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The recently developed dynamic percolatlon theory is used to solve the problem of diffusion of
interacting particles in lattice-gas models within an effective medium approximation. The
approach is based on the observation that the motion of a tracer particle in a system of (similar
or different) particles can be viewed as particle motion in a changing random environment.
This makes it possible to use effective medium theory (EMT) solutions to the latter problem.
The main conceptual problem of this approach is to relate the characteristic microscopic times
for the evolution of the disordered background to the macroscopic diffusion. We discuss and
compare several possible ansatzs for this relation and conclude that relating these times to the
chemical diffusion rate is the most reasonable simple choice. Using this ansatz, we obtain EMT

approximations for the tracer diffusion coefficient in the noninteracting lattice-gas (NILG,
blocking interactions only) model and an approximate EMT relation between the chemical
and the tracer diffusion coefficients in a lattice gas with nearest-neighbor interactions.
Agreement with available simulation results is good whenever single bond EMT is expected to

be reliable.

1. INTRODUCTION

There is an ongoing interest in the study of diffusion and
conductivity in systems of interacting classical particles.'-**
Adsorbate diffusion on surfaces, "> ionic diffusion and con-
duction in solid ionic conductors,>'®!! impurities and de-
fects migration in solids,® and electron/hole mobilities in
semiconductors* are some examples of solid state transport
phenomena where interaction between mobile particles may
strongly affect the motion. Measurements in such systems
yield directly or indirectly the tracer or the chemical diffu-
sion coefficients and, for charged particles—mobilities, con-
ductivities, and transfer numbers.

Most theoretical studies of such systems are based on
noninteracting lattice-gas (NILG) models where only site
blocking is taken into account,'>"** 1¥@®-13( or for interac-
tions of longer range, on mean-field approximations.'*
Several attempts to improve upon the mean-field approach
for specific models have been described.® 1617 Alterna-
tively, numerical simulations for diffusion in interacting par-
ticle systems with nearest-neighbor (NN) and next nearest-
neighbor interactions have been performed by several
Workers.7,15,]6,18

In this paper we examine the applicability of the recent-
ly developed dynamic bond percolation (DBP) theory?*>*
to this problem. The DBP theory was originally designed to
calculate the effective diffusion coefficient of a single ran-
dom walker in a dynamically changing neighborhood. In the
model developed by Druger, Ratner, and Nitzan,?>?’ the
whole network is “renewed” with a given waiting time distri-
bution, while in the model of Harrison and Zwanzig®® (HZ,
recently extended by us?®) the fluctuations within single
bonds, or bond clusters, are considered. The simplest ver-
sions of both theories give identical results for the diffusion
rate. The HZ formalism, which is cast in the framework of
effective medium theory (EMT), is more easily adapted to
our present application and we use it here. The use of dynam-
ic percolation theory to describe diffusion of particles with
hard core interactions was recently studied also by Hilfer
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and Orbach.>*® Their approach is different from ours and
does not involve the connection between the fluctuation time
and the chemical diffusion coefficient that is explored in the
present work.

The application of the HZ theory to the problem of dif-
fusion of interacting particles is based on the idea that a
diffusing tracer particle sees a time-dependent environment
due to its interactions with the other moving particles. In the
next section, we discuss this analogy in detail for the NILG
model (blockirig interactions only) and show that this appli-
cation of the HZ theory yields a simple, but reasonably good
approximation to the tracer diffusion rate, especially in the
low particle concentration regime where EMT is known to
work well. In Sec. II1, we use the same formalism to obtain'a
relation between the tracer and the chemical diffusion coeffi-
cients for interacting lattice gases (ILG). The results of this
calculation compare well with numerical simulations in sys-
tems with nearest-neighbor interactions under circum-
stances where the resulting ratio between the tracer and the
chemical diffusion coefficients is smaller than one. We dis-
cuss our results and possible other applications in Sec. IV.

