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Dynamics of Multidimensional Barrier Crossing in the Overdamped Limit
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Two methods for numerical solution of multidimensional diffusion problems are presented and applied

to the two dimensional barrier crossing problem in the overdamped limit. One of these methods is based

on evaluating the smallest non-vanishing eigenvalue of the Smoluchowski equation, and the other is based

on an adaption of Chandter's steady state correlation function appreoach. Beth methods make use of the

fast Fourier transform algorithm for solving a transformed version of the Smoluchowski equation. The

numerical solutions are compared to results based on the Kramers theory and some observations con-
cerning effects of the dynamics of barrier crossing problems are made.

f, Introduction

The concept of activated processes provides a common
reference framework for the description of numerous im-
portant phenomena in chemistry and physics, such as chem-
ical reactions 1n gaseous and condensed phases, desorption
from and diffusion on surfaces, diffusion of atoms and ions
inside solids, dynamics of Josephson junctions and others
{1]. The Smoluchowski equaticn has been widely used for
describing these and other kind of relaxation processes [2]
in the overdamped (high friction) regime. In the one dimen-
sional case it takes the following form

dV(x)
dx

2 ppetix) = Di[i + f

ot Ox | ox ] Plx.tlx) M

where P(x,t|x") is the probability density for finding the
system at position x at time ¢ given that it has been initially
ax', D = kyT/yM is the diffusion constant (k is the Boltz-
man constant, T is the absolute temperature, y denotes the
Inction coefficient and M is the mass of the diffusing par-
licle), B is the inverse of k37 and V(x) is the potential of
mean force. While one dimensional models are frequently
useful to describe the evolution of a system along the re-
action coordinate (namely the minimum energy path be-
tween the initial and final states) motion in directions nor-
mal to the reaction coordinate may have significant dynamic
tonsequences [2—13].

In this paper we discuss methods for the numerical so-
ation of the multidimensional analog of Eq. (1), and apply
o such methods to a two dimensional barrier crossing
Problem. Multidimensional effects on the dynamics of bar-
Ter crossing processes have been subjects of several studies
lately [2—12]. Several issues, such as the effect of diffusion
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in directions other then the reaction coordinate, the effect
of curvature of the reaction coordinate and the effect of non-
1sotropic diffusion, are of interest. A numerical algorithm
based on the use of fast Fourier transform (FFT) for solving
the diffusion equation was recently presented by Agmon and
Kosloff [12]. Approximate methods based on time depend-
ent self consistent field approximations were investigated by
Kaufman and Whaley [14]. In the present work we describe
an improved FFT method, where by transforming the orig-
inal Smoluchowski equation to a Schrodinger-like equation
(eliminating the first order spatial derivatives) we are able
to use the analog of the Fleck and Feit split order propa-
gation scheme [15] rather than the finite difference method
of Kosloff and Kosloff [16]. Moreover, we focus on the
barrier crossing rate, and apply the numerical technique to
directly evaluate theoretically based expressions for this rate
rather than trying to extract it from the resulting time ev-
olution. Finally we use our results to discuss several issues
associated with barrier crossing problems as mentioned
above.

Section (2} of this paper describes the numerical method.
Section (3) describes the application of the numerical ap-
proach to the calculation of the rate by solving for the small-
est non-vanishing eigenvalue of the Smoluchowski equation
and by evaluating the saturation-plateau value of
{NQ)N(t)) where N(r)is the population in the reactant well
at time (. Application to a particular two dimensional model
is described in Section (4). Section (5) presents and discusses
the numerical results for a model two dimensional system.
We conclude in Section (6).

