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The relationship between the surface geometry and certain electronic properties is considered for neu-
tral metal systems. For systems enclosed by surfaces of constant curvature, the total energy, the surface
energy, and the chemical potential are found to depend linearly on the surface curvature. Explicit ex-
pressions are found for the coefficients of this dependence, in particular for the curvature energy. It is
shown that for systems with surfaces of varying curvature a surface charge distribution is formed (and
therefore an electric potential varying across the surface), to ensure a constant chemical potential. Im-
plications for the ionization potentials of finite and infinite systems of finite curvature (e.g., spheroids and

thin wires) are discussed.

I. INTRODUCTION

The study of finite metallic systems, such as thin films
and clusters, has been the object of intensive experimen-
tal and theoretical research in the last decade and more. !
One of the most prominent phenomena to be observed is
the size effect on energetic parameters. This manifests it-
self in an oscillatory behavior about an average asymptot-
ic dependence on system size.!™® The average trend, by
itself, may be studied by continuum models such as the
variational scheme of density-functional theory, using ap-
proximate expressions for the kinetic, exchange, and
correlation energies.*”7 The oscillatory behavior is asso-
ciated with the detailed electronic structure, and can be
obtained, together with the average trend, from Kohn-
Sham density-functional calculations. This has been done
for spheres and films. 23

Using the former approach, we and others have studied
the averaged size dependence of the ionization (I) and
chemical potentials of jellium spheres. Experimentally
observed deviations from the predictions of classical elec-
trostatics for small clusters have been traced to
quantum-mechanical corrections which give rise to an
O(1/R) term in the chemical potential y of small metal
spheres of radius R.® Explicitly, u=— W+C,/R (Wis
the macroscopic work function and C,, is a constant) and
J=—p+1/2R =W +C/R, where C +C,=1.

It is interesting to consider how this size-dependent be-
havior depends on the system’s geometry. For thin jelli-
um films it has been shown that the chemical potential
(work function) is, on average, independent of the film
thickness, for films of several atomic layers.*® This sug-
gests that for such systems the chemical potential (and
therefore the ionization potential) is affected by the sur-
face geometry rather than by the linear dimension of the
system. We note in passing that calculations based on
discrete models have shown dependence of the work
function and surface energy on the film thickness. !@»3®
Calculations of this sort have been limited to several lay-
ers only and seem to converge rapidly to the bulk value.
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Deviations may be ascribed to the oscillatory behavior
mentioned above and in some cases to the relaxation of
the ionic lattice (which is not allowed in jellium).3®

In this paper we consider this relationship between the
surface geometry and electronic properties of metal sys-
tems described by the jellium model. We focus on the
average size and shape dependence, ignoring the oscilla-
tions associated with the detailed electronic structure as
discussed above. In the jellium model different metals are
distinguished only by the density of their conducting
electrons. The properties we consider are the total elec-
tronic energy, the surface energy, and the chemical po-
tential, however, we believe that the treatment proposed
below can be extended to other surface electronic proper-
ties. We will show that, for systems whose linear size di-
mensions are greater than a few atomic diameters, these
properties are determined only by quantities associated
with the corresponding planar surface and by the
geometry of the actual surface, which bounds the metal
system. The planar surface of the semi-infinite bulk is the
limiting case of the present treatment: it is approached
when all the linear dimensions go to infinity.

In what follows we first consider systems bound by sur-
faces with constant curvature (thin films, wires, spherical
particles, and spherical vacancies in metals). For such
systems we derive a general expression relating the total
energy to the volume, the surface area, and the surface
energy. We then derive an explicit expression for the sur-
face energy, relating it to the surface curvature, thus ob-
taining the first explicit expression for the curvature ener-
gy of metals. The same framework is used to show that
the chemical potential also depends on the surface curva-
ture, thus establishing that systems with different shapes
may have different chemical potentials. For systems of
nonconstant curvature we show that a surface charge dis-
tribution is formed to maintain a constant chemical po-
tential. Finally numerical evaluation of the ground-state
energy and the chemical potential is used to test our
theoretical predictions. We conclude by discussing our
results from the viewpoint of thermodynamics and classi-
cal electrostatics applied to “realistic” systems.
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II. A GENERAL EXPRESSION
FOR THE TOTAL ELECTRONIC ENERGY

