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We explore the implications of Rhodes’ *'filtering” process for the reduced density operator of excited molecular
states demonstrating that the relaxation characteristics of an isolated resonance in the statistical limit are independent
of the excitation mode.

The nature of the “initially prepared” optically excited molecular state is crucial for a complete understanding
of electronic relaxation processes in polyatomic molecules. Early discussions of this problem [1,2] treated the
radiative excitation process to lowest order and accounted properly for the non-radiative decay occurring during
the excitation process. A formulation of the excitation-decay process subjected to this limitation has been pro-
vided by considering the time evolution of the molecular states [1] and alternatively by utilizing the time evolution
of the density matrix [2,3]. Rhodes [3] concluded that the decay characteristics in the large molecule limit will
be determined by the excitation mode. It was argued by Rhodes [3] that the case of long time broad band ex-
citation of a large statistical molecule “‘is intermediate between the case of pulse excitation of a pure (non-statio-
nary) state and the small molecular limit”. This conclusion contradicts the result of Bixon and Jortner (1] where
the decay of an isolated molecular resonance is independent of the excitation mode, and where long time broad
band excitation will result in a single exponential decay, which is characterized by the lifetime of the same me-
tastable state prepared by a short pulse excitation. In view of current interest in the nature of molecular excited
states produced by optical excitation we shall demonstrate that Rhodes’ density matrix approach [3] leads to the
original conclusions of Bixon and Jortner {1]. In particular, we shall prove that the “filtering” of the quasicon-
tinuous density matrix which assumes a partially diagonal form for long excitation times [3} is still compatible
with a decay pattern that is identical to the one obtained by a pulse excitation with a minimum possible excita-
tion time.

The density operator at the beginning of the experiment may be described by a product

p=pMp" (1)
of the molecular density operator

M=1pal, (2)
and of the field density operator

R = ?;R(n)rmm;, (3)

where |g) is the molecular ground state, n = {n;} is the vector of the population numbers in the different modes
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and where R (n) denotes the probability for the field to be in the state n. Eq. (3) describes o in the population

number representation. 1t may be asserted that in this representation the density operator which corresponds to

a chaotic radiation source (e.g., thermal source or discharge tube) is diagonal. An equivalent form for pR is

oR=11 20 Rinind gt (32)

k ng

where k is the mode index, so that

R(n)=R(im}) = T;I R(ny) . @)
The time evolution of the molecule—field system during the excitation time 7 is given by

p(r)y=U@p U, )

where the evolution operator U(7) in the lowest order of perturbation theory is

U(T)=exp(—iﬁ_1H07) [I-ih‘1 f VI(T')dfr’] , 6)
where 0
Hy=HY + HR M

is the sum of the molecular and the field hamiltonians and where

Vi) = m{r) (1) (8)

(with the molecular dipole moment u and the electric field €) is the molecule—field coupling in the interaction re-
presentation, so that

A1) = exp (ih~'Hyt) A exp (—in " Hyt); A=pe. 9)

Inserting eq. (6) into eq. (5) and making use of eqs. (1)-(4) we obtain*

p(ry=h"2 exp (—in " Hy) (f V(") df') ,o(f'r VI(T')dr') exp(ih~ Hy7)
0 ¢

=h? f Vi(r'-7) (Ig)(g'. ER(n)am(ns) [ rie-na
0 n

0

=h? fﬂf dr'dr" [ul(fbr)lg)(gl.u;f (r"—1) e, (7' —7) z,,) R(n)in) lef(r"~7)} . (10)
0

* As we shall be interested only in the mattix elements of p between excited moleculat states, we shall consider only this part of p
which coniributes to such matrix elements. In other words we discard these terms in o which contain |g) at the left qr {gl at the
right side of the operator. Note also that from now on we treat one component of the scalar product (8).
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As we ard riot interested in the final states of the radiation field one may consider the reduced density matrnix
for the molecule which is obtained by taking the trace of p(r) relative to the field states, Le.,

pM(r)*:ﬁ‘sz dT'dT"#[(T'—T)1g>(g|u;(f"”7) ER(n)|n)(nle}f(r"—r)el(r'—r)ln), (11)
00 "

where we have made use of the closure relation in summing over the final field states. Defining now the (first order)
correlation function for the field

G —7")= 2 R(n)nle[(r")e, (7" )in) (12)

(which for stationary radiation fields depends only on the difference 7'—7" of its time arguments), eq. (11) takes
the form

pMry=n""2 f f dr' dr" GG =" Yty (' =X gliy (7" 7) - (13)
0 0

The reduced density matrix o™ () describes the state of the molecular system after interacting with the radia-
tion field during the time 7. If the field is now terminated at this time 7, the state of the system at any time 7+/
after the end of the illumination may be described by *

T T
M(r+1) = exp(— i VM oM exp (i LgMpy=p2 f f dr'dr"G({r'—7") exp ia HY (' =10
00

X ulg) el exp [~ iA LHM (7" —r—0)] exp [-iAT E (=7 (14)

where we have utilized eq. (9) for u(#), making use of the fact that HR and 4 commute.