2. Numerical Solution of the Diffusion Equation

The multidimensional version of the diffusion equation
{Eq. (1)) 1s

—éa—r—P(x,ﬂx’) = V"-D-[V+V({BV(x)] P{x.t|x) {2)

where x denotes a vector in the multidimensional configu-
ration space and D) is the multidimensional diffusion tensor.
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D is assumed to be constant (namely independent of posi-
tion) but not necessarily isotropic.
A formal solution to Eq. (2) 1s
exp(L¢#) P(x,t =0]x") 3)

P(x.tlx) =
where

L=V D [V+V(BVx)]. (4)
An exact solution to Eq. (2) cannot be obtained in the gen-
eral case. The FF'T methed for solving time dependent prob-
lems associated with linear partial differential equations has
been recently shown by Agmon and Kosloff [12] to be very
useful for solving the Smoluchowskt equation. The simplest
time propagation procedure is based on a first order differ-
ence scheme, namely

P(x,t+ Atlx’) = P{xt|x)+ AtLP(x.t|x)+ 0(AtY.  (5)
The 2nd order scheme used for Schrodinger equation is not
stable in the present case. Agmon and Kosloff [12] have
used an cxpansion of the evolution operator in Chebychev
polinomials [16b]. Another convenient algorithm can be
obtained in principle by working with the exponential prop-
agator defined in Eq. (3), in the spirit of the split operator
method of Feit and Fleck [15]. However since the operator
L contains coupling between x and V it is not possible to
split exp({L. A t) (for small At)into a product of exponentials
which depend either on x or on 8/0x as is done in the
quantum mechanical case.

There exist a transformation [17], which allows to de-
couple the position from the gradient operators, thus mak-
ing it possible to use the exponential propagator without
the need to lineanize it. Let P.(x) denote the equilibrium
solution of Eq. (2) and define -

P(x,t|x')
P.(x)

(6)

b(x,t|x) =

Then it is easy to show that the function @ satisfies a Schro-
dinger like equation

—a%- ¢ = —Ho (7}
where the “Hamiltonian” H is

H= —V'D-V+ U (8)
and the “effective potential™ U/ is

Ux) = VT (BY/2) D VY2~V D VBV . (9)

To obtain these resuits it has been assumed that the diffusion
tensor is symmetric {i.e, D = DT).

Let {¢,(x)} and {4,} rcspectlvely denote the sets of (nor-
malized) eigenfunctions and eigenvalues of H. The Green’s
function associated with Eq. (7) 1s given by

[~}
P(x,t|x) )‘_—, x) exp(— 4,8 @,(x).
Since H is real and symmetric its left eigenfunctions are
identical to its right eigenfunctions @, (x) = {n|x)> = {(x|n),
This is in contrast to the operator L whose right and lef;
eigenfunctions are not identical. Denoting the latter by v, (x)

and @' (x) we have

wa(x) = @,(x) [/ Pe(x) {11y
wa (X) = @ (x)/ [/ P(x). {11h)

The corresponding eigenvalues are identical to those of H
and satisfy

= {@.{0)[Hi@.{x)> = {w,(x)|Liy,(x)> = 0. (1)

Assuming that the “ground state” g,(x} is nondegenerate,
only one of the eigenvalues, Ay, 1s zero and all the others are
positive. The normalization condition implies

T dx ™ epy(x) - @lx.t|x')
o (13)

= | dx™d(x,t|x) @o(x) = 1

where N is the dimensionality.

The problem of solving Eq. (2) has thus been transformed
into that of solving Eq. (7) where the “momentum” terms
(the terms containing V) and those depending on position
are separated. Note that this simple form for the “Hamil
tonian™ (Eq. (8)) 1s obtained only for position-independent
diffusion tensors.

The time evolution associated with Eq. (7) is obtained
from
D{x,t) = {x|exp(

—Hy)| Dt =0 (14)

~ <x|U exp(—T At)-exp( - UAD| S(t =0

where the “kinetic energy” operator T denotes the term
—-V7-D-V appearing in Eq. (8) and where A¢=t/n In
practice, the function @ is defined on a grid in configuration
space. The exp(—T A 1} operator is carried out by the FFT
technique.

Dlx, Al) = Foo e T2 Fy (e~ V2 @ (x,0)] (t3l

where the two exponential operators appear in their diaf
onal representations in the appropriate space, and wher

F._x denotes a Fourier transform from k-space to x-spa¢t

f(x) = Feo s Jlh) = (lﬂ)‘ fdk“‘”exp( ik x)fky. (19

The choice of the initial distribution requires some attentio®
In principle it is possible to make an arbitrary selection bu!
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itis advantageous to do it in such a way that the calculation
of the specific observable of interest, e.g., transition rate, is
easier. This point is discussed below.

