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Dynamic percolation theory is adapted to obtain diffusion coefficients for particles with
blocking interactions on incomplete lattices, within an effective medium approximation
(EMA). The substrate lattices have static bond disorder. The motion of a tracer particle
among identical background particles is regarded as particle motion in a fluctuating random
environment superimposed on the statically disordered lattice; the fluctuations results from the
motion of the background particles. Several schemes for incorporating the effect of the
background particles are discussed, all relating their motion in different ways to the
macroscopic diffusion. Comparisons with Monte Carlo simulations are performed for two-
dimensional simple square and three-dimensional simple cubic lattices. In the range where
single bond EMA is thought to be reliable, good agreement with the simulation is achieved.

I. INTRODUCTION

The diffusion of classical particles on disordered lattices
is used as a model system to gain insight into a variety of
physical systems. Examples are vacancy diffusion in highly
disordered solids,! ionic diffusion and conduction in solid
ionic conductors? and in polymer conductors® and elec-
tronic conductivity in disordered materials.* Although an
extensive literature exists on the diffusion of particles in such
systems,’ comparatively few studies directly address the is-
sue of particle interactions.®” Of the few calculations done
on interacting particle systems, most are simulation studies.
These are often very costly and furthermore are hard to ap-
ply near singularities of the transport phenomena (e.g., per-
colation thresholds). In this paper we advance an approxi-
mate analytical method, based on the effective medium
approximation (EMA) for the tracer diffusion of interact-
ing particles on disordered lattices modeled as random bond
networks.

The interactions considered in this paper are of the
blocking or excluded volume type, allowing only single par-
ticle occupancy of any site. The formalism can be extended
to longer range interactions. We have also carried out Monte
Carlo simulations for several particle densities and for a se-
ries of lattices of varying degrees of incompleteness in order
to test the approximate analytical results. Good agreement
was found between the EMA and the simulation results suf-
ficiently above the percolation threshold. Our computa-
tional resources did not permit thorough investigation of the
immediate vicinity of the threshold, however we expect
EMA to yield poor results in this region.

The formalism presented below is based on the EMA
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approach to dynamic bond percolation (DBP) theory. The
latter has been advanced by Druger, Ratner, and Nitzan?
(DRN) and by Harrison and Zwanzig® (HZ), to deal with
transport processes in dynamically disordered systems,
where the disorder (e.g., bond availability) changes in time.
It was later generalized by Granek and Nitzan,'® and was
used to develop an effective medium theory for the tracer
diffusion in a system of interacting identical particles in a
perfect lattice.® The idea behind this approach is that a tracer
particle in such a system moves in a dynamically disordered
environment made of the instantaneous local configuration
of other particles. A similar idea has been recently explored
by Hilfer and Orbach.'! In the present problem the situation
is similar, however, in addition to this dynamic disorder we
now have a static disorder associated with the time indepen-
dent random distribution of broken bonds.

In using DBP theory for the tracer diffusion in interact-
ing particle systems, we encounter two difficulties. First, the
blocking of occupied sites by the background particles corre-
sponds to a random site system, and approximating it by a
random bond system amounts to disregarding correlations
that may be important. Second, the results of a DBP model
are obtained in terms of a “renewal” time 7, which is the
characteristic time for the bond (or site) to change its char-
acter between the blocked and unblocked state. This time
has to be related to the motion of the diffusing particles in
order to make the calculation self-consistent. In fact, a com-
plete description of the process should be non-Markovian.
Granek and Nitzan® have suggested that the best choice of 7
within a Markovian description of the problem is the charac-
teristic time of the chemical diffusion in the system (i.e.,
r=D [ 'd’ where D, is the chemical diffusion coefficient
and a is the lattice length parameter) which for the case of
only blocking interaction is simply the effective single-parti-
cle hopping time. The good agreement shown below between
the calculation based on these concepts and our numerical
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simulations indicate that sufficiently above the percolation
threshold our approximations and our choice of 7 are justi-
fied. )

In Sec. II we derive our effective medium approxima-
tion for tracer diffusion on a bond disordered lattice in a
system of many diffusing mutually interacting particles. We
use here the Granek-Nitzan extension'® of the Harrison
Zwanzig EMAZ® which is particularly suitable for our calcu-
lation. In Sec. III the calculated values of the tracer diffusion
coefficients at various coverages and for various values of the
bond availability are reported for a square lattice and for a
simple cubic lattice, and compared with Monte Carlo simu-
lations. Additional discussions and conclusions appear in
Sec. IV.