Eq. (14) for ¢ = 0 is mathematically equivalent to eq. (2) of ref. [3], although the present derivation is more
pedantic. Following Rhodes [3] we may now recast the matrix elements of pM in the molecular eigenstates ({\lf]-})
representation.

T T
pjy"(t+r)=h_z(fIMg)(gl#U') ff dr'dr"G(r'—7") exp [iﬁglEj('r'HT—t)] exp [—iﬁ'lE]-'(T”—-T—r)]
0 0
X exp [~ih LE,(r'=1")] . | (15)

This expression may be further simplified by noting that the field correlation function G(r'-7") is centred around
7' 1" and characterized by a width which is inversely proportional to the energy width of the exciting band. If
this band is wide enough (ie., Aw > 1/8 where 8 is a characteristic time for any transition in the excited mole-
cule **), we may replace G(r'—1") by a delta function,

*+ We assume that the termination act has no considerable effect on the system. This is expected to be true if the excitation band
is wide enough so that it includes all the Fouriex components which correspond to this termination act.
+* Note that this is a necessary condition also for our ability to terminate the radiation in time short enough to enable us to per-
form meaningful measurement of the relaxation process.
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G(r'—1") = A8(r'-1"), (16)

where A is a suitable constant. Eq. (15) now results in

T
pﬁr(Hr):Aﬁ‘z f dr'Fyp (7' —7-1), | (17
0
with
Fjp(r'—1=1) = Gilulg)glulf") exp [ih~ N E~E;p Nr'—1-8)] - (18)

Performing the 7' integration we obtain

2sin (A~ 1(E;—E;)7]

pyplet7)= AN~ 2y exp (i 1 (B ) (3r41)] no gy "

which as 7 increases, tends to zero for ﬂfl(Ethfr) > 1/r whereupon the density matrix assumes a partly diagonal
form for long excitation times [3}:

A cursory examination of this feature of the molecular density matrix may lead to the conclusion {which was
reached by Rhodes [3]) that the decay features of a large molecule subjected to a long excitation time (relative
to its decay rate) will differ in nature from the relaxation characteristics following a short excitation pulse. We
shall demonstrate that a proper treatment of the density operator {egs. (17), (18)] leads to the Bixon—Jortner 1e-
sult (1], so that the decay charactenistics of a molecule which corresponds to the statistical limit are not affected
by the excitation time.

To extract information concerning the decay pattern from the molecular density matrix it will be helpful to con-
sider the state |s) which carries all the oscillator strength for transitions to and from the ground state. In the statist-
ical limit Is) has a simple physical interpretation. In more complicated cases s} may still be defined in terms of 2
suitable linear combination of molecular states {4] . In any case the decay pattern is given by the time dependence
of the population of the state [s} namely

I(t+7) = Bu {p(t+7)9 i}, (20)

where B is an appropriate time independent constant. In the case where a definition of a radiative decay rate for
the state |s) is meaningful, B is just this decay rate, Utilizing eq. (17) we now obtain

I(r+f)=ABﬁ‘2f dr’ J(r'-1-1) , (21)
0

where we have defined

Iy = 0 20 YIS F )= 2 20 I (luig) gltf'y exp (1A~ E ~Ep)x]. (22)
Foor jo7

Now, if is) is the only state (of some complete basis set) which is radiatively coupled to the ground state, we may
write

Glulg) = Gl Slelg) (23)
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so that the function J(x) is determined by the Fourier transform of the line shape function

J0x) = g2 23 16711 expin ™ Epol? (24)
!

= \glpls?| f dEL(E;) exp(if Ex)N (25)
where the absorption line shape function (excluding high order radiation corrections) is
L(E) = pEDIGIN . (26)

In the case of a simple lorentzian resonance,

r
L(E) = (1/27) —— S (27)
! E-E)?+ G
where ES is the centre of the line profile* and 'y is its width, eq. (26) yields
J0x) = [glulsH? exp(~Tglx) . (28)
Inserting this result into eq. (21) we readily obtain
T
1(r+7) = 2 ABgluis? exp [-T(t+7)] f dr' exp(Ts7")
0
= 52 ABIglulsN? {[1--exp(=T7)] T} exp(=Tt) (29)

which is identical to the result obtained by Jortner and Bixon [1}. The following points are now in order:

(a) Eq. (29) describes the emission intensity from a single molecular resonance which corresponds to the statist-
ical limit at time ¢ after the termination of an excitation source of duration 7, in the approximation which neglects
high order radiative terms.