Consider a neutral metallic system bound, at least par-
tially, by a surface of constant curvature. This means
that all points on the surface are equivalent geometrically
and are characterized by the same principal radii of cur-
vature, as in the examples given above. In what follows
the coordinates of points near the surface are denoted by
(S,r,) where S is the position on the surface and r, is the
normal distance from it. The surface geometry at a given
point S is characterized by the two principal radii of cur-
vature, or equivalently by the mean, H (S), and Gaussian,
K (S), curvatures defined in Egs. (A2) and (A3), respec-

tively. The metal is defined by the positive background
density n ,, given by
ne (r; <0)
= 1
n (r) 0 (rL >0) . (1)

The ground-state electron density # (r) minimizes the en-
ergy functional according to the Hohenberg-Kohn
theorem, yielding the ground-state electronic energy.*

The energy functional 1is [in atomic units
(e =fi=m,=ay=1) which will be used throughout]

E=f€(n;n+)d3r

= [{g(n()+L[n (D—n(D]D(n)}d’r )

where g(n(r)) is a function containing the contributions
of the exchange, correlation, and kinetic energy terms,
and ®(r) is the electrostatic potential

fd3,n+r) n(r). 3)
lt—r'|
In what follows we limit ourselves to the local-density ap-
proximation.
We now add and subtract the function g(n , (r)
integrand in Eq. (2). Noting that

) to the

g(ny)=¢gq (r; <0)
g(ni(r))= g(0)=0 (r,>0) 4)
we may write for the total energy
E=¢eV + [dr{g(n(r)—g(n,(r)
+1[ni(n)—n(n)]P(r)} , (5)

where Vis the system volume.

To continue, consider the behavior of n(r) far from the
surface. Inside the surface it rapidly approaches n, while
outside it decays to zero. Therefore far from either side
of the surface

n(r)—n(r).

This means that the integrand in Eq. (4) for the energy is
nonzero only near the surface. The width A of this zone
may be estimated from exact Kohn-Sham calculations to
be around 5 a.u. (Ref. 5). Therefore the volume integral
in Eq. (5) may be transformed into a surface integral of
the form (see the Appendix)
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3 - A2 2
Jar—[ds [ dril1+2r H(S)+riK(9)] (6
provided
A<H(S)™". @)

For surfaces with constant curvature, H(S) and K(S)
are independent of S. Since all surface points are
equivalent, n(r) will be independent of S, i.e., will depend
only on r,. Therefore g(n(r)) and ®(r) will also be in-
dependent of S. Then the energy functional Eq. (5) may
be rewritten as

E=sOV+aA , (8)
—f dr (1427 H+r1K)

X {g(n(r))—g(n, (r)
+inp(r)—n(r)]P(r)} . 9)

A is the surface area. Note that even though we use the
same notation for n (r) and n , (r,), the former contains
all the information about the surface geometry while the
latter is a step function which contains no geometrical in-
formation. Equations (8) and (9) give the total energy as
a sum of volume and surface contributions, where o may
be identified as the surface energy.

III. THE SURFACE ENERGY

Equation (9) defines the surface energy in terms of a
one-dimensional integral over a function of the unknown
electron density n(r) and the as yet undefined local-
density function g(n). Since by definition the integrand
is zero outside the range of integration, we may extend
the range of integration from —c to + . We now as-
sume that the unknown electron density »n (r) differs only
slightly from the electron density of the semi-infinite bulk
with a planar surface, n,(r) [this may be inferred from
the results of exact (Kohn-Sham) calculations on jellium
spheroids?]

dn(r)=n(r)—n,(r), Iﬁn(r)\<<np(r). (10)

(The subscript p will denote functions and constants asso-
ciated with the planar surface.) Therefore to first order
in 8n Eq. (9) becomes

o=[% dr,(14+2r H+rK)

X {g(n,(r ))—gn (r)))
+iln (r))—n,(r))]o(r))
+pu+10(r)18n(r)} . (11)
The chemical potential i is defined by
_OE_38g
“on  on (12)

Next we wish to expand the expression (11) to first or-
der in H about the planar case, H =K =0. (Note that
H?>K as shown in the Appendix.) The unknown func-
tions g (n), ®(r,), and dn(r,) may depend on H as may
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the chemical potential u.

Consider first the function g(n(r,)). If we make the
Thomas-Fermi-Dirac-Gombas-Weizsacker  approxima-
tion with gradient terms to second order (TFDGW2) and
choose the Wigner expression for the correlation energy,’
then

_ 1|Vn|?
g(n)—%(31rzn)2/3n +—7—2‘;1-—

1/3
3 v 0.056 4 In*/?

