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Dynamic percolation theory is used to obtain the tracer diffusion coefficient in binary mixtures
of “noninteracting” lattice gas (with only the blocking interactions, i.e., double occupancy of a
lattice site is forbidden) within the effective medium approximation (EMA ). Our approach is
based on regarding the background particles as a changing random environment. The result is
expressed in terms of two fluctuation time parameters which we attempt to determine self-
consistently. We compare two possible choices for these parameters which are consistent with
our former results for the single component system. The resulting tracer diffusion coefficient
for both choices compares well with numerical simulations whenever single bond EMA is
expected to be reliable. Comparison is also made with the theoretical results of Sato and
Kikuchi [Phys. Rev. B 28, 648 (1983) ] and discrepancies between both theories are discussed.

I. INTRODUCTION

Diffusion of independent particles in static percolating
networks has been thoroughly investigated in the past two
decades.'”” However, in reality the diffusing particles inter-
act among themselves, thus limiting the validity of these
studies to extremely low concentrations. A more general sit-
uation is that of a binary mixture of diffusing particles. The
latter case reduces to the former when particles of one kind
are infinitely slow relative to the other kind. From the ex-
perimental point of view these situations are encountered in
mixed alloys,®® mixed ionic conductors,®® reacting and
nonreacting adsorbate mixtures on solid surfaces,* inter-
diffusion in mixed polymer melts,*® and in many other
systems.

There is a substantial amount of analytical and simula-
tion work®'® on particle motion in the so-called “noninter-
acting” lattice gas (NILG) where only blocking interac-
tions are taken into account (namely, double occupancy of a
site is forbidden). However, whereas some simulation work
on NILG mixtures have been done,'”>* only a few analyti-
cal studies (of NILG mixtures) have been described.?*2?
With the exception of the theory of Sato and Kikuchi,?®
these theories are limited to jump rate ratios y =T, /T,
between the components which are not too small (or too
large), and, in particular, fail to predict the percolation
threshold in the ¥ -0, oo limits: in the binary mixture lattice
gas (LG), when one component (say A) is static relative to
the other one (B), the tracer diffusion coefficient of the fast
particles B should vanish at and below the percolation
threshold created by the A particles. This situation differs
from that of a single particle diffusion in a static disordered
lattice since the B particles also interact among themselves.

Recently,'® we have successfully applied dynamic bond
percolation (DBP) theory***? for tracer diffusion in a sin-
gle component lattice gas. A similar approach has been dis-
cussed by Hilfer and Orbach.**® The approach was based
on the observation that the background particles can be
viewed as a changing random environment for the tracer.
We have shown !¢ (for self-diffusion, i.e., for the case of iden-
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tical tracer and background particles) that this theory yields
a fairly good approximation for the tracer diffusion coeffi-
cient in the whole concentration regime. For the small va-
cancy concentration limit our theory yields standard ap-
proximate results, originally derived by Kikuchi.'® For
different tracer (B) and background (A4) particles the stan-
dard effective medium approximatioin (EMA) result for a
single particle moving in a static random bond network and
the mean-field result for the tracer diffusion coefficient were
obtained in the ¥—0 and ¥ — « limits, respectively.

In this paper we generalize our method for the case of
tracer diffusion in multicomponent “noninteracting” lat-
tice-gas (blocking interactions only) mixtures. In this mod-
el, each particle of component / has a bare jump rate T, , from
one site to a vacant nearest-neighbor site, independent of its
environment. To find the tracer diffusion coeflicient, we
make use of the EMA for the many bond states dynamic
percolation theory, previously derived by us®® as an exten-
sion of the EMA theory of Harrison and Zwanzig (HZ).*’

We study in detail the binary mixture case, which is
relevant for binary alloys, diffusion of co-adsorbed mole-
cules on surfaces and (with Coulombic interaction neglect-
ed) for ion migration in solids. A tracer O particle is assumed
to hop among A4 and B particles. An explicit expression for
the tracer diffusion coefficient is obtained in terms of the
concentrations ¢, and ¢z, the hopping rates ', ' ,,and 'y
(I, is the tracer hopping rate), and two (initially unknown)
local fluctuation times 7, and 7. For the latter quantities
we use two possible ansatzs, one—based on the mean-field
approximation—takes r; = (Z — 1)I; (Z is the number of
nearest neighbors ), while the other relates the times 7; to the
chemical diffusion coefficients of the system. The result is
analyzed in detail in the limit of one static component
y=TI,/Tg -0 (or, equivalently, ¥y— o) and also in the
limit of small vacancy concentration ¢, —0
(cy =1—c=1—c¢, —cg). Special attention is given to
the cases I'y = I' , and T’y = ['; which yield the results for
the tracer diffusion coefficients of 4 and B components, re-
spectively.

Our approximate results are compared to results of nu-
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merical simulations for both the static (¥ = 0) and dynamic
(¥>0) cases. Good agreement is found for both choices of
fluctuation times in all situations where single bond dynam-
ics (neglect of dynamic and static correlations) and single
bond EMA are expected to be valid.

This paper is organized as follows. The multicomponent
system is studied generally in Sec. II. An explicit solution for
the binary system is obtained in Sec. IIL. In Sec. IV we dis-
cuss the fluctuation times needed for the calculation and
express them in terms of the bare hopping rates I';, the num-
ber of nearest neighbors Z, and (for one of the two ansatzs)
in terms of the chemical diffusion coefficients. The limit of
one static component and the small vacancy concentration
limit are investigated in Secs. V and V1. In Sec. VII we obtain
an approximate expression for the chemical diffusion coeffi-
cients of the system, needed for the calculation of the local
fluctuation times. We conclude in Sec. VIII by presenting
some numerical results and comparing them to results of
numerical simulations.

il. THE MULTICOMPONENT MIXTURE

Consider an n component (not counting vacancies)
“noninteracting” lattice gas (blocking interactions only)
whose constituents are 4,, 4,, A5, ..., A, with corresponding
elementary jump rates I';, T, T';, ..., T',,. We consider the
diffusion of a tracer O particle with an elementary jump rate
I, embedded in this LG. Focussing on a nearest-neighbor
(NN) bond to the tracer O particle we can define a stochas-
tic state variable & for this bond which is related to the kind
of particle that occupies the corresponding NN site to the
tracer, either 4,, 4,, A,, ..., A, or neither of them—V (for
vacancy). Thus, £ can take the symbolic “values” § = 4,,
Ay, A, ..., A,, V. The stochastic (dimensionless) jump rate
of the tracer particle to that NN site is given by the function
(&) defined as

_[1 ife=v ]
o=\ 0 ife=d,..Af

Thus each bond is associated with only two basic rates, 0 and
1, however o(£) = 0 corresponds to many states of a bond.
The transition between the bond states is assumed to be de-
scribed by a characteristic Markovian rate equation

D16 =3 Q. EEVEWD,
E” <

where f,, (£,t) is the probability that bond « is in state £ at
time 7 and Q, (£,£ ') is a characteristic rate matrix. Its ele-
ments have to be found from the lattice-gas dynamics itself.
0, (£,£') (€ #£E£') is the transition rate constant to go from
bond state &' to bond state & while Q,(£8)
= — 2 .8, (£',€) is the rate constant out of state §. It is
important to note that this Markovian assumption is an ap-
proximation; the precise dynamics is more likely to be non-
Markovian.

The elements 2(&,£’) are determined in the following
way: First, we do not allow a direct exchange between the
particles. This is impossible because of the blocking interac-
tions. Second, we choose them to obey detailed balance con-
ditions. Thus, given the concentrations {c;} of the {4,}

@1

2.2)

(f = 1,...,n) components, the matrix elements Q(£,£’) are

given by N

QA4 V)y=c/7;

QV,A,) =cy/1;, Q(A44;) = — (cv/7)8,
and

Q= -3 e/, 2.3)
where ¢, = 1 — ¢, with ¢ = Z,¢; being the total concentra-
tion of particles, is the vacancy concentration. The fluctu-
ation time parameters {7,} (i = 1,...,n) are, in principle,
functions of the jump rates I"; and the concentrations {c; }.
The simplest choice for these parameters is obtained from
the following mean-field approach, previously described in
Ref. 16 for the one component system. First, we find the
mean-field jump rate of an 7 type particle from a site which is
NN to our tracer particle. This rateis ¢, (Z — 1)T;, where
Z — 1instead of Z appears because the tracer site is excluded
(Z is the coordination number of the lattice). Comparing
these to the corresponding rate implied by Eqs. (2.2) and
(2.3), ¢y /7;, we find that :

' =(Z-1I,, i=1,.,4,. (2.4)

A more general discussion of the times 7, is given in Sec. IV.
In the following results we do not use explicitly Eq. (2.4).

Following our previous treatment for one component
lattice gas,'® which makes use of the HZ formalism,*’ the
tracer random walk is described by an approximate stochias-
tic master equation for the walker probability P, (¢) to be at
site { at time ¢

d .

—P(t)=T ol&,(D][P;() — P:(1)], 2.5
ar :(2) 0,—;) [§;(D][P(6) — P(D)] (2.5)
where {7} denotes the group of sites nearest neighbors to i.
Our aim is to average over Eq. (2.5) in conjunction with Eq.