(b) Considering egs. {19) and (29) we may conclude that a diagona! character of a quasicontinuous density matrix
does not contradict the possibility of cbtaining a decay pattern identical to what is obtained in the case of a coher-
ent excitation.

(¢) It is important to understand that the present formulation does not depend on our ability to “prepare’” ini-
tially the system in the particular state |s). We may note that a formal definition of a state 5} which carries the
entire oscillator strength from the state [g), is s> = plg [gluig] ~*. Utilizing this formal definition we may replace

eq. (20) by an equivalent form

Kr+7) = (Bl i) tr {p(t+n)pigdelul (30)
which subsequently yields eq. (21) where now eq. (22) is replaced by

Jxy= [/ 1) ? (Glulg)? exp (it LE N2 = (1?1l [ dBL(E) exp(in ™ Ex)I1” (31)

* In case where a zeto order molecular hamiltonian may be defined such that H%'fls) =E 8, we find the line center at some
shifted energy £
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where L (£;) differs from L(E]-), [eq. (26)] , only by a constant factor. We see that without referring to a “zero
order” state ls) we obtain J(x) as essentially the Fourier transform of the line shape function.

(d) We may somewhat generalize the theory to include the main effects of the high order radiative corrections.
This has been done in the evolution operator method [2] as well as in the Green’s function formulation [4] of
the problem. To accomplish this goal we have to invoke the following assumptions:

(1) the initial state of the radiation field is a single photon state (or, rather, a wave packet of single photon
states),

(2) during the time in which the radiation field is active, only absorption of photons (and not, for example,
emission of virtual photons) is taken into account.

These two assumptions enable us to consider the excited states of the system at the end of the excitation pro-
cess as accompanied by vacuum states of the field.

Together with these two assumptions we must introduce (as before) the termination of the field phenomeno-
logically (and not inherently via the field spectrum) by assuming that the initial absorption may occur only up to
the time 7

The evolution operator

T+t

U(r+t,0) = exp [*ifi—‘lHO(T‘!'I)] [1-in} f dr'Ur+£,7Y V()] (32)
0

will under these assumptions take the form
.
U(t+1,0) = exp |--—iﬁ_1H0('r+r)] = f dr'Ur+6,7) VDN (33)
0

As now the state of the radiation field at time T is well defined as the vacuum state, we need not take the trace re-
lative to field states; the correlation function for the field takes the simple form:

GG 7"} = Glel(r O Oley () (34)

where [1) describes the initial photon wave packet. If this packet is sufficiently wide in energy, we may again ap-
proximate G(r'- 7") by AS(r' —7") as in eq. (16). The states {¥;} introduced in eq. (15) will now be defined as
the exact molecule~field wavefunctions [6]. This in turn implies that the lineshape function L(E}), [eq. (26)], will
now take the exact form. The isolated resonance case will yield for example an expression of the form (27) in
which Iy is the sum of radiative and non-radiative contributions. The final result, eq. (29), will be similarly gen-
eralized.

{¢) A density matrix approach to the present problem is by no means essential. We have chosen to utilize this
procedure just for the sake of comparison with previous works {2,3].

(f) It is interesting to note that long excitation times do not necessarily lead to damping of oscillatory pheno-
mena in the fluorescence decay, which may be encountered in the small molecule case. To demonstrate this fact we

start again {rom egs. {21) and (24).

.
i1y =h 2ABNglui® [ dr‘mdeL(E) exp[—ih LE(r+i—m) 2. (35)
0

- W
If L(£) is not a simple lorentzian but, say, a proper superposition of two resonances, its Fourier transform will con-
tain an oscillating interference term. For example, when the molecular states may be described by two zero order dis-

crete states which interact with each other and with a continuum (for details concerning the model, see ref. [5]) one
obtains {5}
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| deL(E) axp(=ifi ' Ex)i? = Aexp(-y,X) + Bexp(—7,x) + CReexp(-ih ™} AEx—7x) (36)

where AE is the energy spacing between the two discrete levels, v, and 1y, are decay constants obtained from the

diagonalization of the decay matrix 15],v= %(71 ty;),and 4, B and C are suitable constants. If the excitation
has a finite duration we now obtain

,
Re f dr' exp iR YAE@+i-1") - y(r+ 1))
G

= Re {exp [<if~ LAE 1—y1] [1-exp(-ih~ VAE r—yr)l/ [~ ! AE+Y] ] (37)

It is obvious that the oscillatory behaviour is partially retained. Particularly for r ® + we obtain for the oscillating
part of the fluorescence:

exp (—7f)
L AE) 4yt

I(r+t)= [ycos(h~1 AEN-A LAEsin(n- Y AETD)], (38)

where in the interesting case y =~ h L AE both terms will contribute to the decay pattern.
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