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Ionic motion in polymeric ionic conductors has been recently described in the framework of dynamic percolation theory
(DPT) or, more generally, dynamic disorder hopping (DDH). In these models the polymer network above the glass transition
is modelled as a random bond network in which the random bond distribution evolves in time with rate characteristic to the
polymer moucn. The present paper deals with the mechanical properties of such networks, We present a simple analysis of the:
viscosity of such dynamically disordered networks, thus relating a charactenstic network relaxation time to the loﬁl
{microscopic) viscosity of the polymer. If the same time is assumed to govern ionic transport, we obtain a relation between llle.
ionic diffusion rate and the polymer viscosity. Estimates of the ionic diffusion based on this model are consistent ;

experimental observations.

1. Introduction

In a recent series of articles [1] we have devel-
oped a dynamic bond percolation model for 1onic
motion in polymeric ionic conductors and, more
generally, for diffusion in strongly interacting sys-
iems. Such an approach have been also taken by
other workers in a similar context [2]. In poly-
meric ionic conductors, tonic¢ salts are dissolved in
the polymer, usually polyether, network, forming
systems with relatively high ionic mobilities above
their glass transition temperatures [3). Unlike in
crystaliine or glassy ionic conductors, these sys-
tems are characterized by strong correlations be-
tween the 1onic motion and between the segmental
motion of the underlying host polymer. Dynamic
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bond percolation theory models this segmen
motion by the dynamics of the randomly assign
bonds, whereupon available and broken
interchange, creating {transient pathways
blocks for the tonic motion, These bond dyna
freeze at and below the glass transition tem
ture, freezing also long-range ionic motion if
density of available bonds (pathways) is below @
percolation threshold of the random network. T§
1s the glass limit of the model.

It is intuitively clear that the same motions
enable the ionic diffusion are also associated ¥
the mechanical properties of the polymer above
glass transition temperature. It is therefore {8
ing to try to relate the bond renewal dynamic$g
the mechanical properties of this model. The
of this paper is to make this connection by provey
ing a simple calculation of the viscosity of
same network.,
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pPC viscosity in the dynamic bond percolation

For simplicity, we limit our discussion to sim-
squarc or cubic networks in which an average
Eaction ¢ = 1 — p of the bonds are broken. Each
kond is fluctuating between its ‘on” and ‘off’ states
rding to the simple kinetic equation (4]
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here £,(i, t) is the probability to find bond « in
Btate i (available, i = 1, or unavailable, i =0) at
Bime 1. 7 is the characteristic evolution time of the
’".. network. The bond length, a, is taken as
e characteristic segment size.
To make the connection of this picture to
echanics, we assume that mechanical relaxation
assocmted with the same bond fluctuation dy-
famics as described by eq. (1). Below the glass
ition temperature, T, the (existing) bonds are
plastic and are characterized by a frequency, w
bove T,, the additional renewal dynamics ex-
ed by eq. (1) become possible. Only then can
t external force cause a permanent macroscopic
rtion. Consider our network above T, under
r (fig. 1) with velocity gradient v/a. The shear
gMdds an additional mechanism for bond breaking.
¥We assume that a bond connecting two nodes
preaks when the relative distortion of the two

w
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3 8 1. A schematic representation of shear in the random
network. Parameters are defined in the text.

Fig. 2. Relaxation of local distortions in a dynamic random
network,

nodes is equal to a. Thus, in te presence of shear,
eqs. (1) take the new form

f‘f«_glt:ﬂ = 2{pf(0, 1) - a£l1, 0)]

- f(1, 1),

ﬂgg}_‘) %[q[(l t) - pf.(0, 1)]

+= £, 1). (2)

This implies that the steady state density of intact
bonds (p(v) = f,;°(1)) is

P
P = Trioa) 3)
For small shear velocities (<< 1 cm/s) the de-
nominator in eq. (3) is close to 1 and p(v)=p.
This is the limit of interest in the present discus-
SIOTL.

Tt is important to realise that this extremely
simple model is characterized by only two times-
cales. If a sudden force is applied to a given node,
the suddenly formed distortion is associated with
the local elastic force constant or the local
frequency, w. However, because of the possibility
of bonds to reorganize as described above, any
local strain will relax with the characteristic time,
T (fig. 2). It is seen that even this simple model
already contains typical viscoelastic features.

Denoting by m the typical segment mass, the
distortion Ax is related to the force F by dx =
F/mw®. The shear velocity under steady state
conditions is therefore v = Ax/7. The dissipation
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rate per bond is therefore Fu = mw%?r. The dis-
sipation rate per unit volume is thus

dE  mdPrp(v) /o2
vde a (E) ' (4)
On the other hand, the dissipation per unit volume
is given also by (v v)? = y5(v/a)2. Putting also
w=kc—c/a where ¢ is the speed of sound, we
finally obtain

2

me
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a

where we have used p ~ p(v) for the fraction of
intact bonds. Note that if the condition v7/a < 1
does not hold, the dissipation is no longer propor-
tional to (Vv)? (with velocity independent coeffi-
cient) and this simple picture breaks down.
Equation (5) is the desired relation between 7
and 7. Taking ¢ =3 X 10* cm/s, m = 100 hydro-
gen mass units, a= 10 A and p =0.5, we obtain
r(sec) = 10~ %y, where 7 is expressed 1n cgs units,

3. Discussion

The estimate (5) of the relation between the
network relaxation time (or network ‘renewal’ time
[la-c]) is based on an extremely oversimplified
model. The main drawback of this estimate lies in
the obviously erroneous assumption that a single
relaxation time, 7, is associated with the mechani-
cal relaxation (eq. (4)) and the ‘bond’ (pathways
for ionic motion) flutuations (eq. (2)) which
dominate the ionic diffusion and conductivity. In
fact there 1s a multiplicity of relaxation times
associated with relaxation processes occurring on
multiple length scales. For the same reason, the
viscosity that enters into eq. (5) is not the macro-
scopic viscosity but a microscopic local quantity
associated with the local segmental motion. The
important point is that this quantity is accessible
1o expenmental measurements, e.g. by Brillouin
scattering [5] thus providing at least in principle a
quantitative way to relate the ionic mobility to
mechnical relaxation as obtained from light scat-
tering studies.

A treatment of mechanical relaxation in poly-
mer networks within the framework of dynamic

percolation theory can be given in more quantity.:
tive terms. Granek and Nitzan [6] have rﬁcently
developed an effective medium theory (EMT) for
the high-frequency small-amplitude motiong in g
random harmonic bond network, thus genera]izing :
(within the EMT) the Alexander-Orbach ‘heory:
[7] of vibrations in random spring networks (eg.
glasses) to the case which inclide bond dynamicy
described by eq. (2) (e.g. polymers above their
glass transition). Work in this direction is continy.
Ing. :

4. Conclusion

Tonic diffusion in polymer /salt complexes has -
been discussed in terms of a dynamic disorder i
hopping model in which two times enter: ope is
the inverse elastic frequency. The other is a re- °
newal time, which characterizes the dynamical re.
laxation of the host. By constructing a simple :
model for shear relaxation, we have shown hers
that a renewal time can be associated with the
mucroscopic, local viscosity, and that (eq. (5)) this
time is in fact directly proportional to the viscos-
Iiy.

One of the authors (M.R.) is grateful to the
Chemistry Division of the ARO for partial sup-
port.
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