3. The Transition Rate and the Reactive Flux

The type of processes which are considered in this section
involve classical diffusion over a barrier, from a potential
well 10 another region of the configuration space. In partic-
ular we are interested in the transition rate and in the con-
dition for 1t to exist as a meaningful measure of the reaction
dynamics f17-21].

It is convenient to write Eq. (2) as a continuity equation

Pty + Vi J(xt) =0 (17
where the probability flux vector, J(x,t) is given by

Jixt) = =D-[V+V({BV(x))] Plx.t). (18)
At a stationary state J{x,t) = J, is a constant, and

P(x.t) = Ps(x) does not evolve m time. For closed systems
the only stationary state is the equilibrium distribution
P.(x), for which /. = 0. The barrier crossing process is char-
acterized by a single rate (for practical purposes) if, following
a short transient period after the initiation of the process,
the system developes a guasi steady state whose time evo-
lution is governed by the smallest non-vanishing eigenvalue
of the Smoluchowski equation and by a nearly constant flux
lrom the reactant to the product well. Several approximate
methods to evaluate this steady state rate are available:

(2) The Smallest Non-Vanishing Eigenvalue (SNVE)
Method [18,20]

The existence of a well defined rate implies that 4, the
smallest non-vanishing eigenvalue of L, is well separated
from the higher eigenvalues (i.e., 1, < (A2 — A) = t Yand
that this eigenvalue is not degenerate. With this in mind and
for times ¢ such that 7' < t < oo the relaxation to equi-
librium is governed by A; which is then equal to the tran-
sition rate K(f).

These well recognized facts can be used within the nu-
merical scheme described in Sect. (2) as follows: Using an
arbitrary initial distribution ¢(x,0) the distribution at time
t is obtained by performing the evolution @fx,f) =
¢~ o(x,0) numerically. Observing that
blxt) = @(x,t) — go ) (19)
(@a(x) is the state corresponding to the eigenvalue A, = 0)
Satisfies

W1 = | dxl8(x.0)f = o -1 (20)
the transition rate K(f) is obtained from
1
Kigy ~ — —limiln[||qo(t)|lz—~1]. (21)
s dt

Alternatively, if the initial “wave function” ¢(x,0) does not
contain the “ground state” @u(x) 1e, {g@ul@(0)) = 0,
(this may be achieved, since @g(x) is the known equilibrium
distribution, by the projection ¢@(x,0) — @(x,0 —
{po(x) @(x,0)) followed by renormalization) then

. d
K(f) = 4 = fl:ngln[ilfp(f)}i% (22)

(b) Chandler’s Method [21]

A different treatment for the calculation of the transition
rate is based on the fluctuation dissipation theorem. Close
to equilibrium the relaxation process of an observable A(f)
obeys the following relation

BAWDe _
@A)

BA0)3A()>
(BA(0)>

(23)

Where {:--> and -}, respectively represent an equiltbrium
ensemble average {over initial conditions) and a non-equi-
librium one, and 84(1) = A(t) — (A).

The cobservable of interest is

N = [ dx P(x.t]x) (24)
§2

where € is the domain defining the reactant state and
P(x,t|xo) is the distribution at time ¢ given that initially it
was

Plx;t = 0|xy) = d(x~xp); x0€R (25)
where x; is the i-th component of the N-dimensional vector
x and x; 1s the initial location of the distribution on the
i-th coordinate axis. The reaction coordinate is the minimum
energy path between the reactants and the products poten-
tial wells. However dynamical effects may create situations
in which the maximum reactive flux does not go along the
minimum energy path. This aspect of the problem will be
discussed below in the specific application to two-dimen-
sional diffusion. Define

e M0} (26a)

3N() = | dx[P(x.t|xo) —

where

oo
[ dre#vt,

— oo

(26b)