(2.2). This generally leads to the effective medium equation

d
= (P, =T ;
dt( 1(’)) Oﬁl

xfdt'{p(t—t')[m(t'»—<P.-(t')>]
0
(2.6)

and the problem is to determine the effective rate (memory
kernel) #(2). A solution for this problem has been obtained
in the effective medium approximation (EMA) and is given
in detail in Appendix A and in Ref. 38. The result is that the
frequency-dependent dimensionless effective jump rate
(), the Fourier—Laplace transform of #(¢), is determined
from the requirement that the following set of 7 + 1 linear
equations should have a nontrivial solution, namely, that the
determinant of coefficients of the Q, (Q; are vectors in the

. site space) vanishes:

> [0(8) — (@) ]Q, =0 (2.7)
and : ‘
> MO+ by [0(8) — P Q; =0,
: I=1,.,n. (2.8)
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Here, M (" (I = 1,...,n) are elements of the left eigenvectors
of the transition matrix ) corresponding to non‘ero eigen-
value A,, namely,

ZMg’.)Q(g’,é‘) = —-AMP, A,>0 2.9
£

the A, and ¢, are given by
h, =€—;—(1 —eg(€)), (2.10)

where g(e€) is the lattice Green’s function at the origin (see
Refs. 3-6 and 48 and Appendix E for explicit expressions),
o+ 4,
€ = (2.11)
Loy
with I being the bare jump rate of the tracer particle O; and
where

p.=2/Z (2.12)
is the EMA percolation threshold. Thus, with the elements
of the matrix 2 known, Egs. (2.6)—(2.12) provide a com-
plete EMA solution for the tracer diffusion coefficient in the
form (for simple cubic lattices)

D, (») =To(w)d?, (2.13)

where a is the lattice constant. In the rest of this work we use
a=1.

In Sec. III we apply the above formalism to the case of
binary mixture (n =2) and solve explicitly for the tracer
diffusion coefficient.

lit. THE BINARY MIXTURE

Here we consider a mixture of two types of particles, 4
and B, with jump rates I', and Iz, respectively. Thus, the
bond state variable £ can take the values 4, B, or V. The
dynamical matrix () is therefore 3 X 3. The elements of {) are
given by Eq. (2.3). Thus, with the concentrations of the two
components denoted by ¢, and ¢z and the (yet undeter-
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where ¢ = ¢, + ¢ is the total concentration of particles and
¢y = 1 — cis the vacancy concentration.

Following the formalism described in Sec. II, the two
nonzero eigenvalues of the matrix  are

1—c¢ l1—c
A, =l[ 2+ =
2 Tg T4
1— 1 —cp\? 4c
N
Tg T4 TyqTp
The associated left eigenvectors m, = (M %),

M2 M%), corresponding to 4 , , are

CV‘TAﬂ'j: )

CV—TBﬂ’i

(3.3)

m, =(cV, cy—T4h,, ¢y

Obviously, these eigenvectors are determined only up to a
constant. When 7, = 75=7 one has, from Eq. (3.2),
A,=1/rand A_ =c, /7. Thus, for m_ given by (3.3)
both the numerator and denominator of M {~> vanish and
this term approaches a finite limit

(3.4)

(see Appendix B).

The fact that in the limit 7, = 75, =7, 4 , becomes the
density relaxation rate 7~ ! is significant. If we define the
bond availability probability ¢(o,t) (i.e., the probability to
have a bond transition rate o at time ¢) by
#(0,t) = f(A,1) + f(B,t) and ¢(1,2) =f(V,t) we get from
Eg. (3.1) the following Markovian equation for ¢

mined) fluctuation times denoted by 7, and 7, the bond d (6(0,0) —(L—=¢) /7 c/T\($(0,t)
state dynamics is described by ) (¢(l,t) “\—oyr —e/r s(1,0) (3.5)
(4,2)
a J;( V. This equation was shown to be valid,'® within the mean-field
ot ' approximation, in the single component NILG with 7 given
(B,0) by 7' = (Z — 1)I". This means that in order to be consis-
—Cy/T, Ca/Ta 0 tent with our former results'® in the one component case
=| c¢,/714 —(cy/74 +C5/Tp) cy/Ty I'y=Tp=I, we must use in this limit 7,
0 s/ T eyl =7p= [(Z— 1)I'] ! for any composition and total con-
centration.
fl4.0) From Egs. (2.7) and (2.8), the effective hopping rate
XAV ) (3.1) ¥(w) in the single bond EMA is determined from the re-
(B,1) quirement
]
- ./ - ¥
det (1_¢h+)cV [l+h+(l—¢)]K+ (1_¢h+)cVF+ =0, (3.6)
(I—gh_de, [l+h (A—9IK_ (1—oh_)c,F_
where
K, =cp—714,, (3.7a)
F, = K. (3.7b)
T ey —Tpd,
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Equation (3.6) may be solved for the EMA effective
hopping rate ¥ (=4/,) of the tracer particle. The solution is
facilitated by using the identity

K (1-F, )-K, (1-F_)=c(F, —F_) (3.8)

which may be shown to hold*® using Eqs. (3.2) and (3.7).
This leads to the implicit equation

CV —pc‘(l _X)(l - 6+ g(€+ ))

¢=
1 —DP. +pc€+ g(€+ )
(1l —e_g(e_
_xpd gle_)) (3.9)
l—p.+p.e_gle_)
with
7 A
€. _otrs (3.92)
Foy
and where
1—F
y=K_ ——. (3.9b)
F, —F_

Equations (3.9) constitute the most general final result
of this paper and a departure point fornumerical evaluation
of 1. We first examine a few special limits:

(a) For 74 = 75 =7, namely, the 4 and B particles are
identical, wehave A | =1/7andA_ = ¢, /7. We thus find
K_ =0andF, =1whilel — F_ isnonzero (see Appen-
dix B). Therefore y vanishes in this limit [like (7, — 75)?].
Equation (3.9) reduces to

Cy — P, +pc€g(€)

= 3.10
i 1 —p. +p.egle) (10)

with
€= (iw+ 1 ")/ (Top). (3.10a)

This is the previously obtained result for the tracer effective
hopping rate in a single component NILG.!537-38

(b) For I'y = I' and cp —0 we have a tracer B moving
in an 4 background. This should again yield the single com-
ponent result Eq. (3.10). Indeed, in this case we have from

Eq. (3.2)
l—c, 1

Ts T4

/{ + = —2-
If (1—cy)rz'>7" we have 4, = (1 —c¢,)/75 and
A_ =1/1,. We thereforehave K_ = —c, and F, -
while F_ is finite. Thus y = ¢, and after some algebra we
find that all the terms containing € , vanish identically and
Eq. (3.9) becomes identical to Eq. (3.10) withc, =1 —¢,,
o =Tp and 7= 7,, as expected. For (1 —c )75 '<7;!
wehaved | =1/r,andA_ = (1 —c¢,)/75,thusF_ -
while K and F | are finite. Hence x—0and Eq. (3.10),
with the same definitions for ¢, I',, and 7, is again recov-

ered.
(c) Consider the case where both T ,/I';—»0 and

I'3 /T4, —0, while their ratio ", /T ; takes any finite value.
In this case both 4 and B are infinitely slower then the tracer
O and the latter undergoes a single particle diffusion in a
static percolating network. Indeed, in this limit Ty7; !,
For5'—0s0 A, /T,—0 and we get again Eq. (3.10) now

1 {I_CA 1

]. (3.11)

T T4
1

with € = iw/ (T 3¥), which is the known EMA result for this
case.>® In particular, for ©@=0 we have
Y= (cy, —p.)/(1—p,.)forcy>p, and O for c;, <p..

(d) In the opposite limit where I',/T,— o and
I'y/Ty— o (but with arbitrary ratio I',/I'g), or for
@/Ty—> w0, we have €, >0 as well and using'®
€, gle, )—1 we get ¢ = c,—the mean-field result, which
is the exact result for this limit.

The result (3.9) is parametrized by the density fluctu-
ation times 7, and 7, which are expected to be dependent on
the bare jump rates I' , and I' ; and on the concentrations ¢,
and c;. Next we consider this dependence in more detail.

IV. DENSITY FLUCTUATION TIMES

The fluctuation times 7, and 75 of Eq. (3.1) are typical
parameters of dynamic percolation theory, however their
determination in the context of the present application con-
stitutes the main conceptual problem in this formalism.
There is no unique rigorous way to obtain these parameters.
For this reason, we propose a few possible options using
plausible physical arguments, and contrast them with results
of numerical simulations.

The simplest way, already described in Sec. II, is to use
the mean-field jump rates of the 4 and B particles from a site
which is NN to the tracer particle. These are ¢,,(Z — 1)T",
and ¢, (Z — 1)T'y for the A and B particles respectively,
where Z — 1 instead of Z appears because the tracer site is
excluded. Comparing these to the corresponding rates in Eq.
(3.1), ¢, /74 and ¢} /75, we find that [cf,, Eq. (2.4)]

77'=(Z~-1)T, (4.12)
and
5 '=(Z=1)T,. (4.1b)

This is a reasonable approximation in many situations. We
note however that this choice disregards any possible de-
pendence of 7, and 75 on the composition of the mixture. In
particular, in the static 4 limit 7, — c0, one expects some
effect of the percolation properties of the static random
network made by the A particles on the fluctuation time 7.
Such effects are absent in Egs. (4.1).