. THE EFFECTIVE MEDIUM APPROXIMATION

A many bond state generalization of the HZ formalism
has been developed by Granek and Nitzan.'® Our present
discussion is based on this generalization.

Consider a system of many identical particles with con-
centration (per site) 4, diffusing on an incomplete lattice
characterized by a coordination number Z and by the frac-
tion 1 — p (0 <p < 1) of broken bonds. We focus on one of
these particles, the “tracer particle”. All other particles are
referred to as background particles. The probability P, (¢) of
finding the tracer particle at site / at time ¢ is modeled as a
dynamic bond percolation problem described by the sto-
chastic master equation

dpP A A

—_— —WcP: —_ O'a t Va'P- (2
; 3o >

Here a = (ij) designates the bond between nearest-neighbor

sites i and j,

Vo = (|0 = i) il = G (3)

and
P(t) =ZP,.(t)|i). 4)

In Egs. (2) and (3) and in what follows the carat sign de-
notes the operator in site space. Here |/) denotes a column
vector with ith entry equal to 1 and all others zero. Each
“state” P of the system therefore specifies the probability
distribution of the tracer over all sites of the lattice.

The time-dependent hopping rate across bond «, o, (1),
is determined by the state n of this bond [o,(?)
=o(n,(t)), see below]. There are three possible bond
states: (a) absent or broken (due to the static disorder), (b)
blocked at the target site (by a background particle), and
(c) available for hopping (unblocked and unbroken). One
may further distinguish between a broken bond whose target
site is blocked and a broken one whose target site is vacant,
but this is superfluous and does not lead to any additional
results. As mentioned in the previous section we introduce
here an approximation in treating the background particle
dynamics: only their effect on blocking the bonds accessible
to the tracer particle is taken into account. This in effect
amounts to replacing the dynamic site disorder associated
with the background particles with dynamic bond disorder

as implied by Eq. (2). This dynamic disorder exists in addi-
tion to the static bond disorder.

Consider now the time evolution of the states of bond
a = (if). We denote the probability that bond « is in state n
(n = a,b,c where a, b, and ¢ denote the three possible bond
states listed above) by ¢, (n,2). The corresponding transi-
tion probabilities are o(n) so that o(a) = o(b) =0 and
o(¢) = 1. The tracer particle is taken to be on site / and the
evolution of ¢, (n,t) is associated with motion of back-
ground particles into and out of site j. These background
particles are assumed to hop with an (as yet undetermined)
effective rate v, and the total rate of hopping out of an occu-
pied site j into any of its Z — 1 neighbors (excluding /) is
taken to be v(Z — 1) (1 — ). By taking this rate to be pro-
portional to the averaged site availability 1 — ¢ we have
made a mean field approximation to the motion of the back-
ground particles. Additional effects of particle-particle in-
teraction beyond the mean field approximation may in prin-
ciple appear in v. The value of v should also reflect the
influence of the static disorder on the motion of the back-
ground particles.

Similarly the total rate of hopping into an unoccupied
site j is v(Z — 1)4. Finally, when the bond a is in state
(broken) it remains in this state which corresponds to the
static disorder. Thus

¢, (a,t)
% Be (B1)
. (ct)
0 0 0
=0 —(Z-Dv(l-® (Z - Dvd
0 Z-v(l—®) —(Z-1)vd
b, (a,t)
X | ¢ (bt) (5
&, (c,t)
or
i'b (5)=Q,¢,() (6)
3t a ava s

where {1, the matrix in Eq. (5), is an operator in the space
of bond states and ¢, is a vector in the same space. The
eigenvalues of (,, are nonpositive and will be denoted — 4,
j=0,1,... . There s at least one zero eigenvalue, A, = 0 with
the right eigenvector given by ¢5% = p,, the equilibrium
solution of Eq. (6):