Assuming that the relaxation of (dN(¢)) to its equilibrium
value (i.e., zero) ts given by the chemical rate K(f), we find
from Eq. (23)

BN SN(1)> = IENO*> exp(—~K(f)1) (27)
and consequently
(BN(O) 3N()> = —K(B) <[BN(OI® exp(—K(B)t).  (28)
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As discussed above (see also Ref [21]) for the process at
hand to have a uniquely defined rate constant one must
consider times such that v < ¢t < X~' Then Eq. (28) implies

, _ (BN BN@)
NI

Thus, evaluating the saturation or plateau value of the r.h.s.
of Eq. (29) (using the numerical procedure of Sect. (2) for
the numerator) yields K(B). It is obvious that apart from
reasons of numerical accuracy, the procedures based on Eqs.
(20), (21) and (29) should yield identical results.

KB} = (29)

rtr g K

(c) Kramer’s Formula {22]

Kramers has derived an expression for the escape rate out
of a one dimensional potential well in several limits asso-
ciated with the magnitude of the friction. For the over-
damped limit governed by the Smoluchowskt equation (1)
and for high barriers (Ez » k3T) his result {or the rate is

Ep
exp (k T T)
where w® and o™ are the vibrational frequencies corre-
sponding to the top of the barrier and to the bottom of the
well respectively and where the potential in these two
regions has been approximated by its expansion up to quad-
ratic terms about these points. For a multidimensional sys-
tem, Eq. (30) can be generalized by assuming that the non-

reactive modes are in thermal equiltbrium. Under this as-
sumption the rate takes the form [23]

LE)EB) wli_W]

(ID) _
Kiw' = 2my

(30)

0

ND ND
KI‘(R V= K ST}

(31)

where ND stands for “N-Dimensional” and where Kgr 15
the rate obtained from transition state theory

2ky T _‘-dxnre_ﬁyh,:xw
nM  fdx fdx,e-fvin s

(32)

Krst =

In Eqgs. (31) and (32) the subscripts r and nr stand for reactive
and nonreactive coordinates respectively.

4, A Two Dimensional Model

The method described in Sect. (2) has been applied to
solve numerically the diffusion equation in two dimensions,
to compare the Kramers expression (31)) to different nu-
merical ways of evaluating the rate and to examine effects
of multidimensionality on the reaction rates other then these
incorporated in Eqs. (31) and (32). The potential surface used
in this study may be written in the form
Vix,y) = Vo fr(xy) fLx.y) (33)
where f{x,y) is a quadratic form in x and in y such that
fix. ) = 0 describes the locus of an ellipse. In terms of the
geometrical parameters defined in Fig. 1, f(x,y) is

fix.y) = (" ;J‘”) [cos’(§) + a sin?(6)]

X=X Y— Y
a

(1 — o) sin(26)

u\2
+ (y a}’n ) [sin*(8) + « cos’(8)] — 1

where (xq; yo), 2, 6 and « represent the parameters of any of
the two ellipses f{x,y) = 0. The subscripts R and L (Right
and Left) represent different choices of the parameters. Thege
parameters are chosen for the two ellipses such that the
saddle point of the potential is at the origin. For the sake
of simplicity we have considered in this article only poten-
tials which are symmetric with respect to the vy axis. The
parameter V, is the hight of the potential barrier and (he
reaction coordinate i.e., the minimum energy path, goes
from one well to the other through the origin. In all the
calculations described below we have taken ar = 4 = g,
and have chosen the units of time and length such that ¢
=D, + D, =1

In the numerical evaluation of the rate Eq. (22) can be
used as written, but Eqgs. (28) and (29) may be simplified for
the model considered. The dividing surface s, where the flux
is calculated, is taken as the y axis. By using the symmetry
of the potential Vi{x,y) with respect to this axis, Egs. (24),
(25) and (2) lead to