With this in mind we shall follow our previous studies!®
and attempt to relate the fluctuations times to the chemical
diffusion coefficients of the system. The rationale behind this
approach is that the chemical diffusion rates are directly
related to concentration fluctuations. In our binary mixture
there are four such chemical diffusion coefficients:
D,,, D45, Dp,,and Dgy. They are defined as the coeffi-
cients of the two coupled phenomenological diffusion equa-
tions (see also Appendix C)

J (cA (x,t)) B (DM DAB)(VZCA (x,t))

dt\cs(x,t))  \Dy, Dpp J\Viep(x,1))
Here the diffusion coefficients may depend in a complicated
way on the concentrations c¢, = {c,(x,t)) and
cp = {cp(x,t)), on the jump rates I", and I, and on inter-
action parameters (in the interacting LG case). In this sec-
tion we assume that these coefficients are known. In Sec. VII
we give approximate practical expressions for these coeffi-
cients in the NILG case.

(4.2)
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As a first step we write the discrete form of Eq. (4.2)

%PA (L) =D,y 3 [P(1'1) — P, (10)]
2

+D, Y [Ps(I') — Ps(l)], (4.3a)
>

2 Po(ht) = Dy 3 [P, (10 — P, (10)]
>

+‘DBB z [PB(I"I) —PB(l9t)]9 (4-3b)
T

where P, (/,t) and Py (/,t) are the probabilities to find an A4
or B particle on site / at time ¢, respectively. Thus, the discre-
tization is assumed to be valid on the same lattice on which
the lattice gas was originally defined. We note however that a
rigorous discretization of this type should probably lead to a
non-Markovian equation.

Consider now Eq. (4.3) written for a site / which is NN
to the tracer particle. The tracer-site is then excluded from
the sums over /' in the right hand side. Toderive Eq. (3.1) we
make a mean-field approximation by taking P, (I',t) =c,
and Py (I',t) = cp for any ' # 1. Then with f(A4,8) =P, (1)
and f(B,t) =P, (1,t) we have

£ 40 = (Z— DDy [, ~fidD)]

+Dyplcs —f(BJ)]}, (4.4a)
2L 1B = (Z~ DDy [es ~fAD)]
+ Dyg[cz —f(BH)]}. (4.4b)

On the other hand, using f(V,¢t) = 1 — f(4,t) — f(B,t) in
the first and third lines of Eq. (3.1) leads to

1—
9 fapy = -~ pan - A B + 4
dt T, T, T4
(4.5a)
d l—c, Cp Cp
—f(Bt) = — S(B,t) ——fl4,t) + —.
dt Ty Tg Ty

(4.5b)

Comparing now Eqgs. (4.5) to Egs. (4.4) we find that they
can be identical only if

D
a5 _ G4 (4.62)
D,, 1 —cp
D
m__%8 (4.6b)
Dyp 1—¢,
If so, we have
— 1D
= Ll_).i"_ , (4.72)
1—cg
Z—-1D
rpt =8 Dl (4.7b)
1—cy

However, conditions (4.6) do not generally hold, even in the
NILG case considered here. If we use the linear relations
given in Appendix C Egs. (C12), between the Onsager coef-
ficients A, ,, Agp, and A = A, and the chemical diffu-

sion coefficients defined above, we find that the relations
(4.6) hold only if the cross Onsager coefficients vanish,
namely, A, = Ay, = 0. On the other hand, both the simu-
lation results of Kehr ef al.'’ and some exact®*® and ap-
proximate®* results for limiting cases (see also Sec. VII)
show that the cross Onsager coefficients may be of the order
of the diagonal ones, so Egs. (4.6) and (4.7) are not justi-
fied.

The validity of the mean-field dynamics used here,
namely, of Eq. (3.1), is thus questionable.** Still, Eq. (3.1)
seems intuitively to be a relatively good approximation to the
single site occupation dynamics. Assuming that it holds, we
limit ourselves to the question of determining the fluctuation
times. If Egs. (4.6) were correct then Eqs. (4.7) could have
been written in other equivalent forms:

Z—1)D
1= D0 (4.8a)
Cq
Z-1)D
5! =£——)—Bi, (4.8b)
Cp
or
[
' =(Z— 1)(1),,,. +;£DAB), (4.92)
A
c
rl=(Z— 1)(D,,B + C—ADBA). (4.9b)
B

Since Eqgs. (4.6) do not hold, we regard Eqs. (4.7)-(4.9) as
distinct choices, with the best choice determined by other
means.

A different approach, which does not rely on any as-
sumption regarding the chemical diffusion coefficients, is as
follows. Summing up Eqs. (4.4a) and (4.4b) leads to

%f(A /B1) = (Z— 1){(Dyy + Dy [ca —fAD]

+ (DAB + DBB) [Cg -—f(B,t)]}, (410)

where f(4 /B,t) = f(A4,t) + f(B,t) is the probability to find
a particle, either 4 or B, on site /. On the other hand, sum-

ming up lines 1 and 3 in Eq. (3.1) and using AV)
=1—f(4) — (f(B), leads to

d
— flA /B,t
dtf( )
l—cp 3 l—c, ¢4
T4 TB B Ta
¢ c
X f(B,t) + — 4 =2 (4.11)
T4 Tr
Comparing now Egs. (4.10) and (4.11) we find
1—¢ c
2 +‘i=(z—'1)(DAA + Dg,), (4.12a)
Ta Tp
1—c¢ ¢
24+ 2 =(Z—-1)D,s + Dpp). (4.12b)

Ts Ta
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Equations (4.12) lead to

_1'= z-1 {(l —¢ ) (D4 + Dyy)
Ta Cy
—cp(Dyp +DBB)}, (4.13a)
“"1—= Z-1 {(1 _CB)(DBB +DAB)
] Cy
—c4(Dgq + Dy} (4.13b)

Expressions (4.13) and (4.9) are identical. To show this we
rewrite both equations in terms of the Onsager coefficients,
using Egs. (C12). Both Eqs. (4.9) and (4.13) then lead to

A A
d o _zopnlutihe (4.14a)
Ta CaCy

A A
_1_=(z_1)_&t_’“.’;_ (4.14b)
TB CpCy

If we repeat the same procedure for Eqs. (4.7a) and (4.8a)
we get, respectively,

- A A
ril= Z-—1 [ A4 + AB ]’ (4.15)
cy C4 1—cp
Z-1 l—¢
ril= [AM + Ay 4 ] (4.16)
C Crp Cp

(the expressions for 75 are obtained by interchanging 4 and
B). Note that the difference between these expressions ap-
pears only in the term containing A ;5.

Consider these different choices. The form of Egs. (4.9)
is intuitively appealing because it contains the contribution,
for 7, for example, both from D,, and D,, with relative
proportions determined by the concentrations. The fact that
it is identical to Eq. (4.13), which was derived without any
condition on the diffusion coefficients, supports its superior-
ity. Above all, for the limiting case of identical 4 and B parti-
clesI'y, = I'; =T, we find, by using Egs. (4.14) and exact
relations between the Onsager coefficients [c.f., Egs. (7.1)],
that only this choice, besides the trivial choice Eqgs. (4.1),
yieldsexactly 7 ! = 75 ' = (Z — 1)T" as required from con-
sistency conditions [see discussion after Eq. (3.5)]. For
these reasons we prefer this choice. (The other choices will
be referred to for the sake of comparison.)

Consider finally the limit where one type of particles—
say A— are static, namely, y =T,/ 5 —0. In this case
A 5/Agp —0and all choices (discussed above), for the rela-
tion between the fluctuation time 7, and the chemical diffu-
sion coefficients, become identical [but different from Eq.
(4.1b) ]. On the other hand A ;5 ~ A, (see Sec. VII) and
these choices for 7, are different from each other. We dis-
cuss this limit in more detail in Sec. V.

V.CASE OF ONE STATIC COMPONENT

Here we consider the limit where (say) the A particles
are much slower than the B particles,y = I' , /T 5 - 0. With-
out considering any specific form for 7, and 75, we clearly
have in this limit 7, /75 — o (all the choices given in Sec. IV

yield this result). Hence we find [from Eq. (3.2)]

l_CA

A, = (5.1a)
Th
and
AoV o (5.1b)
1 - CA
This, with Egs. (3.9b) and (3.7), then lead to
= Calv . (5.2)
1—c,

Focusing our attention on the tracer particle we consid-
er two situations: Fy~T'5 and T'y~T ,. Consider first the
case of a fast moving tracer [,~T'p (i.e., ' ,/T'4—0).Inthe
absence of B particles this situation corresponds to diffusion
of the tracer particle in a static random network where the
randomness is caused by the static distribution of 4 particles.
In the presence of B particles (c; #0) and if ['y =T’ this
calculation yields the tracer diffusion coefficient of (identi-
cal) particles with hard core interaction diffusing in a ran-
dom lattice. From Egs. (5.1) A_ /T'4—0 while A | /T is
finite. Thus in Eq. (3.9) wehave € _ = iw/ (o). In partic-
ular, for the DC limit (« = 0) we have ¢ _ =0 and

ey —p(1—x)1—€,gle,))  xp.

v= 1—p. +pe,gle,) 1-p.°
(5.3)
(1—c, )7'1;l
7T 5.3
€ Tov (>-32)

For concentrations ¢ <p,, this equation exhibits a thresh-
old at ¢, = 1 — p,_ for any choice of nonzero (Iy75) ~!.
This may be seen by putting ¢ = 0 on both sides of Eq. (5.3).
(In this way one also finds the obvious result that ¢y =0
when ¢=c¢, + ¢z =1.) Thus, the tracer percolation
threshold does not depend on the concentration of the mov-
ing B particles, as can be expected intuitively.
In Eq. (5.3) we consider two possibilities. First,

75 =(Z—- 1Ty (5.4a)
which is the mean-field approximation, Eq. (4.1b). Second,

ﬂ.:(z_l) IDBB ,

CcpCy —c,
which is obtained from Eqgs. (4.14)-(4.16) (all are identical
in this limit) and (C12d), using the fact that A, ,/T'; -0
and A 5 /T 5 -0 as y~0. Dyp in this case does not depend
on the concentration of B particles and is identical to the
single particle diffusion coefficient on the same disordered
lattice [see Refs. 14(a), 14(c), 19, and 22 and Appendix D].
If we wuse for it the EMA result, Dy,
=(1—c¢c,—p.)/(1=p.)forl—c,>p., weget
1—c,—p.

