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The effects of domain structure on the low-frequency conductivity response of a polymer
electrolyte having low carrier concentration are investigated by modeling the domains as
spheres. For zero leakage (no dc conductivity), the diffusion equation is solved exactly. The
results are also extended approximately to the case of small but nonzero leakage by imposing
physically reasonable approximate boundary conditions together with an ad hoc procedure for
treating the diffusion in the less conductive exterior. Interaction between charge carriers in
different domains is taken into account in the Maxwell-Garnet approximation and found to
have only a small effect for physically reasonable parameter values. The predicted diffusive
behavior is studied and the results are applied to examine the predicted behavior of the

frequency-dependent conductivity.

I. INTRODUCTION

There has been an increasing effort in recent years to
understand the ionic transport mechanisms in polymer elec-
trolytes such as polyethylene oxide (PEO) complexed with
various salts."! The siloxanes and polyphosphazenes, in par-
ticular, are characterized by an unusually flexible polymer
backbone and exceptionally high conductivity, thereby of-
fering special promise for technological applications. It has
been clearly shown"? that some polymer electrolytes, nota-
bly those based on PEO, consist microscopically of a mixture
of amorphous and crystalline regions; the amorphous re-
gions are mainly responsible for the low-frequency conduc-
tivity while the “crystalline” regions, in which the polymer
strands are spatially organized with respect to each other,
conduct poorly.

Studies of the frequency-dependent conductivity o(w)
over a range of frequencies near a given o’ probe those un-
derlying dynamical processes that occur on a time scale of
order 277/w’. We might therefore be led to consider carrier
diffusion within domains of amorphous material having a
distribution of sizes and shapes, and to expect on physical
grounds that structure in the observed frequency-dependent
conductivity should result at frequencies @ corresponding to
times 7~ 27/ typically required for a carrier in a domain to
diffuse to the domain walls, which may be taken as
7= a*/D, for diffusion coefficient D, within the sphere of
radius a. Estimates show that the observed low-frequency
structure falls within a reasonable frequency range for such
an interpretation; specifically, the reasonable values @ = 100
A and D, = 1073 cm?/s imply a characteristic frequency of
~ 10 GHz, where indeed a marked rise is found in the fre-
quency-dependent conductivity of some mixed amorphou-
s/crystalline polymeric ionic conductors®; parameters ob-
tained specifically from our previous fit*> of Re[o(w)] for
(PEO)gNH,SO,CF, similarly predict approximately this
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domain size (Appendix A). Furthermore, frequency-depen-
dent conductivity data usually cannot be fitted well at lower
frequencies by a small number of Debye functions, and it
would seem reasonable on physical grounds that the distri-
bution of relaxation times which is needed arises in part from
the domain structure.

Diffusion and conductivity in composite media of this
kind are usually studied using one of several effective medi-
um theories* in which the macroscopic complex dielectric
function of the composite is found from the dielectric func-
tions of the pure components and from whatever informa-
tion is available about the mixing topography; this deter-
mines the frequency-dependent complex conductivity of the
overall composite system and, by the Nernst-Einstein rela-
tion, the corresponding frequency-dependent diffusion coef-
ficient. In particular, the Maxwell-Garnet effective-medium
expression for the dielectric function € of a system in which
spherical particles of phase 1 are surrounded by the host
(phase 2) is®

€, — €

€— €,
=f, S
€, + 2¢,

€+ 2¢,

()

where € is the complex dielectric function whose imaginary
part is associated with the conductivity and the diffusion
coefficient, and where £, is the volume fraction of phase b.
Equation (1) requires that the dielectric response of the
microscopic regions & does not depend on their size, a condi-
tion that no longer applies if the density of charge carriers is
low and the size of the conducting regions is small. For ex-
ample, if the conducting phase contains 0.001 M of “free”
ions, then the average number of ions in a sphere of diameter
100 A is ~1/3. In this case the dielectric response of the
small sphere depends on whether it happens to contain
charge carriers, and differs from that of the corresponding
macroscopic conducting phase. A similar situation may ex-
ist also for small semiconductor particles characterized by a
low average density of free charge carriers; a small enough
particle obviously will have high probability to be without a
carrier. If the carrier density is 10'® cm ~ 3, the probability is
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of order 1/2 for particles of radius 100 A, and even in heavily
doped semiconductors the volume per charge exceeds
10~ "¥cm?.

In this article, we focus on such systems [to which Eq.
(1) is inapplicable] and assume that the conducting regions
are small spheres each containing one charge carrier whose
behavior is characterized by the given diffusion coefficient
D, within the sphere. The present work is motivated by the
spectroscopic study of partly crystalline polymer electro-
lytes, in which precisely this situation of isolated regions
with differing local ionic mobility and differing crystallinity
occurs.? In Sec. II we solve the problem of single-carrier
diffusion in a finite sphere when the mobility in the exterior
region is zero. Section III considers how (for nonleaky
spheres) the electrostatic interactions between carriers in
different spheres affect the conductivity of the overall sys-
tem, with numerical results for various cases presented in
Sec. IV. We conclude, in Sec. V, with a discussion of our
results and their relevance to polymer electrolytes.