\ 4
= . 13
4 | 0.07953+n173 13

g (n) does not depend explicitly on the surface geometry.
For this form of g the transformation to surface and sur-
face normal coordinates does not lead to curvature-
dependent terms. In what follows we assume that this is
true also for the exact g (n).

For ®(r,) we assume that the following expansion in
the small parameter H is meaningful:

D(r )=, (r )+H®Y(r )+ -, (14)

where CD},(r 1) is a functional of the electron density of the

planar (H =0) surface. If the expansion in Eq. (14) is
valid then we can expand the spherical case in 1/R
(which is the mean curvature for a sphere) and find
D) (r,).

<b},(x)=4vrfjwdx’{(x —x")P[n i (x")—n,(x")]
+n,(x")(x —x')}
+f_wwdx'{x’z[n+(x’)—np(x')]—np1(x’)x'} ,
(15)

where we also assumed that we may expand
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dn=n(r))—n,(r))=n,(r )H+O(H?). (16)
Next consider the term proportional to u in Eq. (11),
fjwdrl(l-l-ZrlH +r2K)8n(r,)
=f:°wdrl(1+2rlH +r3K)[n(r)—n,(r)]. (D
Charge neutrality determines that
fd3r[n(r)—n+(r)]=,4ffwdrl(1+2rlﬂ+rfl<)
X[n(r))—n (r;)]=0,
(18)

where A is the surface area. For the special case of the
planar surface

f_wwdri[np(rl)—nJr(rl)]:O . (19)
Applying these results to (17) we obtain
fjwdrl(1+2rlH +r2K)8n(r,)

=2Hfjwdrlrl[n+(rl)—np(rl)]-i-O(Hz) . (20)

Equations (15), (16), and (20) together with our as-
sumption regarding g (n) allow us to rewrite the surface
energy in (11) as

o=0,+HK,+O(H?), (21a)
where
apEf_wwdrl{g(np(rl))—g(n+(rl))
+4[ny(r)—n,(r)]®(r,)} (21b)

is the surface energy of the semi-infinite bulk, 8 and where

K,=[7 drir (gn,(r))—gln  (r))+Hn (1) =1, (r)]0,(r))]

+2,u,,rl[n+(rl)—n,,(rl)]+%<I>I',(rl)[n+(rl)—np(rl)]+%n,}(rl)<l>p(rl)) .

K, is a constant which depends only on the properties of
the planar surface. Here u, is the chemical potential of
the semi-infinite bulk. The replacement of u by p,, is pos-
sible if we assume (as will be shown in the next section)
that the dependence of u on the surface geometry is

p=p,+C,H+OH?) . (22)

The new constant introduced above, K s depends only on
the properties of the planar surface.

Equation (21a) relates the surface energy of a surface of
arbitrary curvature to that of a planar surface of a semi-
infinite bulk. Using Eq. (8) we can now obtain the total
electronic energy. It should be pointed out that these ex-
pressions depend on the particular metal only through
the properties of the semi-infinite bulk, while the

(21c)

geometry of a specific surface enters only through its cur-
vature. -Thus a thin metal film has the same surface ener-
gy as the semi-infinite bulk while a thin wire, which has
nonzero curvature, has a different surface energy.

Previous discussions’ of the analogous problem for
spherical geometry have argued that the energy has the
form

E=¢,V +oA+27Ry (23)

where g is the bulk energy density, o is the surface ener-
gy in a planar geometry, and y the curvature energy.
Equation (21a) implies that y is related to K, by

y=2K, . (24)
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Previously the curvature energy ¥ has only been deduced
from the fitting of numerical data to Eq. (23). To the best
of our knowledge Egs. (21c) and (24) provide the first ex-
plicit expression for y.

og

og 1
on |,

72

vn
n

p= —®=1[37%n(r)]**+ -2

_0.05641[n(r)]'/*[0.10594+n (r)]'/?
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IV. THE CHEMICAL POTENTIAL
The chemical potential is defined by the Euler equation
(13). Using the TFDGW?2 expression, Eq. (14), for g(n)
leads to

{0.07953+[n (r)]'*}?