;' =Ty(Z— = .
e T
According to Eqgs. (5.4b) or (5.5) 75! vanishes at the

percolation threshold created by the static 4 particles (i.e.,
whenc, =1 — p,) because Dy, vanishes at that concentra-
tion. There is however an important difference between Dpp

sl =(Z~1) (5.4b)

(5.5)
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and 75: the former is a global transport coefficient which is
effected by relatively long range features of the network
while the latter is a (disorder averaged) local property
which should not necessarily vanish at the percolation
threshold. In fact, the exact disorder averaged occupation
dynamics of the B particles (and the resulting mean-field
local rate equation), written on the same lattice on which the
LG is defined, is a non-Markovian equation [cf., Eq. (2.6) ],
in contradiction to the assumption made in Eq. (3.1). This
non-Markovian equation becomes Markovian only in the
short time and the long time limits leading to Eqs. (5.4a)
and (5.4b), respectively. A possible way to improve the
Markovian approximation is to recognize that we are inter-
ested in the density fluctuations of the B particles (and in the
corresponding 7 ) only on a timescale I'; ! for the jump of
the tracer particle. A possibly better ansatz is therefore to use
in Eq. (5.4b) the frequency-dependent diffusion coefficient
Dyp (w) at finite @, where o ~T", (~T 5 ) is the most likely
choice. This means that 75 must be bounded by its @ = 0 and
@ — oo limits, namely,

l_cA —Pc
(I_CA)(I_PC)

T, (Z-1) <15 '<TH(Z—1).

(5.6)

It is found (see Sec. VIII) that the result for the tracer
diffusion coefficient is only weakly sensitive to the choice of
7p in this range for concentration far enough from the
threshold. Very close to the percolation threshold the sensi-
tivity to 7, is large. To analyze the behavior of ¢ near the
threshold we use,'® for €é— w0 (¥/—0; this holds also for
¢y —0) g(€) =€~ ' — Ze~2. This leads to

ey(l—c )1 —c4—p.)

¢=(1—pc)[(l—cA)2+2c',,TBro] '

(5.7)

Using the upper bound for 75 ' Eq. (5.4a) in Eq. (5.7) (with

1 — ¢, =p.) then leads to

¢~ CV(Z— l)pc
(1—p.)[(Z = 1)p? + 2¢,To/T5 ]

(l—c,—p.).
(5.7a)

Thus, ¢is linear in 1 — ¢, — p... The proportionality factor
is smaller then in the single particle case (c; = 0), whereitis
(1 —p.) ~'. On the other hand, the critical exponent v = 1
in y~(1—c, —p,.)” is the same as in the single particle
case, which may be expected when 75 ! in Eq. (5.7) has a
finite value at the threshold. This is consistent with the nu-
merical simulations of Harder et al.2* for a specific 2-d corre-
lated site percolation model, and also with the simulation
results of Heupel®® for a 3-d random site percolation model.
In the latter simulation the exponent k of the anomalous
diffusion behavior at the percolation threshold—
(r*(#)) ~ t* —was found to be identical with the correspond-
ing single particle exponent. Together with a scaling as-
sumption of the type given in Refs. 1 or 7, this means that the
critical exponent for the diffusion coefficient is also the
same.'®

On the other hand, using the (EMA) lower bound Eq.

(5.5) in Eq. (5.7) yields (for 1 — ¢4 —D.4cCp)

'y (Z—1)c,

Lo (Z=Dey 5.8
Ty 2(1 —p.)%c, (5-8)

¢ ( 1— Cq — P )2'
Thus, the critical exponent v is changed (i.e., v=2). As
¢z —0, the region where Eq. (5.8) remains valid
(1 —c, —p.<cp) gets smaller and we have a crossover to
the single particle EMA critical behavior with critical expo-
nent v = 1. As noted, this behavior is not observed in nu-
merical simulations.

We now turn to the case of I'y~I", (i.e., [\/T' 5 -0).
Thus, from Eq. (5.1) onehas A | /Ty— o whileA_ /T, is
finite. Using then € _ g(e, ) > 1 for €, — « in Eq. (3.9),
we have

C4Pe l1—e_g(e_) ]
— 1— 5.9
¢ CV[ I—CA [l_pc +pc€—g(€— ) ( )
and
€ = (ia) f—Sr )/ro¢. (5.9a)
(1—c, )7,

IfT'y = I, this yields the tracer diffusion coefficient of the 4
particles in the presence of the fast moving B background.
Note that the presence of the B particles enters in this limit
only through c¢,. Also note that for finite frequencies
— ¥ <cy,i.e., the correlation factor f defined by ¥ = ¢ f is
smaller then 1 (except for the limiting case ¢, —0).

VI. THE SMALL VACANCY CONCENTRATION LIMIT

The small vacancy concentration limit ¢, -0 is of par-
ticular importance because of its applicability to disordered
binary alloys and we therefore analyze it separately. For
¢, —0Eq. (3.2) yields

Cp Ca
A’.}. =—+_’
Tp Ta

(6.1a)

A_ z——cV— , (6.1b)
CpTq +C4Tp
wherec, + cp = 1. ThusA _ -Owhiled , remains finite at

this limit. Egs. (3.7) and (6.1) then lead to

ey (Tp —T4)

K (6.2a)
CaTp +CpT4
F,o=1, (6.2b)
Tp
F = _4 (6.2c)
Cp
and y of Eq. (3.9b) becomes
_ cyCy Cp(Tp — T4 )2 (6.3)

(ca7p + €574 )?

For ¢, -0, ¥y and A _ are o(cy ) so for o = 0 we have
€, > while €_ remains finite. Using, for €— «,
g(€)~€e~ ' — Ze~? wefind from Eq. (3.9) that the correla-
tion factor f=f(c— 1) of the tracer O, defined as ¢ = ¢, f(¢),
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is a solution of

_TA)Z

r= [ pCCACB[( CaTp +€374)° ]
1—e_g(e_)

[l—pc +p.€_gle_)

(6.4)
where

- = [Fo(CATB +CcpTy )f] - (6.4a)
In the single component limit, either ¢, -0 (cz — 1) where-

as 75 ' = (Z— 1)T, [cf. Egs. (4.1) and (4.14)], or ¢ —0
and 7;'=(Z-1)T,, or T,=T=T[(r'=75")
=(Z—-1)T]). In this case Eq. (6.4) reduces to

f=(Z—-1)/(Z~-1+42y),wherey = TI'o/T withT being
the jump rate of the background particles. This is our pre-
vious rmult for the correlation factor in the one component
system. '

Consider now again the limit y =T ,/I'p —0. If the
tracer is a B particle we get again the result implied by Eq.
(5.7) (withTo=Tgzandcy =1—¢,)

fomt TR (6.5)

(1—=p)[1—c,y +275T 5]
The critical behavior of this equation was already discussed
in Sec. V. Note again that for the single component case
c,—0, we get for the self-diffusion correlation factor
fs = (Z—1)/(Z + 1), our previous result.’® If the tracer
is an 4 particle, I'y = I' , and Eq. (6.4) [or Eq. (5.7)] leads
to

f:«i =1 — P
with

= (cgT 7uf)
Taking the single component limit ¢z -0, using
gle_ )~e~'—Ze-? leads again to f,=(Z-—1)
/(Z 4 1).Forcg -1 (c,—0) wgetf, = 1, as expected for
a single particle in an infinitely fast moving background.
However, for cg; <1 (¢, >0) we get f, < 1.