The effect of small but nonzero carrier mobility outside
the sphere (i.e., the “leaky sphere” problem) is considered
approximately in Appendix B.

1. FORMULATION FOR A NONCONDUCTING
EXTERIOR REGION

Consider a carrier in a medium with diffusion coeffi-
cient D, inside a spherical region of radius @ and diffusion
coefficient D, outside the spherical region. We seek first the
probability density P(r,r’;z) defined such that, if the carrier
starts at location r’ at time # = 0, then P(r,r’;t) d°r is the
probability that it is found in the volume element d 37 at a
later time t. Once obtained, the solution for P(r,r’;z) can
then be used to evaluate the mean-square displacement
(P (@) = (Jr —1'|*)(¢) of the diffusing carrier starting
from a random initial position within the domain. Linear
response theory then yields the low-field complex conductiv-
ity as a Laplace transform of (#*) (¢). We deal in the present
section with the solution for P(r,r’;¢) when D, =0 (which
allows no diffusion into the external medium), and genera-
lize in the next section to D, > 0.

This procedure calculates the response to an applied
field from the zero-field diffusive behavior. In the present
section, we disregard the electrostatic interactions between
charge carriers and electric polarizations in different spheres
and consider the dynamics associated with a single isolated
sphere. The effect of interaction between carriers in different
spheres is considered in Sec. I'V.

Our starting point is the continuity equation

Vej + dP(r,r';t) /3t =0 (2)
combined with Fick’s law for the probability flux j:
i= —D,VP(rr;t) (3)

which together yield the diffusion equation

D,\V2P(r,r';t) — % P(rr;t) =0 (4)

whose solution, subject to the following three requirements,
gives P(r,r';z). The first two requirements are the assumed
initial condition

P(rr;t) =8(r—r) (5
at ¢ = O and the normalization that Eq. (12) thereby implies
for all > 0:

fP(r,r';t)d3r= 1. (6)

The third requirement is the boundary condition implied
specifically by the assumption D, = 0, which forbids any
flow of probability into the exterior region (7> 0) so that, at
r = a, the radial component of j given by jo# (for surface
normal 1) is zero. This, according to Eq. (3), can be written
as

arP

or r=a
We use the method of separation of variables to obtain a set
of basis functions that satisfy Egs. (4) and (6), and then seek
the normalized linear combination of these basis functions
that satisfy the initial condition (5) at t = O for a given r’.
Assuming the desired basis functions to be each the product
of a purely time-dependent function and a purely spatially
dependent function yields a solution to Eq. (4) of the form

=0. )

P(r,r';t) = d(rr)e ", (8)
where ® (r,r') satisfies the time-independent equation
D\V*®(r,r') + P®(r,r') =0, )

and where the non-negative real coefficient (written as 7°)
remains to be determined. By expressing Eq. (9) in spherical
coordinates (7,6,¢) and by then employing the same proce-
dure generally applied, for example, to the time-independent
Schrédinger equation for a particle moving in a spherically
symmetric potential, we are led to basis solutions of (9) hav-
ing the form

¢i1m =AiLi1[ Vi

r] Y,.(6,4), (10)
1

where j, (x) denotes the usual spherical Bessel function and
Y, (6.¢) denotes one of the 2/ + 1 corresponding spherical
harmonics, and where the index 7 allows for the possibility of
several distinct values of y,, for a given /. (The coefficients
¥, which remain to be determined, are later seen to be inde-
pendent of m.) The normalization constants 4, are chosen
to satisfy

f [Py (1) %d3r = 1. (11)
The r:eigltion‘3
1= [ s de 1)
0
2, . )
’E‘[Jl (2) —ji (@)1 (D], 121
- (13)

%[z —sin(z)cos(z)], /=0

with (11) leads to the (m-independent) expression for 4,;:

—2_3 2 . 1 . |4 l>o
@ Ji(Ay) —Jis 1 A (Ay)
il l=0

Aq —sin(d;)cos(d,)
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where A, = y,a/VD,. The (m-independent) allowed values
of ¥; (or A;) are determined by the boundary condition
(99, /9r) = 0 at r = a, leading to

A’iLi;(/{il) =0. (15)
The index i designates the different solutions to this equation
for each .