p.(a)=1—p,
Pa (b) =pd, N
Pa(c) =p(1 —8),

and the corresponding left eigenvector (1,1,1). Note that p,,
satisfies @, p, = 0 for any choice of p, and the identification
of p as the fraction of unbroken bonds is additional informa-
tion, not contained in 2.2 In our particular case there is
another zero eigenvalue (4, = 0) corresponding to the left
eigenvector ( — p, 1 — p, 1 — p). Finally, the third eigenval-
ue — A,, where A, = (Z — 1), corresponds to the eigen-
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vector (0, ¢ — 1, 7). Both latter eigenvectors should be (and
are) orthogonal to p,,."?

Next define the joint probability distribution f(P,n,t)
as the probability to find at time ¢ the tracer particle distrib-
uted according to P and the background particles and bonds
distributed so that n = ny,n,... = {n,} (n,, (@ =12...),is
a, b, or ¢). fis governed by the Liouville master equation

a a4 &

= = —— (WP, Qf, 8

F <9P( 1) + @, (8)
where

0:2&,. 9

Equations (6) and (9) imply that we ignore correlated fluc-
tuations of the bond states. Such correlations inevitably exist
since a hopping background particle, unblocking some bond
will end up blocking others. Ignoring such correlations is
consistent with replacing the dynamic site disorder by a dy-
namic bond disorder above, and with the use of a single bond
EMA in what follows. Such correlations can in principle be
included within EMA treatments,'® however we limit our-
selves here to the simplest approximation.

Starting from the distribution f(P,n,t), one defines a

partial average
J

o(a) — ¢
CV(1 + (a(a) — )hy)
CP(1 4+ (o(a) — P)h?)

o(b) — ¢
CV(1 + (o(d) — k)
C2( + (o(b) — ¥)hy)

where ¥( = ¥(z)) is the desired effective hopping rate
which is a function of the Laplace variable z, C" (I = 1,2;
n = a,b,c) are elements of the left eigenvectors of the matrix
., [Egs. (5), (6)] except the vector C? = (1,1,1), and
where , (I = 1,2) are scalar quantities defined by the identi-
ty

J

~v —¥
—p(l—oh) (1 —p)(1—9yh)
0 (9 - 1)(1—9h,)

The quantities A, have been explicitly calculated in Ref. 10.
They are given by

A
h,=‘.'i[1— 2+4 g(H;/J ')],

where — A; are the eigenvalues of ©@,, Egs. (5), (6)
(Ao=0, 4,=0, and AL, =(Z—1)v; P, =(2/Z) is the
EMA percolation threshold, and where g = — G; with G,
being the diagonal element of the lattice Green’s func-
tion.”>-'> For a simple cubic lattice in d dimensions g(¢) is
given explicitly by

an

(1-9)
(1-p)(1+h —oh)| =0.
(1 + hy, — oh,)
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P(n,t) =fdP Pf(Pn,t), (10)
yielding

% P(nt) = — WP(n,1) + QP(n,0). (11)
The initial condition for f{P,n,?) is taken to be

S(Pn,0) =5(P — Py)p(n), (12)
where

p(n) =];[pa(n,,), (13)

where the elements of p, (n) (n = a,b,c) are given in Eq.
7.

These equations are of the form characteristic of the
many bond state generalization'® of the Harrison-Zwanzig
effective medium theory® of the dynamic bond percolation
problem. The solution of this problem (within the single
bond EMA) is obtained as the condition for the existence of
a nontrivial solution to a set of homogeneous linear equa-
tions. This condition is the vanishing of the determinant of a
square matrix whose order is the number of possible bond
states (3 in our case), given by

o(c) — ¢
C(1 + (a(c) —h) |,
CP(1 4 (a(c) — ¥)hy)

(14)

Oa-[(zwl,) + ¥(2) 29.,]“‘-?", =mV,. (15

Using o(a) = o(b) =0; o(c) = 1 and the results for
the left eigenvectors of £, given above, the EMA equation
for i becomes

(16)

.
g(e) =~;—f exp[ ——;-t<2d+e)](lo(n)°’dt. (18)
(]

Here I, is the zeroth-order modified Bessel function. For the
case of the simple square lattice (d = 2) this simplifies to

R B AU A £\
g(g)_27(1+4) K[(1+4)] ‘

where K is the complete elliptic integral of the first kind. For
the case of the simple cubic lattice (d = 3):"4®

(19)
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g(8)=__4___

(3 + J€)

X{ E+DE+4) }'/2

2485 +8+424+86) (5 + 1)

XKk )K(k_), (20)

where
J
£= G+162+3-{[B +1)>*—9)((3 +1e)> — 1]}"?