The latter result is in contradiction with that obtained
by Sato and Kikuchi®® by a reformulation of the path proba-
bility method. According to them, for all ¢; >p, in the limit
under consideration (¢, -0, y—0) one has f, = 1. Appeal-
ing argument for this result*® is the fact that in this range of
concentrations there exists an infinite B cluster, thus en-
abling the vacancy to move infinitely fast (relative to the 4
motion) through the whole system, and therefore, after the
A tracer has made a jump, the vacancy may appear with
equal probability at any side of it. However, this argument
ignores the motion of the A4 particlesin 4 type clusters, which
is clearly controlled by backward correlations. This counter
argument is particularly strong if p, <. Then, in the range
of concentrations p. <cp <1 — p., there is an infinite clus-
ter of A particles (coexistent with an infinite B cluster)and
the 4 motion in this cluster may contribute substantially to
the tracer diffusion coefficient. We note that our result'® for
the single component LG and in this ¢— 1 limit is identical to

1—cp 1—€e_g(e_)

Cp 1 — P, +pc6—g(e— )

] (6.6)

(6.6a)

]/(1+ﬂ oL, _l)’
| CaTq4 +CpTp
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the result of a former version of the path probability method
due to Kikuchi.'® This old version, however, does not lead to
a percolation threshold for a binary mixture in the static
limit.?

VIi. CHEMICAL DIFFUSION COEFFICIENTS

In Sec. IV we have used the four chemical diffusion coef-
ficients of the binary mixture, D, D g, Dg,, and Dgg, to
find the fluctuation times 7, and 75 (needed for the calcula-
tion of the tracer diffusion constant), assuming these coeffi-
cients to be known. In this section we obtain approximate
expressions for these coefficients that will be used in the cal-
culation of the tracer diffusion coefficient using the expres-
sions of Sec. III. Other theories appear in the litera-
ture,?°®®*7 but those seem to break down for either small or
large jump rate ratios.

First consider some exact relations. In a general inter-
acting LG, only three of these diffusion coefficients are inde-
pendent, because of the symmetry in the Onsager coeffi-
cients A,z = Ag, and the generalized Einstein relations
[cf.,, Egs. (C12)]. For the NILG case, Moleko and All-
natt’*® have obtained two other exact relations

A

an , Ban CsCps (7.1a)
I"A FB
A A

48 22 =czey (7.1b)
l-‘\A FB

With these relations, there is only one independent Onsager
coefficient. These relations may serve to find limiting expres-
sions. Eliminating A ;5 from Egs. (7.1) we get

Ay =T c ¢y +7VApg — YT 456y, (7.2)

wherey =T ,/T'3. When y-»0wehave A,, - ¢, ¢,. To
the first order in ¥

Ag=T cp(c, —Y8), ¥-0, (7.3)
where & is independent of y. Thus from Eq. (7.2) we have
ABB = FBCV(CB -_ 6), 7/-"0. (7.4)

This means that § is a function of the concentrations such
that § = cp for ¢, = 1 — p,_, the percolation threshold. We
will get back to the calculation of § later. Using Eq. (7.3) in
Eq. (7.1a) we also find for this limit

AAB = FACV(S, ‘}’—»0 (7.5)

which méans that A ,; is of the same order of magnitude as
A,, (or smaller), the diagonal Onsager coeflicient of the
slow component. Thus A ,5 /A g5 — 0 for this limit and, from
Eq. (C12d), we then have

1—¢,

DBB = Agp ’

y—0. (7.6)
As mentioned before, in this limit Dyp is identical to the
diffusion coefficient of a single B particle on the same disor-
dered lattice. Using the EMA expressions for the latter,
namely, Dy =(1—c, —p.}/(1 —p_.) for ¢, >1—p.
and Dy = Oforc, <p., and using also Egs. (7.4) and (7.6)
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we obtain the following EMA result for §
pc chA

§=31—p. 1—¢,

Cp c,>1—p,

Together with Eq. (C12a) this leads to the following limit-
ing result (to zero order in ¥)

CA<1'—pc (7 7)

cp(l—c,—p.)
D, = ‘[ _(l—cA)(l—pc)] Gast=pel
r, ca>1—p.
y-0. (7.8)

The result (7.8) has the surprising feature that for
¢, >1 — p., namely, when there is no infinite cluster of sites
that are unoccupied by 4 particles, D, = I' , which is iden-
tical to the result obtained for ¢; = 0 (one component sys-
tem). Another interesting point is that when ¢, increases
from zero, D,, becomes larger than the mean-field value,
D, >T, (1 —cp) where the equal sign holds in the limit.
Indeed, equality is expected for a single 4 particle in an infi-
nitely fast B background.

For finite jump rate ratio ¥ we again need to calculate at
least one (either chemical diffusion or Onsager) coefficient.
Let us start with the observation that for a one component
NILG with time-dependent bond disorder, where the bonds
fluctuate independently of the LG motion, the chemical dif-
fusion coeflicient is identical to the single particle diffusion
coefficient on the same dynamically disordered lattice (see
Appendix D). This generalizes the known similar re-
sults!#(2»14(e).1922 for static disorder or for ordered lattices.
For a binary mixture LG we can regard one component—
say B—as the LG and the dynamical bond disorder as due to
the motion of the 4. An approximate solution can be ob-
tained if we assume in addition that the motion of 4 is inde-
pendent of the B particles (but not vice versa). This is ex-
pected to be valid for small y or small ¢ . In this case we have
again the situation discussed in Appendix D (this is of
course a very rough approximation). Using the result ob-
tained previously'® for a single particle in a dynamically dis-
ordered lattice we get for @ = 0 (in the EMA)

Cy
Dop=T4|1— (7.9)
e B[ 1 —p. +p.€.gle,) ]
with
Z—-1)D
€, _Z2-DDy (7.9a)
DBB

To find Dy explicitly the following exact relation between
D, , and Dy, [obtained from Eqgs. (7.1) and (C12)]

[DM—FA(I—cB)][l— T~ ]

YCs
=[DBB_FB(1—CA)]|:1—2/(~IELBl] (7.10)
4

can be used.
The result (7.9) should hold for small y. Indeed, for

J. Che ., Vi
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y-0Eq. (7.9) yields the EMA result for the motion of Bin a
static random lattice. For y— « however Eq. (7.9) yields
Dgg =T5(1 —c,) in contradiction with the result ob-
tained from Eq. (7.8) by interchanging 4 and B. An expres-
sion valid for large ¥ may be obtained however by inter-
changing 4 and B in Eq. (7.9).

For ¢z —»0we have (foranyy) D, —»T', and Eq. (7.9)
yields the EMA result for D,p, the tracer diffusion coeffi-
cient of a single B in a background of 4 particles, obtained in
our previous work'® (namely, Dy = D,z as should be in
this limit). Using this expression in Eq. (7.10) we can solve
for D, corrected to low order in cz. Note that Eq. (7.10)
provides an exact value for D,, (and Dgy) at a specific
intermediate point: For (1 — ¢ ) = ¢, the right hand side
of Eq. (7.10) vanishesand weget D, =T, (1 — ¢z ). Simi-
larly, for ycg =1 —c¢, wehave Dgg =T (1 — ).

To test Eq. (7.9) for ¥ <1 we have solved numerically
this equation together with Eq. (7.10) for y = 0.1. In Table 1
we compare these results for D,, and Dy to the results
obtained from numerical simulations.'” The agreement is
better than 4% for all values. This suggests that in practice
we may use Egs. (7.9) and (7.10) at least for <0.1 in order
to obtain the chemical diffusion coefficients needed for the
calculation of the tracer diffusion coefficient.

To end this section we rewrite the resulting fluctuation
times 7, and 75 of Eqs. (4.14) in terms of Dgz and D, ,.
Using Egs. (7.1) and (C12), Egs. (4.14) may be written as

T — 1D
Lz lert DD (7.11a)
T4 y(l —cp) —c,
T -l_1D
1 _z_n BCVI+(7 Wz (7.11m)
Tg Y~ (1l =-cy) —cp
In the limit ¥—0 and within the EMA Eq. (7.11a) leads to
: c
(z—1)rA[1+ ’ z ] i<l —p,
1 —p. 1—¢,
T4 (Z—l)I‘A(1+C—B> ¢, >1—p,
Cyq
(7.12)

while 75 {Eq. (7.11b) ] reduces to Eq. (5.5). Note that since
the slope of 7, as a function of ¢, is discontinuous at
¢4 = 1 — p_, the resulting tracer diffusion coefficient of the

TABLE L. Theoretical and simulation results for the chemical diffusion co-
efficients D,, and Djp; in a simple cubic lattice for y =T, /T3 =0.1.

Cy ci/cs Dy* Dy ® Dy Dpg® Dpp® Dyt
0.01 1.0 0.0686 0.0673 0.0663 0.319 0.333 0.321
0.04 0.5 0.0489 0.0478 0.0472 0540 0552 0.534
0.04 1.0 0.0686 0.0673 0.0669 0.337 0351 0.337
0.04 2.0 0.0843 0.0834 0.0819 0.173 0.183 0.176
0.10 1.0 0.0687 0.0676 0.0681 0.375 0.388 0.378

*From Eqs. (7.9) and (7.10) using the EMA p_, p. = 0.3333.

*From Egs. (7.9) and (7.10) using the exact p,, p. = 0.3117.

©Simulation results from Ref. 17. Obtained using simulation data for the
Onsager coefficients and Eqgs. (C12).
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A particles also exhibits a change in its slope at this point {cf.,
Eq. (6.6)].