The functions &, are assumed to be a complete ortho-

normal basis set for the expansion of the actual solution in
the form

P(r,l‘l;t) = z Bilinlme~ ﬁll'

LLm
The specific expansion parameters are next determined by
imposing the initial condition (5) at ¢ = 0, leading to

3 Bf,mAiJ,(ii, 7}) Y, (6,6)

(16)

iLLm

=r=28(r—r)8(cos @ — cos 0")6(d — ¢'). (17
Multiplication of both sides by

Ay "2]'1(/1;1 5) . (8.8) (18)

followed by integration over all (8,¢) and all r<a and use of
the normalization property (6) then yields an expression for
the expansion coefficients

B, =A.»Li,(ﬂ,-1 %)Y,m 6",

and thereby to the result
P(rrit) =>4 %Ijl(/{il L)il(’iil —r‘)
ol a a

X[Z Yz, ?')Yzm(?)]eXp( —vat). (20)

(19)

The summation formula

2041 1)

> YE ()Y, () = P,(?7),
where P,;(x) is the Legendre polynomial of degree / and
where ? = r/|r|, shows P(r,r';¢) in Eq. (21) to be dependent
only on the radial distances 7 and # and the angle between 7
and #; however, we retain (20) in its present form. For a
given / occurring in Eq. (20), the sum is over all A,, labeled
by the summation index /.

Each function j, (x) is either symmetric (for / = 0) or
antisymmetric (for /> 0) under the transformation x —» — x.
So if A, satisfies Eq. (15), then — A, satisfies (15) also;
because the right-hand side of Eq. (20) is, term by term,
invariant under sign change of A, it suffices to consider only
nonnegative solutions for 4; in the expansion of P(r,r';t).
Furthermore, the solution 4;; = 0 of Eq. (15) is physically
acceptable only for /=0, corresponding to the function
Jo(Ar) =j,(0) = 1 throughout the spherical cavity, but not
for /> 0 since j; (0) = O for /> 0. Therefore, the acceptable
solutions of Eq. (15) for A, with / = 0 are A,, = O together
with a set of positive A4, and for / > O consist only of positive
Ag.

Once the eigenvalues (4, ) and thereby the probability
density P(r,r’;t) are determined, it is necessary to find ex-
pressions for the mean-square displacement

4493

(r*)=(|r(#) —r(0)[?) of a carrier from its initial position,
and then to find its complex Laplace transform’
D(w) =nd(icu)2J. e~ “ (Y (t)dt (22)
0
{where n, = 1/(2d) for dimensionality d] which, accord-
ing to the Nernst-Einstein relation for noninteracting carri-
ers, gives the frequency-dependent conductivity

ng?

olw) = = Diw)

(23)

B

for density n of carriers each having charge gq.
The expression for {#)(¢) is

37 —
<|r—r'|2>(t)=[i’;i] ]ffP(r,r';r)

X [P+ ¥ —2r cos B, 1d°rd?r,
(24)
wherecos §,, = 7-#. Only the | = O and / = 1 contributions
to P(r,r';t) in Eq. (20) yield nonzero contributions to (#*) as
given by Eq. (24). Then Eq. (24) can be evaluated in spheri-
cal coordinates to yield

(PY(5) =128 Y [ Npe ™ — Nye™ "] (25)
with Ny and N, givc;n by
: [/2(41)]? 7

T A [AGa) =G o) T
[Note that Ny, is seen to be 1/10 by taking the limit of Eq.

(26) as A -0.] The Laplace transform Eq. (27) can be eval-
uated immediately using Eqgs. (22) and (25) to yield

D(w) = 12n,(i0)*d zyzN—fi - yZA;‘ ]
i Yo w i Ya 1w
(28)

lll. INTERCARRIER INTERACTIONS

In the model of Sec. II the conducting region consists of
spherical domains each containing a single charge, and inter-
action between carriers in different domains is disregarded.
We once again take each spherical domain to contain at most
one carrier and to have radius a, with the external medium
strictly nonconducting (i.e., the zero leakage case). We seek
the dielectric response of the composite medium consisting
of the spheres and their nonconducting immediate sur-
roundings.

Consider first a single spherical domain embedded in
the external environment. The dielectric functions of the
sphere and environment are €,(w) and €,(w), respectively,
and both are assumed real at the (low) frequencies of inter-
est. The sphere contains one charge carrier of charge ¢ whose
mobility is u, inside the sphere and is u, = 0 outside, and
each y, is related to the corresponding diffusion coefficient
via the Nernst-Einstein equation:

q
D,. 29
k, T (29)

M=
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We take ¢, to be the dielectric function of the spherical phase
in the absence of the charge carrier (and €, the correspond-
ing dielectric function of the medium outside the sphere).
The polarizability of the sphere in the absence of the carrier
is®

&6 —6) s (30)
€, + 2¢,

We seek the excess polarizability &, of the sphere due to the
presence of the charge carrier. (Note that e, is taken here to
include the ¢, factor, in contrast to the conventional defini-
tion.)