BNG=0) = Jdx | dyf8(x —x0)8(y = yo) = e~ 7/0]
= &(xg) 1 35
= o) =5 {33)
where @(x) is the Heaviside function. Also from Eg. (2)
. s O |4
8N(1) = D | dy(v— . 5M>
— e ox Ox (36)
P,y tixg. yo)
. D, ¥ a
(8N == —pvioy Y
(BNON(@) = - _Imdye o~
. T dx, T dygeﬁ”""’] (3?)
P | = AV ixg. vyl _1_
“P(x.y.t]xa, yo)€ @(Xn)_2 V=t
Defining
. 1
P(x.y) — e—,’iV[x.y)[@(x) o EJ/Q . (38'

Eq. (37) takes the form

—(NSN(Y =D, | dy cfww.wéa__
—_— x

et ﬂV(,r.}')P(x,y,f!P)]lx =0

(-
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I
where
pix.y.tlP) = § dxo § dyo Px.y.tlxp,y0)

= T {40)

P(xo, ) = e P.

Egs. (39) and (40) imply that the calculation of {SNSN(t))
(hence of the escape rate, Eqg. (29)) can be done by simply
propagaling the initial “distribution™ P(x, y) of Eq. (38). This
pmpagation is performed using the FFT algorithm and the
equivalent Schrodinger equation (see below). A final FFT
procedure is then used to get the derivative with respect to
v in Eq. (39). The evaluation of Eq. (29) is facilitated by
poting that the symmetry of the potential imphes

BNOT> = @)
Note that P(x,y) can be negative (in fact [dx Fix.y) = 0)
hence it is not a real distribution. An initial real normalized
distribution can be constructed as
Pixyt=0) = P.(x.y) + P(x.y) (42)
where P.(x,y) is the equilibrium distribution. Note that P,
is orthogonal to B, (P.|P) = 0; ({P,| = constant). If this
choice of initial distribution is made than P can be inter-
preted as the deviation of the initial distribution from equi-
librium. In fact it is easy to see that P(x,, o, =0) can be
used in the r.h.s. of Eq. (40) instead of P{xg,x,) without
changing the results for (SNSN(1)) in Eq, (37).

In actual calculation we use the language of the equivalent
Schrodinger equation to compute the r.h.s. of Eq. (39). The
rate Eq. (29) is the given by

4D T o wan 2

K= i _
Jim o 5

et P eI B (x,y, 1 ), o] (43)

where ®(x. y,¢| &) is defined in analogy with Eq. (40) as the
“wave function” at time ¢, given that at £ =0 it was

+ 1
'ﬁ{xu:yo) = go(x0. o) [@(Xo) - ‘_i| . (44)

2

ltis evaluated as ®(x,y.1}$) = e~ ®. Note that by sym-

metry it is orthogonal to the “ground state™ @y(x,y) at all
time,

~ Next consider the Kramers resuit in two dimensions. Eq.

. 31) takes the form

KD < & ke (45)
Y
Where y is given by
. kT
D.M (46)

and where
K= a |20l @)
with
]% dy e—ﬁVEO.i'}
A=—" (48)

0

j dx | dye -t

— —

Since the origin is at the saddle point the barrier frequency
is obtained from

v

i - _ {B)y2 4
a2 N M{w™)". {49)
Substitution of Egs. (47) and {48} in {45) then leads to
23 0
k@ -poa [-2L 28 (50)
K ax v=0 y=0

5. Results and Discussion

The initial “distribution” used in our calculation is given
by Eq. (38). This corresponds to the actual distribution
Eg. (42), leading to

Py = | dx | dx P(x,».0) =% (51a)
0 —
and
[¢] at
1
Po=fdx | dxP(x,».0 = (51b)

Egs. (51a) and (51b) imply that the diffusion process follow-
ing the preparation of this initial state proceeds from right
to left.