VIll. NUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results based
on our general result Eq. (3.9) and on the result for the static
A limit (y—-0), Eq. (5.3) (which corresponds to particles B
with interparticle hard core interactions moving on a ran-
dom lattice created by the distribution of 4 particles), and
compare them to numerical simulations. For the density
fluctuation times we use Eq. (7.11), (7.12), and (5.5),
henceforth referred to as choice (i). We also use, for sake of
comparison, the mean-field expressions Egs. (4.1) [choice
(ii)]. The expressions used for the lattice Green’s function
of the origin g(e) for the square, simple cubic, and face-
centered-cubic lattices are summarized in Appendix E.

Our simulations were performed on a 100 X 100 square
lattice with periodic boundary conditions using standard
Monte Carlo technique. Three runs were performed for each
composition, for different realizations of the (randomly cho-
sen) lattice. The simulations were carried up to 100 000
Monte Carlo steps per particle, determined separately for
each composition. The tracer diffusion coefficient was ob-
tained from

D = 11m ((l‘(t) — r(o))Z)
P 4t

(¢ is the time) where the average was performed over all
diffusing particles (of the same kind). The error obtained is
within 5% for most cases except for the static A case near the
percolation threshold (1 — ¢, — p. ~0.02) where the simu-
lation times were too short.

In Figs. 1-3 we present some numerical solutions of Eq.
(5.3) with I'y = I'; for the tracer diffusion coefficient of the

(8.1)

FIG. 1. Tracer diffusion coefficient D,z in a static 4 background on a square
lattice; plotted against c, for different concentrations ¢ (@ = 0). The re-
sults are solutions to Eq. (5.3) using Egs. (5.5) (full lines) and (5.4a)
(dashed lines) for 75 . The EMA percolation threshold p, = 0.5 was used in
both cases. The symbols represent our simulation results for ¢; = 0.2 (cir-
cles) and ¢; = 0.4 (squares). The estimated error of these results is within
5% for ¢, <0.35 and about 25% for ¢, = 0.39.

08
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xq 4

= 044
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T T ] l'
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Cy

FIG. 2. The lines are the same as in Fig. 1 but with the use of p, = 0.592 75
instead of 0.5. The symbols are the same simulation results shown in Fig. 1.

fast particles (B) in the static A limit, on square (Figs. 1-2)
and simple cubic (Fig. 3) lattices, and compare them to re-
sults of numerical simulations. ‘

Figure 1 shows the tracer diffusion coefficient D,z (in
units of I';a* where a is the lattice constant) of a tracer B
particle, in a static A background and on a square lattice, as a
function of ¢, and for different concentrations cz. The full
lines result from using choice (i) for 7, while the dashed
lines are based on choice (ii). It is seen that the mean-field
approximation for 7 is already quite adequate for small ¢ ,;
the differences between the two choices is largest for inter-
mediate ¢, values close to p. and both become identical for
¢, = 0and, of coursefor 1 — ¢, = p,, where D, = 0. Close
to p, it can be seen that for choice (ii) D,y ~ (1 — ¢, —p,)?
as implied by Eq. (5.8) while for choice (i)
D,z ~1—c¢, — p.. It should be noted that by the nature of
our approximation, the percolation threshiold at this static 4
limit is obtained at 1 — ¢, = p, = 2/Z ( = 0.5 for a square
lattice), corresponding to a bond percolation model. How-
ever, the actual situation is that of a stati¢ distribution of 4

0.03

0.02 1

Dip

0.01

0.00

00 02 04 06

FIG. 3. Tracer diffusion coefficient D, in a simple cubic lattice with a static
A background for a constant ¢, =1 — ¢, — ¢y =0.039 16 (@ =0). The
lines are based on solutions to Eq. (5.3) using Egs. (5.5) (full line) and
(5.4a) (dashed line) for 75. The exact value for the threshold p, = 0.311 7
(instead of the EMA result 0.333) has been used. The symbols are simula-
tion results of Braun and Kehr (Ref. 19) and have an error less than 2%.
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particles blocking random network sites, and is therefore a
site percolation problem where the actual percolation
threshold (for a square lattice) is' p, = 0.592 75. Thus, our
calculation for this site percolation problem contains an in-
herent error which is mainly manifested at the p, region. We
have previously shown'¢ that a substantial improvement of
the results may be obtained by replacing p. in expressions
like (3.9) or (5.3) by the actual percolation threshold of the
lattice under consideration. This is shown in Fig. 2 where the
calculation based on Eq. (5.3) and choices (i) (full line) or
(ii) (dashed line) is repeated using p, = 0.592 75. We see
that both choices for 75 lead to a good agreement with the
simulation results. In fact, within the accuracy of our simu-
lations both choices work equally well.*

Similar results for a simple cubic lattice are shown in
Fig. 3. Here we use a constant value for ¢, ¢, = 0.039 16.
This is not quite the small vacancy concentration limit and
we use Eq. (5.3) rather than the limiting result Eq. (6.5).
Again we use the exact value for the site percolation thresh-
old' p. = 0.311 7 instead of the EMA result p, = J. The re-
sults are compared to the simulation results of Braun and
Kehr." Here the difference between the two choices for 7,
is clearly seen even not very close to the threshold. Note
again that the critical exponent 2 [c.f., Eq. (5.8)] is indeed
seen for the solid line [choice (i) ] near the threshold. The
EMA results again overestimate the exact diffusion rate be-
cause of the other approximations (neglect of correlations)
involved.

In Fig. 4 we present the EMA and numerical simulation
results for the tracer correlation factor f; ( = D,z/cy )ina2
dimensional square lattice, for y =T ,/T'p = 100, 0.01 us-
ing a constant and small ¢, value, ¢, = 0.04. The simulation
results shown here are from Kehr ez al.'’ The EMA results
are from Eq. (3.9) [the limiting equation (5.9) is not com-
pletely reached] using w = 0 and p, = 0.592 75. For each ¢
value we have used both choices (i) and (ii) for 7, and 7.
The results for both ¥ value are in a reasonable agreement
with the simulation results; the reasons for the small discre-

1.0

0.8 1

0.6 1

fB

04 -

0R T

FIG. 4. Tracer correlation factor f ( = D,z/c,) in a square lattice, for
y=T,/T s =100 and ¥ =0.01, and for a constant ¢, = 0.04 (@ =0).
The lines are solutions to Eq. (3.9) using @ = 0, the exact threshold value
p. =0.592 75, and Eqs. (7.11) (full lines) and (4.1) (dashed lines) for 7,
and 7. The symbols are simulation results of Kehr et al. (Ref. 17).
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pancies were discussed above. The results obtained using
choice (i) for ¥ = 100 (solid line) show a change in the slope
near ¢z = p., wWhereas the mean-field choice (ii) (dashed
line) does not show such an effect. The simulation results
seem to disagree with choice (i) and especially with the theo-
retical results of Sato and Kikuchi** where the change in the
slope is much more pronounced (see discussion at the end of
Sec. VI). We note however that since only three simulation
data are presented with only oneforcg > p,. (cp = 0.64) and
since both static and small vacancy concentration limits are
not completely reached, no final conclusion can be made.
Results for larger rate of 4 motion are shown in Figs.
5(a) and 5(b). Here we show, for ¥ = 0.1, D,z (in units of
I'za?) as a function of ¢, for several values of c,, for a 2
dimensional square lattice, using p, = 0.5 [Fig. 5(a)] and
p. =0.59275 [Fig. 5(b)]. Our simulation results for
cp =0.1, 0.2, and 0.3 are in very good agreement with the
theory provided that the latter value of p_ is used [Fig.
5(b)]. In both figures we have used only choice (i) for 7,
and 7. However, for this and larger values of ¥ the two
choices for 7, and 7, yield almost identical results, differing
by less than 1%. It is interesting to note the crossover from

1.0

1.0

1.0

FIG. 5. Tracer diffusion coefficient D,z for y =T ,/I'p = 0.1 in a square
lattice (@ = 0). The lines are solutions to Eq. (3.9), using the EMA thresh-
old p. = 0.5 [Fig. 5(a)] and the exact threshold p, =0.592 75 [Fig.
5(b) 1. Equations (7.11) were used for 7, and 7. The results of using Eqs.
(4.1) for these times are less than 1% different from those plotted. The
symbols are our simulation results: filled circles—c; = 0.1, open circles—
¢p = 0.2, open squares—c; = 0.3.

Downloaded 10 Mar 2004 to 132.66.16.34. RddGhemuBbyss Yiole88: No. 8, 18Letobard®90right, see http://jcp.aip.orglicp/copyright.jsp



R. Granek and A. Nitzan: Dynamic bond percolation theory 5929

0.0 1T T

00 02 04 06 0.8 1.0

1.0

- 0.8

0.6

/B

0.4

02 #

0.0

0.0

FIG. 6. The correlation factor f ( = D,z/c; ) in the small vacancy concen-
tration limit (¢, —0) for three different lattices: square [Fig. 6(a)], simple
cubic [Fig. 6(b)] and face centered cubic [Fig. 6(c)]. The results are solu-
tions to Eq. (6.4) with I'y = I'; using the EMA threshold p, = 2/Z and
Eqs. (7.11) (fulllines) and (4.1) (dashed lines) for 7, and 7, (@ = Oinall
cases).

static percolation behavior for ¢, < 1 — p, to motion domi-
nated by the 4 dynamics forc, > 1 — p_. Obviously, for con-
centrations ¢p > p. (¢p = 0.5, 0.7) no such a crossover be-
havior is seen (since D,y vanishes for ¢ = 1), and the
difference between these and the static A results is relatively
small.