Consider first the d¢ (@ = 0) limit. The carrier motion
inside the sphere in the presence of a homogeneous electric
field is described by the following Fokker-Planck equation

9P _pyvr-Ddgyp
at kT

B

where P (as before) is the probability density to find the
carrier at a particular location in the sphere. [ Equation (31)
can be obtained, for example, by decomposing the probabili-
ty current into a diffusive part and an extra drift part arising
from the applied field; the drift contribution is determined
by the carrier mobility in bulk, and hence by D,.] The equi-
librium solution of Eq. (31) is then

P,=V 'exp[ +qEr/(kzT)]. (32)

The normalization ¥~ ! over sphere volume in (32) applies
to the weak-field limit that we consider here. The dipole
induced by the field E is given by

a, (o) =

31)

m=qJ- rP, (r)d’r.
sphere

In the weak-field limit this yields
anZ
" S5k,T
where E is the (assumed homogeneous) field inside the
sphere. If we disregard the position-dependent reaction field

resulting from the polarization of the sphere by the carrier
itself, E is related to the external field E, by

m E, (33)

3¢,
€, + 2¢,
Equations (33) and (34) then lead to an expression for the

excess dc polarizability of the sphere (i.e., associated with
the added carrier)

E= E, (34)

o — g’a* e,
© 5kpT € + 26,
The nonzero-frequency result may in principle also be
obtained from the Fokker—Planck equation, but it is easier to
obtain it by the following argument. First, if we take €, = ¢,
so that the only contribution to the sphere polarizability is
the excess polarizability a., then for low density n of spheres
the total dielectric response is given by

(35)

€ =€, + 4mpna,. (36)

Here we have introduced the fraction p of spheres that con-
tain a carrier, so that pn is then the density of such spheres.
The presence of the carriers makes € complex, being related
to the conductivity by '

e=e -3 o(w) (37)
(1]

with the conductivity o(w) and diffusion coefficient related
by the frequency-generalized Nernst—Einstein equation:

g’pn
= D . 3
o(w) % (w) (38)
Comparison of Eqs. (36) and (37)-(38) leads to
2
. q
a(w)= — D(w), 39
(@) lkBT (w) (39)

where D(w) has been obtained in Sec. III.
Consider next the case €,#¢€,. Equation (36) is now
replaced (in the low sphere-density limit) by

€=¢€, +4r(na, + pna,), (40)

where ¢, is given by Eq. (30). Equation (37) is similarly
replaced by

€ =€, + 4mna, —ﬂa(a)), (41)
@

so that the o(w) term represents the carrier contribution to
the total dielectric response. This leaves the relation between
. (w) and o(w) intact. However, the effective Nernst-Ein-
stein equation (38) is modified. For charge carriers of
charge ¢, density pn, and mobility 4 moving in an electric
field E, the current is

= pnguE
e,
€, + 26,

where we have used Eq. (34). Therefore, the macroscopic
conductivity is

E,, (42)

= pngu

3¢,

= DN 43
o(w) = pngu e 12, (43)
and use of Eq. (29) leads to
2
q‘pn 36, (w)
(@) kpT €(@) + 26,(w) (@) ¢
instead of Eq. (38). This in turn leads to
22
iq 3¢,
=4 _ 2% p 45
2. (@) kyTw €, + 26, (@) 49

instead of Eq. (39). When €, = ¢,, we recover Eq. (39).

We note in passing that the argument leading to the
result (45) also points out the shortcomings of the Nernst--
Einstein relation between macroscopic conductivity and dif-
fusion. While the relation (29) between mobility and diffu-
sion always holds locally, translating it into a relation be-
tween the macroscopic transport coefficients should be done
with caution.

As a consistency check on the results obtained above,
consider again the @ —0 limit. Comparing Eqs. (35) and
(45) we obtain
_itim 2@ _ 2 (46)

©w-0 @ 5
This is identical to the @ —0 limit of the general expression
(22) (using n; = 1/6 and (#*),_ ., = 6a%/5).

We can now generalize our results to take into account

the interaction between spheres in the Maxwell-Garnet ap-
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proximation. Each sphere is taken as a polarizable particle
with average polarizability

a=a+pa,

_6(€6—6)

2
iq°p D(w) 3e,
€, + 2¢,

(47)
kyTw €, + 26,

@+

The effective dielectric response of this composite medium is
given by
€ - 62 4ﬂ'
€2 —_—
€+ 26, 3
Note that if p = 0 (corresponding to no carriers) we get the
usual Maxwell-Garnet result:

na. (48)

€E—€ _ €6—6

€+ 2¢, B € + 2,
where f = (47/3)a’n is the volume fraction occupied by the
sphere. If €, = €, we obtain from Egs. (47) and (48)

(49)

e—¢ _ 4mnp ig’D(w)

. (50)
€+ 2e, 3 kgTwe,
If p is very small so that e ~ €, we obtain
)
ig"D(w)
€~6€, + 4mnp L———. 51
2 p k,To (5D

This is the limit considered approximately in Appendix B.