In Table 2 we present results obtained from the different
methods described in the previous sections: The smallest
eigenvalue (SNVE) method (Eq. (22)), Chandler’s steady
state relaxation rate (CSSR) method (Eqgs. (29) and (43)) and
the Kramers’ steady state rate (KSSR Eq. (50)). These results
are given for different choices of the model parameters given
in Table 1. All the calculations where performed on a 27 x 2’
grid covering the physical dimensions x = (--1.5;1.5), y =
(—1.0,1.0) (hence the spacings are Ax = 1.5x2°% Ay =
1.0%27%. The parameters in Table 1 characterize the po-
tential surface and the diffusion rates, The last colomn in
Table 2 gives the number of timesteps used in the numericai
time evolution.

Two of the potential surfaces used in the calculations de-
scribed here are shown in Figs. 2 and 3. These figures display
the potential surfaces corresponding to cases 1 (also 3 and
4} and 9 {also 11 and 12) of Table 1 respectively. Cases 1 —4
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Table 1
Description of cases

Potential

parameters*) DD, BV, Case
8 =0 1.0 6 1
0 =0 1.0 2 2
By = nj2 50 6 3
3 = 50 0.2 [ 4
AR = 50
=1
g, = nf3 1.0 & 5
fz = n/6 10 2 6
By = mj2 5.0 & 7
o, = 02 02 6 8
ag = S0
T =1
i, = nj4 i0 ) 9
O = /4 1.0 2 10
fs = nj2 5.0 6 11
o = 0.2 02 6 12
x = 50
T ]
*) See Fig 1
Table 2
Transition rates
Case SNVEY CSSR" KSSR* Time
1 0.05007 0.05027 (.05658 2000
2 0.70500 069150 0.69950 2000
3 0.08379 0.08260 - 2000
4 0.01449 0.01775 - 2000
5 0.05123 0.05156 0.05616 2000
6 0.70290 0.60090 0.59740 2000
7 007191 0.07252 - 2000
8 001774 0.02086 - 2000
9 0.04751 0.04853 0.05677 2000
0.04742 004712 — 3000
10 0.69200 0.59080 0.57210 2000
0.67330 0.50260 - 3000
11 0.06221 0.06521 —- 2000
0.06170 0.06214 — 3000
12 0.01870 0.02101 - 2000
0.01833 (0.01942 - 3000

" SNVE: Smallest Non-Vanishing Eigenvalue method, Eq. (22).
" CSSR. Chandier's Steady State relaxation Rate, Eq. {43).
¥ KSSR: Kramer's Steady State relaxation Rate, Eq. (45).

correspond to a linear reaction coordinate while cases 5 —8
and 912 represent two groups of situations with curved
reaction coordinate. Some of the cases (2,6 and 10) corre-
spond to a small barrier hight (§V; = 2) where the experi-
mental reaction rate is not well defined. For the other cases
SV, = 6. Finally in cases 1,2,5,6, and 9,10 the diffusion ten-
sor is isotropic while the other cases correspond to non
isotropic diffusion.

From Table 2 we see that good agreement between the
two numerical procedures considered in this paper exists in
all cases where the rate is well defined (discrepancies are of

_fye 2yl/2 174
Ta(XE+Y) e x8av2)i72

Fig 1
Description of the geometrical parameters of the potential, Eq. (33).
f; 15 the angle between the two principal axes of the diffusion tensor.
In all the present calculations 65 = n/2 and these two principal axes
are taken as the cartesian axes x and y

04r

Fig. 2

Contour plot of the potential energy surface of case 3 with arrows
indicating the direction and magnitude of the steady stale reactive
flux

the same order as the numerical accuracy of the results) It
should be noted that the numerical accuracy 1s also consid-
erably better for the high potential barrier cases where the
smaliest non-vanishing eigenvalue 1s well separated from ll?e
higher eigenvalues (or where the saturation region I
Eq. (29) is well defined). In these cases we have found that
at time 2000 (time units correspond toa = D, + D, =




B. Carmeii et al.. Dynamics of Multidimensional Barrier Crossing in the Overdamped Limit

0.8

0.4

y 0.0

=2

Fig. 3
Same as in Fig. 2 for case 11

the error was less than 3%. The Kramers resuit also works
reasonably well when applied to the isotropic cases (in fact
its success for cases 2,6 and 10 (fV; = 2) is surprising, and
is probably fortuitous.