Figures 6(a)-6(c) display the correlation factor f;
(=D,g/cy) in the small vacancy concentration limit
(cy—0) for three different lattices: square, simple cubic,

and face centered cubic, respectively. f is found by solving
Eq. (6.4) with T, =Tp. The results for different ratios
y =T /Ty are plotted against c, . In these figures full lines
represent results obtained using choice (i) for 7, and 74
while dashed lines correspond to choice (ii). A common
feature to these results is that both choices for 7, and 75
yield almost identical results for intermediate values of
7(0.1 < ¥ <10) while significant differences are seen for
7—0,c0.

Sato and Kikuchi?® have presented two different theo-
retical calculations for the tracer diffusion coefficient in a
binary NILG model similar to the one under discussion and
for the small vacancy concentration limit. For ¥ —0 our the-
ory (for f5) agrees rather well with their latter improved
theory, except for details associated with the percolation
threshold. The percolation threshold obtained by Sato and
Kikuchi is that of the Bethe lattice p, = 1/(Z — 1) and, for
realistic dimensions, is worse than the EMA resultp, = 2/Z
(for most lattices). Their theory predicts a linear (in
1 —c¢, — p.) approach to the threshold, the same result as
obtained for choice (ii) (for 75) in the present theory. The
expression obtained from their theory for this limit may be
writtenasfg = (1 —¢, —p.)/(1 —c, + p.),and is quan-
titatively different from our result Eq. (6.5) even when the
same value for p, and the mean-field approximation for 7,
choice (ii) [Eq. (6.1b)], are being used. In the opposite
limit ¥— o, the major disagreement (with their improved
theory) discussed above [following Eq. (6.6)] is seen. It is
interesting to note that some similarity (showing the hump
in the ¥— oo line) exists between the Sato~Kikuchi results
and our results using choice (i) for 7, and 7. On the other
hand, a very good quantitative agreement exists in this limit
(Y- o) between our results in Figs. 6(a)—-6(c) and the
original theory of Sato and Kikuchi,”® when the mean-field
choice (ii) is made for 7. This agreement exists in the whole
concentration range. We note again that the simulation re-
sults in the dynamical regime ¥» 1 shown in Fig. 4, seem to
agree with our theoretical predictions [especially those ob-
tained from choice (ii) ] and with the original theory of Sato
and Kikuchi.?®

TABLEIL Tracer diffusion correlation factors £, and f; for a three-dimen-
sional, simple cubic lattice for the case y=TI",/T's =10 and ¢, =cp.
Equations (7.11) were used for the fluctuation times 7, and 7. The results
of using Eqgs. (4.1) for these times differ by less than 1%.

€4 fa f° 7N fe® fa® S ¢

0.100 0.928 0934 0920400t 0975 0.977
0.150 0.884 0.894 0.86540.003 0.962
0.200 0.835 0.848 0.807 4-0.003 0.948
0.250 0.780 0.796 0.746 4-0.0025 0.935 0.939 0.915 4+ 0.004
0.300 0.718 0.738 0.675+0.002 0.921 0926 0.895 4 0.004
0.350 0.650 0.672 0.598+0.002 0907 0913 0.874 + 0.004
0400 0.578 0.601 0.522 4 0.002 0.893 0.900 0.851 + 0.004
0450 0.504 0.528 0.453+0.002 0.879 0.886 0.859 + 0.004
0475 0467 0490 04004001 0871 0.879 0.830+ 0.015

0.966 + 0.015
0.964 0.950 + 0.005
0.952 0.931 £ 0.005

*From Egs. (3.9) using the EMA p_, p. = 0.3333.
°From Egs. (3.9) using the exact p,, p, = 0.3117.
¢Simulation results from Ref. 28.
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FIG. 7. Tracer diffusion coefficient D,; (real part) plotted against the fre-
quency w (SC lattice) for the static 4 background case, with concentration
¢, =1—p, —0.1=0.567, for c; =0 (single particle diffusion) and
cp =0.1. The results are solutions to Eq. (3.9), with I',=T,
A, =0—c,)75"' and A_ =0, using Egs. (5.4a) (dashed line) and
(5.5) (full line) for 75.

In Table II we compare our theoretical results to the
simulation results of El-Meshad Tahir-Kheli?® for a SC lat-
tice. Our theory is expected to work better for lattices with
larger coordination number Z. Indeed the good agreement
[for both choices (i) and (ii) ] is encouraging. We note that
the theory of El-Meshad and Tahir-Kheli*® also works fairly
well for this case but is poor in the y—0 limit, unable to
predict the percolation threshold.

Finally, in Fig. 7 we show the frequency dependence of
the real part of the diffusion coefficient D, of a tracer B
particle (I'y = I'; ) in a static 4 background (as in Figs. 1-
3) of concentration 1 — ¢, — p, = 0.1, for ¢z = 0 and for
cp = 0.1. The results shown are for a SC lattice. They are
obtained by solving Eq. (3.9) withA | = (1 —¢,)7; ' [as
given in (5.1a)] while A _ is set to zero [for the reasons
explained after Eq. (5.2)], namely, € . = iw/y. Unlike in
the calculation described above, where the exact lattice
Green’s functions where used, we have used here the ap-
proximate expression Eq. (E8). The solid line again repre-
sents the use of choice (i) for 75, and the dashed line corre-
sponds to choice (ii). It is seen (for both choices) that the
gap in the diffusion coefficient between the w = 0 and w —
limits decreases as the concentration of the moving particles
cp increases. The qualitative form of the curves is however
similar for both c; = 0 and ¢; = 0.1 (and for both choices
for 7).

IX. CONCLUSIONS

In this paper we applied dynamic percolation theory to
develop an effective medium approximation for the diffusion
of mixtures of particles with hard core interactions. The re-
sulting EMA expression for the tracer diffusion coefficient is
expressed in terms of relaxation times for local concentra-
tion fluctuations in the vicinity of the tracer. The latter are
expressed in terms of the chemical diffusion coefficients of
the system; however, simpler mean-field expressions also

work quite well. A recent treatment®’ in the DBP frame-

work of a noninteracting lattice gas in a static percolating

R. Granek and A. Nitzan: Dynamic bond percolation theory

bond network (where the particle concentration is not limit-
ed by the absent bonds concentration) yields similar results.

Results of this theory were shown to work well when
single bond dynamics and (single bond) effective medium
approximation hold. In other situations a considerable im-
provement is obtained if the exact concentration at the per-
colation threshold replaces the EMA value in the EMA
expression for the tracer diffusion coefficient. The method
advanced here can be improved in a more consistent way by
using many bond EMAs*® (cluster EMAs) toinclude corre-
lations that exist in the bond network. “Static” correlations
are a result of the site randomness property while “dynamic”
correlations exist between occupation—deoccupation events
in nearest-neighbor sites. An example of partially incorpor-
ating the dynamical correlations is already described in Ref.
16. Taking into account the static correlation can help to
avoid the necessity for an artificial replacement of the EMA
percolation threshold by the actual site percolation thresh-
old.

The present work was limited to hard core interactions
(double site occupancy excluded). Longer range interac-
tions have to be included in order to discuss realistic systems.
A dynamic percolation theory approach, which accommo-
dates long range interactions, was described in a previous
paper'® and further work along this line is proceeding.
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APPENDIX A

Here we repeat our derivation of Egs. (2.7) and (2.8),
previously described in Ref. 38 for the case of stochastic
hopping rates which explicitly depend on time, generalizing
it to the case of hopping rates which depend on time via
another (stochastic) physical quantity, e.g., the instanta-
neous local configuration. In the HZ formalism,3” which is
the basis of the present work, one starts by writing Eq. (2.5)
for the walker probability P; (z) to be at site  at time ¢, in the
vector form

d
Lp=_wpP=-— VP,
o ;a(s“a(t)) «

(A1)

where a corresponds to a bond (if) between the nearest-
neighbor sites / and j,

V, =S,S.t= () — M« = G,
P =3 P,

(A2a)

(A2b)

and where the bond state variable £, can take the symbolic
values 4,, A,, ..., A,,, V. The bond dynamics between the
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different states is described by [c.f,, Eq. (2.2)]

g;fa Eat) = T (o 2o (€)=, (£0.0).
)
(A3)

The joint probability distribution f(P,£,) to find the walker
distributed according to P and the bonds in the collective
state § = (£,,&5...s605...) at time 2, satisfies the Liouville
master equation

a a A

D=2 (WP +8f A4

atf 3P (W-PH) + Of, (A4)
where, since all the bonds fluctuate independently,

2=31,. (A5)
For the initial condition we take

where p(§) is the equilibrium distribution for the collective
bond state, namely,

p(§) = Hpa (ga)’
QpE)=F O (£arf LIpu (L) =0
2

and where P,, is an arbitrary vector in site space. In order to
get an equation of the type (2.6), let us follow the evolution
in time of the average of P. The partial average of P is given
by

PG = f dP PAPE,L).