IV. BEHAVIOR OF THE SOLUTIONS

For zero leakage, the calculated eigenvalue spectrum
leads, in Egs. (25)—(27), to N, coefficients that are all zero
for i> 1 [as can be seen analytically from Eq. (27) ]. These
values lead to an expression for the mean-square displace-
ment (averaged also over random initial positions within the
sphere) that is given by

() =a*(1.2 — 1.187e = 2% _ 0.0102¢ ~ %
—0.0017¢ %317 — ++)
z12‘22[1 _e—2.082D,t/a2], (52)

where the time-dependent terms arise from the / = 1 contri-
butions to P(r,t). The lowest eigenvalue (equal to zero) in
Eq. (52) corresponds to a uniform distribution of the carrier
probability throughout the sphere at long times. The quanti-
tative similarity to the simple saturation behavior assumed
arbitrarily for related diffusion problems should be of inter-
est in specific applications. In particular, the complex La-
place transformation in Eq. (22) leads to the result

iw
iw + (4.335/a*)D,
showing structure in the D(w) plot at frequencies compara-
ble to the inverse of the time required for a carrier to diffuse
from the center of the domain to the domain wall.

For nonzero leakage (as outlined in the Appendix), the
eigenvalues used in expanding the interior solution are shift-
ed relative to those for zero leakage. In particular, the lowest
eigenvalue, which for zero leakage was zero (corresponding
to the uniform distribution of probability throughout the
interior approached at infinite time) shifts to a positive value
corresponding to an exponential loss of probability in the

D(w)=0.867D, (53)

4.0

-
o

Normalized Probability

0.0 1 1 4 1 e 1 1 1 1

FIG. 1. Probability density for various times 7 = (D,/a®)¢ after the carrier
starts at the center of a spherical nonleaky domain. Plotted for (a) 7= 0.10,
(b) 7=0.15, (¢) 7=0.20, and (d) 7= 0.50.

interior region, and yields nonzero dc conductivity.
Figures 1 and 2 compare the resulting radial depen-
dence of the probability distribution as a function of time for
zero leakage and for nonzero leakage when the carrier starts
at the center of the sphere. The approach of the probability
to a spatially and temporally independent distribution
throughout the sphere (for zero leakage) is replaced for non-
zero leakage by an approach toward a spatially nonuniform
distribution whose smaller value near the domain edge and
continued overall decrease for all values of time are conse-
quences of probability loss through the surface. This is re-
flected also by the interior contribution {?);,(#) to the

L w@ g
° ° o

Normalized Probability

0.0 . 1 L 1 L 1 1 L I

FIG. 2. Probability density for various times 7 = (D,/a®)1 after the carrier
starts at the center of a spherical leaky domain with leakage parameter
a = 1.0. Plotted for (a) 7 = 0.10, (b) 7 = 0.15, (¢) 7 = 0.20, (d) 7 = 0.50,
and (e) 7= 1.0.
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FIG. 3. Interior contribution to the mean-square carrier displacement
{P)(7)/a® in a spherical domain as a function of dimensionless time
7= (D,/a®)t for various values of leakage parameter a, specifically (a)
a=0,(b)a=0.1,(c)a=05,(d) g=1.0,and (e) a =5.0.

mean-square displacement (Fig. 3). Asa consequence of the
eventual decrease of (#*);, () (after some time #,), D(w)
calculated using (r*);, (¢) alone exhibits unphysical nega-
tive behavior for w less than ~ 27/¢,, in accordance with our
previous comments about the role of D, (») [and of
{r*) u: (£)] in the dc and low-frequency conductivity.

The calculated behavior of the total (r*) (¢) in

(PY(@) = (P (1) + (P oue (D)

depends (especially at large times) on both the given D,/D,
and on the leakage parameter a. Of course, a should be de-
termined by D,/D,, but in the present development is an
independent adjustable parameter. In our calculations for
numerous combinations of D,/D, and e, we find (as in Figs.

FIG. 4. Total mean-square carrier displacement for a slightly leaky spheri-
cal domain (a = 0.05) plotted for various values of » = D,/D,, specifically
(a) r=20.10, (b) r=0.05, (¢c) r=0.01, (d) r=0.

Druger et a/.: lonic conduction in polymer electrolytes

10.0

8.0 -

<r2>(7)

40 L P

0.0 . L 1 1 o il "
0.0 0.5 1.0 1.5 2.0

FIG. 5. Total mean-square carrier displacement for a moderately leaky
spherical domain (a = 0.1) plotted for various values of r = D,/D,, specifi-
cally (a) r=1.0,(b) r=0.5,(¢c) r=0.1,(d) r=0.

4 and 5) that a value of D,/D, somewhat smaller than a
appears to be an upper bound for D,/D, above which the
physically unexpected concave-upward curvature in {(#*) (#)
vs ¢t develops. Figure 6 shows the calculated behavior of
D(w) combining both the interior and exterior behavior for
the leaky sphere; again, the physically expected behavior oc-
curs for D,/ D, somewhat smaller than a. In practice, using
these results, we would expect to treat D,/D, and a as pa-
rameters to be determined separately, either by fitting or
from other experimental measurements.