We consider a point on the surface of the metal and we
transform as before to the local orthogonal curvilinear
coordinates (S,7;). No dependence on S is expected and
the Laplace operator becomes'®
2
Vi a- +2H
dr?

d_
. 26
dr, 26)
The first term is the usual Cartesian term and the second
is a contribution arising from the curvature of the sur-
face. Substituting Eq. (26) into Eq. (25) for u and expand-
ing in the electron density n () about its planar value n

P
leads to

Sgp _4H 1 dn,(r))
dn |n=n, 72 n,(r;) dr,
8% (r')—n(r')
+ P _ 3,0+ .
52 ”:n(n n),— [d* P 27

g, refers to g, Eq. (14), in which the Laplacian is replaced
by its planar form d2/dr?. The first integral on the
right-hand side of (27) is just ®(r), which we expand as in
(14). Making use of Eq. (16), Eq. (27) becomes

dn,(r,)
dr,

4H 1

72 n,(0)

H=Hp,—

1
0)H

Lm0

8’g,

&n?

(28)

n,(0)H +O0 (H?) .

"p

This result for the chemical potential may be rewritten

=u,+C,H+O(H?), (29a)
__ 4O o Y
=m0 0T e AR

Equation (29) constitutes a general expression for the
chemical potential of any neutral metal system enclosed

J

o(S)= [dr [1+2r H(S)+riK (8)]{g(n,(r ) —g(n

+{p+i®(r,,S

)18n(r,,8)+0(8n?)} .

1/3
J_ _3_ [n(r)]l/3
T
(r')—n(r")
—fd3r’n+ r')—n(r 25)
lr—r'|

f

by a surface of constant curvature. n[; denotes the
derivative with respect to ;. We note that our result for
C,, depends only on the properties of the planar surface,
including, however, the unknown function n!(r,). The

p
evaluation of these terms is postponed to Sec. VI.

V. SURFACES
WITH NONCONSTANT CURVATURE

So far we have considered only metal systems bound by
surfaces of constant curvature. Here we discuss briefly
the more general case of nonconstant curvature, using the
same arguments as in the constant curvature case. Insert-
ing Eq. (6) in Eq. (2) with no further assumptions yields
the general equation for the energy, analogous to Eq. (8),

E=¢gV+(o)4 . (30)

The average over the surface of the surface energy (o ) is
defined by

(o)== [dsals), (31a)
a(S)Ef:cdrl[l+2rlH(S)+er(S)]
X{g(n(r,,8))—g(n (r)))

+1n (r)—n(r,8)]®(r,S)}, (31b)

(r,8)= [ar TS (le)

[r—r'|

To calculate the surface energy we follow the same argu-
ments of Sec. III, defining

on(r,8)=n(r;,S)—n,(r) (32)

so the surface energy at S, o(S), may be rewritten, analo-
gous to Eq. (11), as

(r )N+ 3[ny(r)—n,(r)]®(r,8)

(33)
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®(7,,S) and p are defined by Egs. (31c) and (13), respec-
tively. We assume that the integral in Eq. (31) converges
rapidly compared with the variation in the surface
geometry, so that only the local geometry need be con-
sidered and therefore ¢ may be expanded as in Eq. (14)
with H replaced by H (S). The term in square brackets in
the integrand is identical to that in Eq. (11), with a
different form for &n(r;,S). Applying the arguments
used to obtain Eq. (20), we get the analogous expression

[ds [dr [1+2r H(S)+r3K (S)I6n(r,,S)
= [das2H(S) [ drir\[n,(r)—n,(r)]. (34

This leads to an averaged form of Eq. (21a),

(0)=0,+(H)K,+O(H?), (35a)
where
_1
(H)=-  [dSH(S) (35b)

and where K|, is defined by Eq. (21c). Equations (30) and
(35) give the total electronic energy of a general metal
system in terms of the average surface energy. The latter
is obtained in terms of the surface average of the local
mean curvature. As an example for a prolate spheroid
(ellipsoid) of volume ¥V and ratio a between the major and
minor axes { H)=1/R for a=1, and {H)=1.09/R and
1.41/R for a=3.5 and 10, respectively, where
R =3V /4m)'".

The chemical potential is constant throughout the sys-
tem and may be calculated at any point by the Euler
equation (12). Unlike Eq. (31) which is an integral ex-
pression for the surface energy, the Euler equation is a lo-
cal equation, the solution of which requires knowledge of
the detailed structure of the electron density, n (r). This
structure is complex; in particular the existence of non-
constant curvature implies the existence of a nonzero
surface-charge distribution (a detailed analysis of the case
of a jellium hemisphere is given in Ref. 11). This can be
seen by considering two metal spheres with radii R, and
R, (R;{>R,). Equation (29) determines that the elec-
tronic chemical potential in sphere 1 is lower than that in
sphere 2. At (contact) equilibrium a fraction of an elec-
tron charge, §Q, will move (on the average) from sphere 2
(smaller curvature) to sphere 1 (larger curvature) in order
to equalize the chemical potential. Furthermore it is ob-
vious that the electric potential on the surface of sphere 1
and sphere 2 will not be the same, i.e., the well-known
classical boundary condition of constant electric potential
on the surface is not valid for small systems. It follows
that for a system of metal colloid particles of different
sizes at equilibrium, there are, on average, net (fractional)
positive charges on the small particles and net (fractional)
negative charges on the larger. Similarly if this system is
in equilibrium with a planar surface (electrode) of the
same metal, then all the particles will have positive frac-
tional charges.
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VI. NUMERICAL RESULTS