GB+1e?-3+{[B+1)>—91[(3 +}e)> — 11}/

k2,
_EME+ D H g+ - 2[1 -+ 1!
EME+D L (E+HV ] F2[1 4+ (£+ 1))
(21)
and
(22)

Equation (16) and (17) lead to the following final form of the EMA equation for the dc effective tracer hopping rate ¢

_pU=9—p.

Ip. [(Z — V)v/Y1gI(Z — 1)v/¢]

¢ l_pc

In order to find an explicit solution for ¥ one has to
specify the characteristic rate v of the background particles.
Several possible models for v were suggested, compared and
discussed in Ref. 10. These are (a) v = ¢(1 — ), namely,
the hopping rate of the background particles is taken to be
equal to the desired EMA tracer hopping rate. This yields

1—p, (1 =p)[1=p. +pXg(X)]’
(24a)
x=Z-1 (24b)
1—9

(b) vis equal to the hopping rate associated with the chemi-
cal diffusion coefficient. In the present case (blocking inter-
actions only) the chemical diffusion is independent of cover-
age so that v is taken to be

[(p —p)/(1—p.) p>p.
0 p<p.

which is the EMA result for the effective hopping rate of a
single particle on the random network. (¢) v = p, namely, a
simple mean field result, which becomes exact in the @ — «
limit.

The first choice is appealing because it constitutes an
explicit result for ¢. In Ref. 10 it was argued that this choice
is questionable, because v—! represents a time scale for a
local rearrangement process while ¢! is a time scale for the
effective motion, which is based on a long range average.
Here we encounter another unphysical feature associated
with this choice, as it is easy to see from Eq. (24) that it leads
to a percolation threshold which depends on the coverage 4.

The rationnale for the second choice is that blocking and
unblocking of sites adjacent to the tracer particle corre-
sponds to density fluctuations, which are controlled by the
chemical diffusion rate. The weakness of this choice is that
Eq. (25) is an averaged quantity which contains information
on the long range effects of the bond disorder, while hopping

(25)

(1 =p )1 ~—p. +p.[(Z - D)v/¥1gl(Z — )v/yY]}

(23)

of background particles to and from adjacent sites is a short-
range process ( that exists even below the percolation thresh-
old).

The third choice v = p, focuses on the shortest time
(w— ) and range (motion along a single bond) of the dis-
order. We expect that a better choice for v should corre-
spond to the chemical diffusion at intermediate frequency
(implying the need for a non-Markovian formalism) of the
order of the single-particle jump rate. We defer such more
elaborate approximations to future work and limit ourselves
here to the simple possibilities described above. In what fol-
lows we compare results based on these choices with com-
puter simulations.

lil. RESULTS AND DISCUSSION

The simulation results reported in this section are based
on standard Monte Carlo (MC) simulations performed on a
two-dimensional simple square and three-dimensional sim-
ple cubic lattices. The square lattice was of size 300X 300
and the cubic lattice—of size 50 X 50 X 50, both with period-
ic boundary conditions. Bonds between any two adjacent
sites were present with probability p. Particles were added
randomly up to a specified occupancy + and each site could
be occupied by no more than one particle. For each specified
pair of values of p and ¢ the results shown below represent
averages over three different realizations of the random lat-
tice and over the trajectories of all the particles. A standard
MC algorithm was employed for the particle motion, ran-
domly sampling the diffusing particles and randomly choos-
ing a NN site next to each one. Hopping occurs with 50%
probability into the chosen NN site if it is unoccupied.
Otherwise hopping is blocked. The trajectories (one multi-
particle trajectory for each of the three realizations of the
random lattice) were 50 000 MC steps long, and the diffu-
sion constant was extracted from the last 10 000 steps, far
into the region where () grows linearly with time.