Figure 7 shows the effect of interactions between carri-
ers, as discussed in Sec. IV. We focus on the case where
€ =¢€; and p = 1 (i.e.,, with each sphere containing one par-
ticle) so that the # (sphere density) dependence of the con-

1.0 T T T———r— T

| og |
-
<3
'
-]
b
)
s
o
o
2,0} a———— — -
c
L 4 1
-3.0 = R 10 3.0
'Og w

FIG. 6. Real part of the frequency-dependent diffusion coefficient f)( o) for
a slightly leaky sphere (a = 0.05) plotted for various values of r = D,/D,,
specifically (a) »= 0.1, (b) r=10.05, (c) 7 = 0.01. The dimensionless pa-
rameters are defined as & = wD,/a” and D(&) = D(w)/D,.
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FIG. 7. Real part of the frequency-dependent diffusion coefficient
[D(®) = D(w)/D, with & = @D,/a*} for various volume fraction foccu-
pied by the interacting nonleaky (a=0) spheres, specifically
f=5%10"*%,f=5%10"3, f=5x10"2,and f= 0.5, for which the plots
coincide.

ductivity o reflects exclusively this interaction. Here o is the
real part of the complex conductivity, and is given by
o = (w/47)Im € where € is the complex dielectric function
obtained from Eq. (50). We see that the effect of coupling
between spherical domains under these conditions is negligi-
ble, an unexpected but useful result allowing the limit given
by Eq. (51) to be used as a reasonable approximation even
when p~1 and # corresponds to a high density of spherical
domains. Furthermore, even though the effect of the interac-
tion is small, it is still essential to consider the way in which
the D(w) for individual domains combine to produce an
overall o(w). It is particularly noteworthy that the break in
the o(w) curve occurs at roughly an o =2#/T for
D, T=} &% which is a representative time for the particle to
diffuse to the walls of the domain. (The same comment of
course applies to Fig. 6. for a single domain.) Thus, the
structural feature in the diffusion coefficient of the spherical
domain corresponds to a structural feature in the diffusion
coefficient for the overall system.

V. SUMMARY AND CONCLUSIONS

We have studied the effects of domain structure on ionic
conduction in systems such as polymer electrolytes by mod-
eling each domain as a spherical region containing at most
one excess ionic carrier, with the goal of using the behavior
of the mean-square carrier displacement {r*) () to deter-
mine D(») [and o(w)] for a single domain, and of then
considering how the interacting domains combine to pro-
duce the effective conduction in the actual many-domain
system. For a single spherical domain, our solutions show
reasonable physical behavior at short and intermediate
times. At long times, as expected, the distribution becomes
essentially uniform within the sphere. Our ad hoc procedure
for including diffusion outside the domain introduces a spur-
ious extra leakage parameter a, without yielding an immedi-
ate relation giving a in terms of D,/D,. Intuitively reasona-
ble behavior of the mean-square displacement {#*)(¢) and

diffusion coefficient D(w) is, however, obtained only for a
fairly limited range of  for any choice of internal and exter-
nal diffusion coefficients D, and D,, suggesting that @ can be
determined in practice by fitting the theoretical results to
experimental or other actual data for a given D, and D,. An
exact solution which does not introduce the extra parameter
is indeed possible using Laplace transform methods, but is
mathematically tedious compared with the approach fol-
lowed here.

Using effective medium theory, we have obtained an ap-
proximate solution for the overall conductivity with do-
main—domain interactions taken into account. While under
some circumstances the effect of such interactions taken
could be important, numerical evaluation shows that the ac-
tual effect, for a situation of relevance to the polymer electro-
lytes, gives essentially the same result as for noninteracting
domains. This is an important result, since it indicates that
the conductivity and spectroscopic properties deduced from
independent-particle transport either in leaky or in nonleaky
domain problems are adequate for describing the overall
transport and spectroscopic response for carrier concentra-
tions that make more than one carrier per domain unlikely.
The effect of the domain walls should be clear, as is indicated
in Eq. (53) and Fig. 1, from a measurement of the frequen-
cy-dependent conductivity of far-infrared regime. Experi-
mentally, both PEO-based polymer electrolytes (which are
semicrystalline at relatively low temperatures ) and block co-
polymers, as prepared, for example, by Smid,’ should exhibit
the domain structure discussed here. The structure in the
conductive response for frequency @ =~2D,/a” should be in-
dicative of the domain size, and of the intrinsic diffusion
coefficient in the conductive region.

There might be interesting applications of materials
with single domains as selective absorbers in interesting low-
frequency regimes. By control of domain sizes, the frequency
of maximum response could be controlled. This might also
lead to a spectroscopic probe of domain wall destruction as a
function, say, of temperature or physical processing.

For polymer electrolytes in general, a dynamic-disorder
model has provided substantial insight into the behavior of
the conductivity.>'° The combination of dynamic percola-
tion within domains, and static percolation between do-
mains, might well describe semicrystalline polymers in an
attractive qualitative way.

