariigr A rela-
dependence ansatz, E(qg),_does not hold at and near tionship was established between the conventional approach
the resonance energy, as is well known. The result f0g, o+ jnyokes stationary scattering theory and the steady-state
B(E) using the truncated basis approximation deviategs| tion of the time-dependent theory based on standing
from the exact result in two ways: First, it shows the \y4ye representation of the incoming and outgoing continua.
signature of the unphysical dip in Figsaband §b) as  The |atter approximation makes it easier to make contact
a maximum ing: As discussed above, this dip is asso-petween the present formalism and between the standard
ciated with the(unphysical vanishing of the nearest- {heory of electron transfer between localized donor and ac-
neighbor effective coupliny; ;+1=H;j;+1—ES j+1,  ceptor stateg2) For simple super-exchange models we have
which implies a maximum ing at the corresponding compared the transmission probability calculated with trun-
energy. Second, at lower incident energies this uncated basis sets to exact analytical or numerical solutions.
physicalB increases rather than decreases with increasye have shown that using truncated basis sets based on
ing E. This behavior can be traced to the fact that forlower zero-order bound states in the bridge to describe deep
|[E—Ej|>H;j+1/S;j+1 the interstate coupling param- tunneling can fail badly, even though such models can de-
eter |Vj,j+1(E)|2/(E— E;) becomes linear irE;—E, scribe successfully transmission near the corresponding reso-
rather then inversely proportional to?ft.In the ap- nances. We conclude that, for deep tunneling, such calcula-
proximation which fep|ace§/j,j+1(E>\) by vj,j+1(Ej) tions should be regarded with caution, and approaches based
[dotted line in Fig. 6a)], B(E) decreases with increas- On appropriate pseudopotentials may sometimes be advanta-
ing E for energies far below resonance, and further-geous.

more the unphysical interference peak is absent. Still,
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that the relative contribution of the “direct” or “through
space” route to transmission is now enhanced by the facBPPENDIX A
that the quaSibOUnd intermediate states are localized in rela- Here we |ist, as examp|ES, the expressions for the cou-

tively small neighborhoods of the barrier. Obviously, for apling and overlap matrix elements between the wave func-
barrier of infinite spatial size in the directi@ normal to the  tjons defined in Eqs(1) and (2). We focus on the simple

tunneling and with a finite number of local intermediate parrier case described by Fig. 2, for which the differkst
wells, the direct transmission component will always beand «’s are given by Eq(3) with Uy;=Uy_;y=Ug. Con-

dominant for an incident plane wave. This is also seen in OUfinuity conditions yield
model system, characterized by a large findife by compar-

ing Figs. 1b) and 7c). For this reason, the agreement be- A= _ L!I('A(D. B =— 2'_k_'A(1) (A1)
tween the exact result and the truncated basis approximation ! k—ik K =ik

is considerably better in the two-dimensional calculationgng, similarly,

than in the corresponding one-dimensional system. In the . )

low energy regime, where the indirect tunneling component @) _ _ K —iKy 1. _ 2ik, AL (A2)
shows again the unphysical behavior discussed above, the ' k+ik, T "okotik, T

transmission is dominated by the direct component, whichy is convenient to express the overlap matrix elements be-

as seen in Sec. lll, is described well by our approximation. yyaen “right” and “left” states as a sum over contributions

In view of the results discussed above it is important togq, regionsL (x<x,), B (X, <X<xg), andR (x=xg): see
find a criterion for the size of the basis set needed for thei, » ’ ’

calculation of bridge assisted tunneling. This question will be

studied separately; however, the following reasoning may be S =f
useful: Let AE=|E—Eg| be the energy gap between the T
tunneling energyE and the nearest bridge levély. The M X
bridge level assists tunneling by being virtually occupied onwhere SL,Ef_Lmdx‘Pl*(x)\Ifr(x), s‘?zfxfdxllf,*(x)‘lfr(x),
a time scaler=%|E—Eg| 1. By the same reasoning, other andS’?EffRdx\Ifr‘(x)\lf,(x) are given by

bridge levelsB’ within the same energy range frdag, i.e., Kk (k4 )
|Eg' —Eg|<|E—Eg|, should be included in the calculation. g. — _ 41" A T ewd (Ad)
For the examples described in Sec. IV this will involve con- (ki 1K) (e +ike) (K + &7)