The mean-squared displacement becomes a linear func-
tion of time after an initial nonlinear regime. The duration of
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FIG. 1. Effective hopping rate y calculated according to Eq. (24), for the
two-dimensional simple square lattice. (a), (b), (¢) correspond to the dif-
ferent models for v: (a) v= (1 — &); (b) v=(p—p.)/(1 —p,); (c)
v = p. The coverages J are 0.4 (full line), 0.2 (dashed line), 0.1 (dotted
line) and 0.05 (dashed dotted line). The MC simulation results shown are
the same in all figures. Full squares, empty squares, full circles, and empty
circles are MC results for & = 0.4, 0.2, 0.1, and 0.05 respectively. For each
of these coverages there are four points calculated for p = 0.6, 0.7, 0.8, and
0.9.

TABLE 1. A comparison of EMA and MC results for the tracer diffusion
coefficient for the two-dimensional simple square lattice and for p = 0.6.
Model A is v = ¢; model Bis v= (p — p.)/(1 — p.); model Cis v=p.
Values for four coverages are reported.

Model Model Model Monte

4 A B C Carlo
0.05 0.175 0.176 0.184 0.157 + 0.001
0.10 0.151 0.154 0.168 0.139 + 0.003
0.20 0.106 0.117 0.140 0.110 + 0.003
0.40 0.032 0.066 0.092 0.062 + 0.001

this transient depends on the specific values of p and +# in the
system. The diffusion coefficient is obtained from the mean
square displacement for a time interval At (typically 10 000
Monte Carlo steps), following the onset and stabilization of
the linear regime, by dividing by 2d At (d =2 or 3) and
averaging over the several realizations of the system for the
given values of p and 3. Thus for each individual particle in
turn, all other particles present on the lattice were regarded
as background particles in the sense of our EMA formula-
tion.

Our results for the two-dimensional square lattice are
summarized in Fig. 1 and in Tables I and II. Figure 1 depicts
the EMA hopping rate # in the range p, <p<1 for several
values of ¢. Figure 1(a) uses v = ¢(1 — ), namely, the
result (24) for ¢. Figure 1(b) uses Eq. (25) for v and Fig.
1(c) uses v = pin Eq. (23). In Fig. 1 we have also included
the MC results for the tracer diffusion coefficient. All mod-
els behave similarly as p— 1. The differences between them
become apparent near p.. In particular, the percolation
threshold depends on the density of particles in Fig. 1(a), an
unphysical behavior. Another interesting aspect is associat-
ed with the other choices for v. The choice (25) leads to
¥~ (p —p.)* near p,, while the choice v=p leads to
¥ ~p — p.. Our MC simulations are not sufficiently accurate
near p, to distinguish between these results.

In Tables I and I1, we compare the EMA results for the
three models (or choices) discussed above to results of the
MCssimulations. We do so for two representative values of p.
In Table I the values of the tracer diffusion coefficients are
displayed for several coverages and for p = 0.6. In Table II
the simulation results and EMA values are presented for the
same coverages and for p = 0.9. Far above p, (Table I1), the
model v = ¢ has the best quantitative agreement with the
simulation results. All the models closely coincide with each
other for the lowest coverages reported. Closer to the perco-
lation threshold (Table I) and at high coverages, we see

TABLE II. Same as Table I but for p = 0.9.

Model Model Model Monte

J A B [ Carlo
0.05 0.745 0.745 0.746 0.729 + 0.012
0.10 0.691 0.692 0.694 0.677 + 0.006
0.20 0.586 0.589 0.593 0.548 + 0.006
0.40 0.392 0.403 0.409 0.359 4 0.004
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FIG. 2. Same as Fig. 1, for a 3d simple cubic lattice. The four MC results are
for p = 0.4, 0.6, 0.8, and 0.9. The coverages and the line notations are as in
Fig. 1. Effective hopping rate ¢ calculated according to Eq. (25) for the
three.