Consider now the effect of curvature on the reaction co-
ordinate and of anisotropy on the diffusion tensor. These
issues have been recently subjects of several studies. A recent
study [6] of the effect of the reaction path curvature in the
overdamped (Smoluchowski) limit of the Kramers problem
has shown that for isotropic diffusion (and isotropic poten-
tial wells) the curvature of the reaction coordinate plays no
direct role in the reaction kinetics, as is intuitively clear since
this kinetics is dominated by the flux across the saddle point.
Stll Matkowsky et al [6] have shown that the pre-expo-
nential factor in the reaction rate may be modified by the
diffusion in direction(s) normal to the reaction coordinate,
and thus may account for part of the difference between the
result based on the {(essentially one dimensional} Kramers
txpression and the numerical work. (Note that the Kramers
result is the lowest order term in an expansion in powers of
(BV0)~*, so corrections are expected even in one dimension).

Of more interest is the effect of non isotropic diffusion,
Particularly when the reaction coordinate does not coincide
With a principal axis of the diffusion tensor. (Cases 3 and 4
forrespond to situations when it does). Klosek et al. [8,9],
8 well Berezhkovskii and Zitserman [10,11] have shown
that 5 qualitative difference exists between the cases where
Fhe second derivative 4 of the potential at the saddle point
" the direction of fast diffusion is larger or smaller than
0. When A > 0 the large potential barrier and large dif-
'Slon anisotropy are interchangable, and a trivial general-
tion of the Kramers preblem applies. When 4 < (0 the
Muation is much more complicated. We defer a detailed

o
Y
| | l ]
-0.5 -0.25 @] 025 05
flux ot X=0
Y
-
| | j
-1.0 -05 C.0 05 bO
flux at X=0
Fig. 4

The reactive flux along the y axis, at x = 0 vs. position.
(a) case 3; (b) case 11

comparison between the analysis of this situation and the
numerical work to a later publication. Herc we note that
this case correspond to D, > D, (cases 3, 7 and 11} and is
charactertzed here by the fact that the reactive flux across
the ridge {y = 0) between the two wells is not necessarily the
largest at the saddle point. To see this we have plotted in
Figs. 2 and 3, superimposed on the potential surfaces cor-
responding to cases 1(3,4) and 9(11,12) respectively, arrows
whose direction and length represent the direction and mag-
nitude of the reaction flux. The latter is obtained from

o eVix.y)

Jolx,y.t) = _Dr[_ + HT}P(X.M)

o {52)
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o) aV{x,y)

Jo(x, 90 = —D_,,[-— + ﬁTJP(x,y.f)

3y (53)

where P(x,y,t) is taken at the quasi-stationary state for
which the transition rate is calculated. The flux arrows in
Fig. 2 correspond to case 3 and the flux arrows in Fig. 3 —
to case 11. The length I(x,y) of an arrow at location (x, y} 1s
taken as

AN A
i =r{(5) +(55)

where p is an arbitrary scale factor.Fig. 3 clearly shows the
deviation of the maximal flux from the geometrical saddle
point. This deviation depends on the geometry of the po-
tential surface, on the diffusion anisotropy and on the tem-
perature, and may lead to non-Arrhenius temperature de-
pendence of the reaction rate. Another view of the same
effect is shown in Fig. 4, where we plotted the x component
of the reactive flux as a function of the position y along the
y axis (x =0). Shown are plots for case 3 (Fig. 4a) and for
case 11 (Fig. 4b). The fact that for the latter case the flux
peaks at y =0 (position of the saddle point) clearly dem-
onstrates the effect discussed above.

(54)

6. Conclusion

In this paper we have described numerical methods for
solving multidimensional diffusion equations and have ap-
plied these methods to a model chemical reaction where
curved reaction coordinates and anisotropic diffusion play
non-trivial role in determining the reaction rate. The ap-
pearence of such multidimensional effects even in the rela-
tively simple overdamped situation emphasizes the short-
comings of analyzing reaction rates from equilibrium and
dynamical considerations purely at the transition state.
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