T X (O, () =S + S+ S, (A3)
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* kike (k) + ) [H |2
R_ _ AA(D* A(D) r r —xd _ r
S A A e © B8 M@= oo (69
8 (D* a(D) Kk, e ¥d— g7 and »—0. If the energy dependence of, can be disre-
Sr=4AL" Ag : : — . (A6) - _ o IEt—(Iy/2)t
(ki +ik)(k+iky) k= x garded neaE=E,, Eq. (B4) leads toc(t)=e "= V1",
. B e
In terms of these partial overlaps the Hamiltonian matrixWlth E=PPZ[H,[%(E~E,) and
elements between states from tfip and {r} manifolds are ) ,
easily shown to be given by F|=K|ﬁ{,}=2w§r: [Hy [?8(E)—E)=27(|H) |*pR)E, =,
(B6)

leEf dx¥ () HW(x) T , ,
— To extract similar information from EqB3) we disregard
the correction to unity in the numerator, and rewrite the rest
- _ _ L _ _ _ " '
=ES~(Us~UDUS =EiS— (Us— VRIS, AT of the expression fog,(z) in the forn?®

APPENDIX B . 1
| | | [ P (7
Here we derive the generalized golden rule given by Eq. z+iE + E S TiE
(10). It should be noted that this generalization corresponds r ZrIEy

to a situation where nonzero overlap exists between initiadpo same procedure used to get E&sl) and(B5) from Eq.

and final states, and some care has to be exercised in iggy) now leads again to EqB4), with Eq. (B5) replaced by
derivation under this circumstance. To this end, analyze the ’

decay of an initial level coupled to a continuum of states in a [H,,—zS,|?

representation defined by E@). It will prove useful to con- 2(2)= Z “7E (B8)
sider both the initial value problem and the steady-state so-

lution. Obviously, the golden-rule expressi@R6) now becomes
1. The initial value problem Iy=2m(|H,— EISIr|2pR)Er=E|v (B9)

Let the time-dependent wave function be of the form )
as claimed.

W<t>=c|<t>w|+2 c (V) (B1)

with ¢,(t=0)=1 andc,(t=0)=0. Inserting(B1) into the 2 Steady-state solution
time-dependent Schdinger equation leads to equations for Starting again from Eq(B2), we now consider a steady

the coefficients, state in which the amplitude of the levkls restricted, by
some unspecified means, to behave as if the level was not
¢+, S,¢,=—iEc—i> Hyc, coupled to ther} continuum, i.e.¢,(t)=c,e” B, where the
r r

constantc; can be chosen to be 1. We want to compute the
(B2 steady-state rate of transferring population to the continuum.

SnC+Cr=—iHn G 1B Using the lower of Eqs(B2) in the form

Solving by Laplace transforng(z) = [;dte *'c(t), we get

(ZSr+iHIr)SrI
1_2 Z+iE, )

Cr:_iErCr_i(Hrl_EISrI)eiiEltCIr (B]-O)

c(2)= yields

e Ert_ g-iEt

Cr(t):(Hrl_EISrl)ﬁcl (B11)

2+iE~S (2§, +iH ) (2§ +iHy)

X -
T Z+iE,

-1
}  ®9

and
Note that if all the overlap termS vanish, Eq.(B3) is re-

duced to

Er |Cr(t)|2:4|CI|2f dErP(Er)lHIr_EISrI|2

-1

H 2
| Ir| ’ (BS,)

z+iE,

& (2)=|z+iE+ >

Sinf[ 3(E,— Eo)t]

which, upon employing inverse Laplace transform and after (E,—E)? (B12
standard transformations, yield¢t) in the form Fort—ce, Sif(xt/2)/x?— 1/2mt5(X). SO
c.(t)=if° dEe 'Et ! —, (B4) 1 d
27 )= E-E—-Ay(E+in) Km{r}EWzaZ e (O)]?=27(|H\,—E S/ |*pR)E, =€,
where (B13)
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