The approximate nature of our extension to the leaky
sphere case leads us to focus attention on the nonleaky do-
main (describing the behavior for short and intermediate
times, corresponding to intermediate and large @, which are
cases of primary experimental interest). This extension
makes clear the conceptual importance of distinguishing
between diffusion properties, which are local, and the overall
conductivity, which is nonlocal, and provides an effective
medium theory for obtaining the overall conductivity with
domain—domain interactions taken into account. Under
some circumstances the effect of domain-domain interac-
tions could be important, but numerical evaluation shows
that the actual effect for situations of relevance to the poly-
mer electrolytes gives essentially the same result as for non-
interacting domains.
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APPENDIX A: ESTIMATION OF THE DOMAIN SIZE

Assume that the mean-square carrier displacement
within a spherical nonleaking domain obeys the simple satu-
ration law

(Po(ty =A[1 —exp( —at)], (A1)
so that initially

d

£ =aA. A2

I (P)o(t) o ad (A2)

Equation (A1) implies A = (r*),(¢— ) which, together
with the expression for D(®) obtained by combining Eq.
(A1) with the linear response theory expression Eq. (22),
leads to

(P)o(t> ) =n;'D(w- )T, (A3)

where 7is 1/a, n; ! = 6, and only the long-range ionic con-
tribution to D(w) is considered. Equation (A3) combined
with the generalized Nernst-Einstein relation (23) yields

(Pholt—0) = —2 (A4)
ne

olw— )T

Because only the long-range ionic contribution to o(w) has
been included, o(w - oo ) is the estimated upper plateau val-
ue in the structure associated with carriers diffusion to the

domain walls in the log o vs log @ curve. )
Simple intuition based on the typical time required for

carriers to diffuse to the domain wall suggests an expression
similar to Eq. (A4) but with the @ — « limit replaced by
@ = 0 and with o the conductivity of the bulk material with-
in the domain. Because the plateau described by Eq. (A4)
actually is superposed on a monotonically increasing residu-
al o(®) dependence from the motions of bound charges, the
best values to use in Eq. (A4) actually should not be the
apparent maximum plateau, but rather values that indicate
roughly where the structure is seen in the log (@) vs log w
curve, so that both results are actually in agreement.

Using the values T=300 K, n=2%10*! cm~?3,
e =4.803x 10 '° esu, and a conversion factor of 9x 10!
s~ ! /(0 cm), and combining these with data values for crys-
talline-plus-amorphous (PEO);NH,SO,CF,, specifically
using the [f= w/27,0(w)] values ranging from [10*s~!,
10 Q" "ecm~']to [10°s~1,107° Q' cm~'], we ob-
tain corresponding values of [{7*),( 0 )]'/? ranging from
2t07A.

APPENDIX B: FORMULATION FOR A WEAKLY
CONDUCTING EXTERIOR REGION

For small but nonzero exterior diffusion coefficient we
assume most of the carriers contributing to the total conduc-
tivity at any given time to be also each within a domain, with
carrier motion starting from outside neglected as an approxi-
mation. Such an approximation would not be strictly appli-

Druger et al.: lonic conduction in polymer electrolytes

cable at zero frequency where long-range motion produces
the nonzero contribution to ¢(0). But even when carriers
initially in the exterior region contribute significantly to the
o = 0 conductivity, the structure in the D(@) curve at non-
zero o might still be expected, for small leakage, to arise
primarily from carriers inside. Thus while the central point
of this article is the analysis of Sec. II, we believe the ap-
proach of the present section provides a useful extension of
that analysis to lower (but still nonzero) frequencies.

Two further complications enter when the exterior dif-
fusion coefficient is no longer zero. First, the boundary con-
dition (7) must be changed to allow for diffusion into the
exterior region in a physically reasonable way. Second, we
must apply this boundary condition to find the exterior
(r> a) solution for P(r,r';¢). Physical considerations imply
that the 7> a contribution to the spatial probability density
dominates at long times, and therefore at low frequencies in
o(w), when there is any nonzero leakage at all; the exterior
solution then becomes essential in determining the dc con-
ductivity.

The most appropriate conditions to apply at the inter-
face would be, first, the continuity of the radial component
j-?ofthe current flux (as before) and, second, the continuity
of P(r,r';t) itself. But application of the separation of vari-
ables technique proves difficult. In particular, integrals of
the form

R
J fi(gr)?P dr,

for f; being either j, or n;, introduced by attempting a term
by term expansion, are ill-defined in the limit R — o0. This
difficulty arises from the unboundedness of the spatial re-
gion on which the problem with leakage is defined.

We therefore follow a pragmatic approach: (a) by seek-
ing to describe the physical system using boundary condi-
tions that, while still intuitively reasonable, lead to a simpler
interior solution for P(r,r’;¢) than does the combined re-
quirement of continuous probability flux and continuous
probability density, and (b) by later employing ad hoc, but
again intuitively reasonable, assumptions about the form
taken by the exterior contribution to

(P (&) =(|r(r) —r(0)]?).