In Secs. II-IV we obtained (under some assumptions)
general expressions for the total energy and the surface
energy of metal systems bound by surfaces of constant
curvature, as well as for their chemical potential. These
expressions depend on geometry-independent quantities
associated with the electronic properties of the corre-
sponding planar surface and on the geometrical proper-
ties of the curved surface. In this section we compare our
results to numerical solutions for jellium systems.

The general expression for the energy is

E=eV +0,A+K,HA . (36)

We calculated the energy for spheres and cylinders!? by
the restricted variational method. The details have been
described elsewhere.®2"13 The results were fitted to Eq.
(36) and ¢, Op and K » Were extracted. The quality of
the fit may be seen in Fig. 1, and the results are shown in
Table I. Within our numerical accuracy the parameters
€y 0p, and Kp are the same for the geometries con-
sidered.

For the chemical potential we have obtained the ex-
pression

pw=p,+C,H (37

to which we fitted the numerical results obtained by the
methods of Ref. 6(a). u, and C,, were extracted and are
shown in Table I. The resulting C,, is also seen to be in-
dependent of geometry.

For the thin-film geometry, H =0, and we predict the
surface energy and the chemical potential will be in-
dependent of the film thickness (greater than atomic di-
mensions) and equal to that of the planar surface of the
bulk. Indeed it has been shown that for thicknesses of
several atomic layers or more the average chemical po-
tential does not depend on film thickness.3® We have
confirmed this in our own calculations. Similarly we
have found the (average) surface energy to be thickness

5.0
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1
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Log absolute total energy (au.)
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T T T T T
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300.0

FIG. 1. The base 10 logarithm of the absolute total energy (in
a.u.) of jellium spheres (7, =4) is shown for various sphere radii.
The solid line is a plot of the least-squares curve obtained from
fitting the data to Eq. (36).



2306

GUY MAKOV AND ABRAHAM NITZAN 47

TABLE I. Results for jellium r;=4.

Geometry € o, K, Koo C,
Spherical —0.00031 —7.1X1073 0.000 12 —0.097 0.05
Cylindrical —0.00031 —6.8X1073 0.000 12 —0.099 0.05
Planar —0.00031 —7.2X1073 a —0.097 a
Expressions® —0.00031 —7.2X107? 0.000 10 a 0.08

#Not applicable.

YEquations (4) and (14) for &, Eq. (20b) for 0,, Eq. (20¢) for K, and Eq. (29b) for C,,.

independent as predicted by Eq. (21a).

Further testing may be done by directly calculating K,
and C,. These depend on the unknown functions npl(r 1)
and CDE:(r ). The latter may be estimated by expanding in
H the functions n(r,) and ®(r,) associated with the trial
density functions which are solutions of the linear
Thomas-Fermi equation.”!®!3 The results of these esti-
mates are shown in Table I and they confirm the validity
of the assumptions leading to expressions (21) for K, and
(29) for C,. The difference between the numerical and
theoretical [Eq. (29)] values of C,, is probably due to the
restricted variational procedure we use for the numerical
calculation while Eq. (29) for C, is based on an unre-
stricted variation. Indeed the unrestricted variational
calculation of Engel and Perdew®® yields values of C u
similar to those obtained from expression (29). This cal-
culation also shows that K, is strongly dependent on r,
while C,, is not. This is confirmed by our present calcula-
tion.

VII. DISCUSSION AND CONCLUSIONS

We have shown that the energy, the surface energy,
and the chemical potential of metal systems with finite
surface curvature H depend on this curvature. We have
also obtained an explicit expression for the linear terms of
the expansions in powers of H of these quantities. These
provide the first-order curvature correction terms to the
work function of such systems relative to the underlying
planar surface. We have verified these results by numeri-
cal calculations.