TABLE II1. EMA and MC results for ¢ for the three-dimensional simple
cubic lattice. p = 0.4

Model Model Model Monte

b3 A B C Carlo
0.05 0.086 0.085 0.091 0.107 4+ 0.003
0.10 0.071 0.073 0.083 0.097 4- 0.001
0.20 0.042 0.052 0.068 0.079 4+ 0.001
0.40 0.000 0.026 0.044 0.026 + 0.001

again the dependence of the diffusion threshold on the parti-
cle density in the v = ¥ model. Sufficiently above the thresh-
old this model works quite well. In all the examined cases,
results based on the choice (25) are in a reasonable agree-
ment with the MC simulations, although they consistently
overestimate the value of the tracer diffusion coefficient by
about 10%.

Results for the three-dimensional simple cubic lattice
are given in Fig. 2 and in Tables III-V. Figure 2 presents the
resulting tracer diffusion coefficients for our three choices
for v, together with the results of the MC simulations. Qual-
itatively, these graphs appear similar to those of the two-
dimensional studies and their critical properties are like the
corresponding cases of Fig. 1. The actual percolation thresh-
old for this system is 0.2495,° while the EMA threshold is §.
Sufficiently above threshold, results based on the choice
v= (1 — &) are in good agreement with the simulation
results. This choice is superior in this region to the other two
choices, as may be inferred from Tables III, IV, and V. Clos-
er to p,, this choice leads to incorrect behavior of ¢ which
vanishes at values of p, which unphysically depend on .

IV. DISCUSSION AND CONCLUSIONS

A particularly simple dynamic bond percolation model
has been used to develop an effective medium theory of trac-
er diffusion rates for systems of interacting particles on dis-
ordered lattices. The dynamic aspect arise not from the mo-
tion of the host matrix (as is true in, say, polymers above
their glass transition temperature) but from motion of the
particles themselves. When appropriate models are used, re-
lating the diffusion rate of the background particles (thus
the time scale for the lattice evolution as observed by the
tracer particle) to the chemical diffusion rate, good agree-
ment with the results of MC simulations is achieved far
enough from the percolation threshold. Furthermore, mean
field approaches are increasingly accurate as dimension is
increased. In the present study, an EMA has been formulat-

TABLE IV. Same as Table III but for P= 0.6.

Model Model Model Monte

4 A B C Carlo
0.05 0.371 0.370 0.372 0.371 4+ 0.004
0.10 0.341 0.341 0.345 0.338 4 0.002
0.20 0.282 0.286 0.293 0.286 4 0.001
0.40 0,162 0.188 0.190 0.153 + 0.001
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TABLE V. Same as Table III but for P=0.9.

Model Model Model Monte

d A B C Carlo
0.05 0.798 0.797 0.798 0.795 + 0.013
0.10 0.746 0.746 0.746 0.741 4+ 0.006
0.20 0.642 0.644 0.645 0.636 + 0.004
0.40 0.432 0.453 0.455 0.404 4 0.001

ingly accurate as dimension is increased. In the present
study, an EMA has been formulated for tracer diffusion,
incorporating a mean field treatment of the distribution of
the background particles. As expected, the results are better
in three dimensions as compared to those in two dimensions.

Correlations among different bonds were ignored in the
present work. Such correlation necessarily exists: First, par-
ticle occupation of a site implies that all bonds leading to that
site are blocked. Such static correlations were neglected by
treating the system as a dynamic single bond problem and
not as a dynamic site percolation problem. Furthermore,
dynamic correlations exist: As a particle moves from one site
to another, it simultaneously blocks some bonds and un-
blocks others. Such correlations can be taken into account
within the present formalism,'® which will improve to some
extent the results obtained here. The main limitations re-
main however those imposed by using the effective medium
approximation.

The present work has focussed on occupation exclusion
interaction (no more then one particle at a site). Such mod-
els are useful for some alloys and for vacancy diffusion in
highly defective solids. The main challenge in such applica-
tions is the incorporation of more realistic interparticle in-
teractions into the formulation. This can be achieved by in-
corporating extended mean field methods (e.g., the
quasichemical approximation) into the dynamic percolation
formalism. We are currently proceeding in this direction.
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