1. Approximate evaluation of the interior solution

For the interior solution, we impose the boundary con-
dition that the probability current density out of the cavity
be continuous across any point on the interface and propor-
tional to the probability density P(r,r’;¢) at that point, or

' ?=pBP(rr';1). (B1)

While this condition appears plausible on physical grounds,
it is well to consider also its limitations. The coefficient 8
enters as an adjustable parameter which determines the
outward flux solely in terms of P inside; thus, this approach
does not lead @ priori to an expression for Bin terms of exteri-
or properties (i.e., in terms of D, for the given D,). The
appropriate choice of £ should, in reality, be determined
fully by simultaneous specification of D, and D,. For dilute
situations, however, we anticipate that Eq. (B1) is reasona-
ble.
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The boundary condition (B1) can be rewritten, using
Fick’s law, as

apP

D—a—+BP 0 (atr=a) (B2)

and reduces to Eq. (7) for §—0. The same procedure used
previously for the D, = 0 case can now be followed. Imposi-
tion of the initial condition

P(r,r’;0) =8(r—r) (B3)

leads to an expansion of P(r,r’;¢) in the form (20). Also, as
before, linear independence of the separate terms in Eq. (20)
implies that Eq. (B2) must hold for each Bessel function in
the expansion of P, implying the condition

Jilda) + i (4y) =0, (B4)
where a is the dimensionless leakage parameter
a= B . (B5)
Dia

Thus, the interior solution for P(r,r';z) in the leaky-sphere
problem is already given by Egs. (20) and (14), except that
the eigenvalues (4, ) are now determined by Eq. (B4) rather
than by Eq. (20).

Evaluation of (#*) () requires determining the average
over r’ of the mean 7 attained starting from the initial posi-
tion r’ within the sphere

<r2>(t)—[——a] [f J|r r'|2P(r,x';t)d *rd>r

+ f f |r — r'|2P(r,r’;t)d3rd3r’]
r>a
= (P (1) + (P)oue (D). (B6)

The expression for (#*), () is then the same as before (but
in terms of the shifted eigenvalues 4, ), as is true also for its
Laplace transform D,, (w) given by Egs. (22) and (28). The
remaining difficulty, as previously mentioned,lies in calcu-
lating (#*),,. () and D, (w).

2. Approximate treatment of the exterior solution

Consider the carrier to start at an interior point
r(0) =r'. To evaluate (¥*)_,, (¢) in an ad hoc way, let 5P be
the probability for exit of the particle in the time (z,¢t + 5¢)
through a surface area increment 84 located atr = aF on the
interface, so the 8P is given by

6P = (j-#)6A4 bt
= BP(Fa,x';t)0A4 bt. (B7)
We make the ad hoc assumption that each 8P probabili-
ty increment leaking through the interface at time 7 (for the
given r’ initial position) gives a corresponding contribution

to {|r(#)|*)ou: atalater time ¢ [ with r(¢) measured from the
center of the sphere] that grows as

a*+ (t—7)n,D, (B8)
so that the corresponding contribution to (|r(#)|?) is
f [@* + (t — 7)n D, P(atyx';7)dr. (B9)
(1]

The quantity (|r(¢)|*), whose exterior contribution is given

by Eq. (B9), is (|r(?) —r'|*) for ¢’ = 0, while the desired
quantity, in contrast, is {(7*) o, (¢) = (|r(#) — r'|*),,, aver-
aged over both the initial positions r' and over the subse-
quent motion,of the carrier; this is given by
(PY(0) ={Jr(t) —r'|)
={r(O?) + (Ir]?) —2(r'r (1)),  (B10)

where an average over initial positions r’ within the sphere is
included. As an approximation, we ignore the correlation
term {r'r’) in evaluating the exterior contribution
(7)ot (1). By evaluating (|7'|*) averaged over the sphere as
0.6 a?, and volume-averaging Eq. (B9) using Egs. (20) and
(14), we obtain

(rz)out(t)=6aa{ (16+12 gz )

1

)
A%
(16+6gj )(z%)

D
6223 F
+ D};,

—A2
x(_lr_w)], (B11)
i /1 [¢]]
where 7 = (D,/a?) t is a dimensionless time and
sin Ay, — Ao, cos Ag; |
¥ = Jo(Aoi)- (B12)

‘T Ao

Complex Laplace transformation, after considerable alge-
braic manipulation, leads to the remarkably simple result

—sin Ay; cos Ay,

]

D, () = nd(ia))zj- e (r) o (Ddt

0

D F,
—(1.6(% 6——2-) ), (B13
( (@) +65 (azi:iéi+za) (B13)

1

where & = (a?/D,) w, so that &7 = wt. The first term in Eq.
(B13) is seen to arise from leakage into the external region
(causing the particle to attain a distance a* from the center of
the sphere) while the second comes from subsequent diffu-
sion away from the sphere within the external medium and
gives a nonzero dc (w = 0) conductivity, as is physically
reasonable.
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