For systems characterized by nonconstant surface cur-
vature we have obtained a closed expression only for the
average surface energy. For such systems we have also
shown that the condition of constant chemical potential
leads to a redistribution of charge on the surface, with
the positive charge concentrated in regions of high curva-
ture and the negative charge in regions of low curvature
(note that this implies variation of the electric potential
across the surface in contradiction to the classical bound-
ary condition for metal surfaces). In the extreme case of
a metal atom adsorbed on a planar surface of the same
substance, this implies that the atom will be positively
charged. Detailed calculations for lithium® and jellium'®
show that this is indeed the case.

The ionization potential (IP) J of infinite systems is
equal in magnitude to the chemical potential of electrons
in these systems. For systems of finite curvature (e.g., a
thin wire) Eq. (21) implies that the IP depends on the cur-
vature. Denoting by W the work function associated

with an infinite planar surface (W = —p,) we find
J=w-C,H, (38)

where for jellium with r,=4, Cu=0.05. Then for a
cylinder of radius R and infinite length (thin wire,
H=1/2R)

J=W —0.025/R . (39)

We expect the experimental effect to be almost twice as
large, as our calculations underestimate C p by a factor of
2 compared with the experimental C,, of metal clusters.

For finite systems removing an electron results in the
formation of a positive charge distribution &n (r). The IP
is given by'4

J=—u+E, , (40)

where

On (r)én(r')drdr’
E=1[] ( )|r_(r,)| 41)
is the electrostatic charging energy, which is zero for an
infinite surface and equals (classically) e2 /2R for a sphere
of radius R. E,. may be evaluated classically for a prolate
spheroid!® with ratio a between the major and minor axes
E.=0.43/R for a=3.5 and 0.32/R for a=10, where
R =(3V /4m)!/3 (V is the volume). We did not get ex-
plicit expressions for the dependence of u on R and «,
but if we assume [in analogy with the surface energy, Eq.
(35a)] that ,u=,up+C#(H) we can estimate p from the
average curvature, Eq. (35b). For a prolate spheroid we
find (H)=1/R, 1.09/R, and 1.41/R for a=1, 3.5, and
10, respectively. Using C,, =0.05 for r, =4 finally yields

J=W-+C/R , (42)

where C =0.45, 0.39, and 0.25 for a=1, 3.5, and 10, re-
spectively. Generally C decreases when a increases. The
absolute values should be regarded as rough estimates.
The value C =0.45 for a=1 (sphere) is known to be
overestimated by ~10%; also the relation
p=p,+C,{H) is an unproven approximation.
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APPENDIX: TRANSFORMATION OF INTEGRALS

Consider an integral
1= [d% f(r),

where f(r) is nonzero only in a region of thickness A
about some surface S(r). At each point the surface is
characterized by the two principal radii of curvature R
and R,. The mean curvature H and the Gaussian curva-
ture K at a point S on the surface are defined by

(A1)

H=% R%Jrilz (A2)
and
K=—1 (A3)
R R,
We note that for all R ,R,,
H*>K . (A4)

If the thickness A is much less than the local radius of
curvature, i.e.,

A<<H(S)™!, (A5)

then the volume to be integrated over may be divided
into nonoverlapping tubes, each of which is defined by
having its surface normal to S(r) at their intersection.
The cross section of the tube at the surface S is AS. If AS
is small enough we can define a coordinate », normal to S
at the center of the tube, such that the volume of the tube
is

(A6)

A/2
dr AS .
f N r, (rl)
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AS(r,) is the area of the cross section of the tube at a dis-
tance 7, from the surface. If we denote by x and y the
(orthogonal) principal directions at the center of AS, then
in the limit AS —0

AS < AxAy (A7)

and

AS(r )< Ax(r )Ay(r,) . (A8)

The constant of proportionality is geometrical in nature
and therefore independent of »,. By the definition of the
principal radii of curvature we may write

r

Ax(r)=Ax |1+ |, (A9a)
Rl
.

Ay (r))=Ay 1+-l-] , (A9b)
R,

SO

AS(r,)=AS[1+2r H(S)+7r3K(S)], (A10)
where we have denoted explicitly the dependence of H
and K on their location on the surface. The integral over
a single tube is obtained by inserting (A10) in (A6), while
the integral over the volume is obtained, in the usual
manner of integral calculus, by summing over tubes in
the limit AS —0 which may be written

[a’r— [ds [ar[1+2r H(S)+rK(S)] (A1)
and the integral is
1= [ds [dr [1+2r H(S)+rIK(S)]f(r,8). (Al2)
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