The full average of P is just £, P(§,¢). Using Eq. (A4) and
integration by parts, P(E,t) is shown to satisfy
a
£}
with the initial condition [using Eqs. (A6) and (A9)]

(A7)

(A8)

(A9)

P(E,t) = — W-P(E!) + OP(E,1) (A10)

P(§t=0) =Pyp(E). (A1l)
Taking the Fourier—Laplace transform
P(giw) =lim | dte ™ ~“P(E,0) (A12)
€-0 Jo
of Eq. (A10) leads to
P(§iw) = g(E,iw) P, (A13)

with the partially averaged Green’s operator formally given
by
g(&i) = [(iw — D) + W(E)] ~'p(E). (Al14)

The fully averaged Green’s operator g(w), corresponding to
the full average of P

(P(0)) =¥ P(§iw) =g(0)P, (A15)
s 3
g(w) =%8(§J0))E[ia’1+wm (@)1}, (A16)
where
(Al6a)

W, (@) =) 3 V,,

which defines the frequency-dependent complex effective
medium rate ¢(@). In the time domain, Egs. (A15)-(A16)
lead to Eq. (2.6).

In the (single bond) EMA one considers one fluctuat-
ing bond (bond 1) in an otherwise effective environment
with bond rates ¥(w). The latter is obtained self-consistently
by writing

W = ¢(w) z V. +0(£)V,

a#*l
=W, + [o(&) — ¥(w)]1V,, (Al7a)
a=0, (A17b)

By Egs. (A13) and (A15), the effective medium rate is de-
termined from the condition

[iwl+W,,,(co)]“=;I‘§l (A18)
with
T, = {(io~ Q)L+ W,, + [0(&) — 91V, }~'pu(£n).
(A19)

Note that Eq. (A18) implies that the site space operators r,
cannot all be equal to zero. In the following we shall make
use of this fact. Suppressing the bond index 1, one can write
Eq. (A19) as

{io + W, + [a(£) — YIV}T,
- ; Q&E )T =p(&)L

Multiplying Eq. (A20) with the ¢lements M (" of the left
eigenvector of the operator Q( = Q,),

(A20)

; MPQE L) = —AMP, 4,50, (A21)
yields

g [o(§) — ¥4IV T, =0, (A22)
from the 4, = O case, and
S MO [(io+AN+W,
5 +[0(&) —¢YIVI-Te =0 I=1..,n (A23)

for A; #0, where, in addition to Eqs. (A21) and (A18), we
have used the fact that one eigenvalue [with the eigenvector
(1,1,...,1)1'is zero, and also the orthogonality relation be-
tween left and right eigenvectors of different eigenvalues.
Equation (A22) is identical to Eq. (2.7) (when multiplied
by S$t=S,t and defining Q, =St I;). Multiplying
Eq.(A23) from the left by St-H!” where

H" = [(iw+ AN+ W, ]! (A24)
then leads to Eq. (2.8) (see Ref. 38 for more details).

APPENDIX B
_ Here we dwell on the limiting value of

F =c,,—¢,,/l_

(B1)

cy — 7pA

(mentioned in Sec. IIT) for the case 7, — 5. Although the
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exact value of F_ does not influence the fact that ¢(w)

reduces for this limit to its single component form Eq. (3.10)

(aslong as 1 — F_ is nonzero), it does however determine

the asymptotic behavior of ¥(w) when 7, =~ 7.
Suppose that, to the first order in 67,
Tg=T+ OT (B2a)

and

(B2b)

where & is a constant different from — 1. Using Eq. (3.2) we
have, to the first order in 87,

T, =7 — k&7,

where
A0 = (B4a)
T
(cy —keg)ey
AV =2 2T B4b
cr? (B40)
and, in the limit 57— 0, F_ becomes
AL r—kA% 4
 m— (BS)
At r44° Cp
APPENDIX C

Here we rederive and summarize some important re-
sults related to the Onsager and the chemical diffusion coef-
ficients in the n component NILG model. We start by deriv-
ing the generalized Einstein relations that relates the
Onsager coefficients to the chemical diffusion coefficients.
For brevity, we shall adopt an » component version, instead
of the n 4+ 1 component version which is more common in
the literature,!”** where vacancies are considered at first as
independent particles. The final results are of course the
same in both versions.

Consider first the n component NILG with {N,} i

= 1, ..., n being the number of particles of the different com-
ponents, and N, being the total number of sites in the lattice.
The Helmholtz free energy of the ideal mixture is readily
obtained (up to a constant) as

F=kBT(2N,- InN, + N, lnN,,—NolnN(,), (C1)

Ny=Ny—N=Ny— Y N, (Cla)

where N is the number of vacancies and N is the total num-
ber of particles. The chemical potentials {u, } are defined as

_( 3F>
# aN, TJVj(#l).

In the n component version, in contradiction to the n + 1
component version, one uses explicitly the constraint (Cla)
in the derivation of the chemical potentials. Thus, we find

(C2)

o = kBTln(i ) i=1,..n, (C3)

Cy

wherecy, =1 —c¢=1— 2, ¢,. From this result one obtains

ou. 5.
(i) =kBT(J+L). (C4)
acj Tckexp ¢ (4%

In the linear regime and in an isothermal system
(VT =0), the fluxes J, are related to the gradients of the
chemical potential (the thermodynamic forces) by***’

J=-58 z Aij(vﬂj)rr (C5)

i=1
where B8 = (kp T) ~'. The Onsager coefficients A; obey the
Onsager reciprocal relations*®

A=A (Cé6)
Assuming now local equilibrium, namely, g, (x)
= u,({c; (x)}) (x is the position vector) with u, ({c,;}) be-
ing the equilibrium expressions for the chemical potentials,
one finds the generalized Fick’s law

J,-= —_ i D,—kVC,;
k=1

with the chemical diffusion coefficients D, related to the
Onsager coefficients A; by the generalized Einstein relations

(C7a)

du;
Dy =5 A,..(—’) . (CTb)
* ; Y ack Toeiury
Together with the continuity equations
dc;
Z V=0 (C8)
at

Eq. (C5) leads (for small gradients) to n coupled diffusion
equations

de; "
—= Y DV,

ot j;] v
Using now Eq. (C4) for the NILG case we finally obtain
from Eq. (C7b)

A n
Dik — ik + __1__ Z A

Ck CV Jj=1

(C9)

i (C10)
With the symmetry relations Eq. (C6), only n(n + 1)/2
Onsager or chemical diffusion coefficients are independent.
For the NILG case, the number of independent coefficients
is further reduced to only n(n — 1)/2 by the recently estab-
lished®*® exact relations between the Onsager coefficients,
which, in our units (lattice constant @ = 1), read
Ay .

‘ ? = jcV’ J= 1,...,”.

For the NILG binary mixture (7 = 2) we have from Eq.
(C10)

(C11)

l—cz; Ay

D, ,=A,, + s (C12a)
(% Cy
A 1—e¢
Dyp=—224A, 4. (C12b)
v CpCy
1— A
Dy —A,py—b 288 (C12c)
A 1—
Dpp =22 4 Apy—2, (C12d)
Cy CpCy

where use was made of the Onsager symmetry relation
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A,p = Ap,. In addition, Egs. (C11) become in this case
(using again A,z = Ag,)

A A s
‘FAA FAB = C4Cp, (Cl3a)
A B
A A
48 22 =ezcy, (C13b)
r, T,

so that only one (diffusion or Onsager) coefficient is inde-
pendent. These relations were found to compare well with
recent numerical simulations.’

APPENDIX D

In this appendix we obtain an exact result for the chemi-
cal diffusion coefficient of a single component NILG in a
dynamically disordered lattice. This exact result is used in
Sec. VII as an ansatz for obtaining the chemical diffusion
coefficients in a binary mixture and in an ordered lattice.
Following the proof of Kutner'*® for an ordered lattice, the
occupation dynamics of a single component NILG in a dy-
namically disordered lattice in described exactly by

LUy =3 oy 0PI ~PAT0]L (DD
>

where P(/,t) is the occupation probability of the lattice site /
at time ¢, P(I’, 1,t) is the joint probability to have the site I’
occupied by a particle and site / vacant and oy, (¢) is the
stochastic bond hopping rate [hence P(/,¢) and P(!’,],t) are
also stochastic]. Now for any specific path of the transition
rates {g, (£)} (out of the ensemble of paths) and for any
pair of sites / and /' we have

P(I' 1) + P(I',Lt) = P(I',1), (D2a)
P(L1',t) + P(Ll",t) = P(L,1), (D2b)

where P(I’,l,t) =P(l,l',t) isthejoint probability to have both
sites / and /' occupied. With Egs. (D2a) and (D2b), Eq.
(D1) is identical to the “‘single particle” equation
%P(l,t) =3 o0 () [PU1) — PUD]. (D3)
e
Thus, the chemical diffusion coefficient of this lattice gas,
which is found by averaging over Eq. (D3), is identical to
the single particle diffusion coefficient on the same dynami-
cally disordered lattice.

APPENDIX E

Here we summarize some expressions for the lattice
Green’s function g(€) for the square, simple cubic, and face-
centered-cubic lattices, used in the numerical solutions de-
scribed in Secs. VII and VIII. For a square lattice®

g(e) =%f® dtexp( — 2t — et YI3(2)
0

=—1;(1+e/4)"K([1+e/4]“), (E1)
where I,,, (¢) is the modified Bessel function of order m, and
where K(k) is the complete elliptic integral of the first kind
/2 d9
K(k) = f e —— (E2)
o J1—kZsin?0

For the simple cubic lattice
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