Il. NONINTERACTING LATTICE GAS

The dynamics of a tracer particle / in the NILG model is
described by the master equation '

d 0. T N peil T
Ep(d't)_r:;n [PGl', Lty - P(l 1 D], ¢))

where {/} denotes the group of sites nearest neighbors to/, I’
is the “bare” hopping rate, P(il, t) is the probability that
particle i is at site / at time ¢, and P(il, 7', t) is the joint proba-
bility that at time 7 particle / is at site /and site /' is vacant. In
the mean-field approximation (MFA)

PMFGLT', £) = (1 —c)P(il, 1), (2)

where c is the average site occupation probability. This leads
to the mean-field (MF) tracer diffusion coefficient (with a
being:the lattice constant)
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DMF = (1 —o)I'd% 3)

The exact tracer diffusion coefficient is written as a product
of D MF and a correlation factor £ (c):

D, =D f(c). 4)

v The dynamics of the local density in the NILG is asso-
ciated with the master equation'>®

d ) _ i
EP(l,t)—.F[';[} [P(I’I’t) P(lsl:t)]y (5)

where P(/, t) is the probability to find a particle at site / at
time ¢ and P(J, I, t) is the joint probability to find a particle
atsite /and a vacancy atsite /. It is easy to show that Eq. (5)
is equivalent to the single particle master equation’>®

d
i ’ =T I" - ’ “ (6
” P(l, 1) 1;} [P’ ty —P(l, 1)) (6)

and therefore one obtains the well-known result for the
chemical diffusion coefficient of the NILG

D, =Ta )

independent of the particle concentration ¢.

The HZ treatment?® of the DBP theory assumes that
each bond in the disordered network fluctuates with a char-
acteristic rate 7! between two states: open ‘(available for
transfer) and closed (unavailable), independent of all other
bonds. If pand g = 1 — p are the equilibrium probabilites for
a bond to be open and closed, respectively, the probabilities
f(1,¢) (bond open) and f (0, ) (bond closed) evolve ac-
cording to

i(f(O, t)) =_1_(~p q) (f(O, t)) 8)
aVf(Ln/ «\ p —gd V(0
Using effective medium theory (EMT) for this model re-

sults in the following self-consistent equation for the effec-
tive hopping rate ¢:

P —DP. +p.€g(e)

ver=rq —p. +p.eg(e)’ ®
where .

€= (iv + ") /P(w), (10)

P.=2/z (1)

with z being the lattice coordination number (p. is the EMT
percolation threshold) and where g(€) is the lattice Green’s
function at the origin (see Appendix A)

g(e) =G,(e) (12a)
with G;; being the solutions of
(2 + G)G,-k -_ z ij = 6[’( (12b)
e}
|

v=T]1 <

R. Granek and A. Nitzan: Diffusion of interacting particles

(explicit expressions for simple lattices are given in Refs. 34
and 35).

Using this result for tracer diffusion in systems of diffus-
ing interacting particles is made possible by assuming that
the bond renewal rate 7~ is associated with blocking and
unblocking of the tracer particle due to diffusion of the back-
ground particles. This assumption involves three approxi-
mations: (i) we use a bond renewal model for what is actual-
ly a site renewal dynamics; (ii) we neglect correlations

- between occupying-deoccupying events on neighboring

sites; and (iii) we disregard the difference between the dy-
namics of the NN sites which is dominated by z — 1 neigh-
bors (the tracer site is not counted) and the dynamics of the
other sites which is dominated by the availability of z neigh-
bors. These approximations lead to a single bond dynamics
and are therefore consistent with the use of a single bond

' .~ EMT.

In order to use Eqgs. (9)-(12) to find the effective hop-
ping rate ¢ and therefore the associated tracer diffusion coef-
ficient, we need an explicit expression for 7. Three possible
choices come to mind:

(i) Make a mean-field approximation for the back-
ground particles dynamics. Focusing on a particular back-
ground particle in a NN site to the tracer, the total MF jump
rate out of this site is (z — 1) (1 — ¢)T", where ¢ is the site
occupation probability and where z — 1 (rather then z) ap-
pears because the tracer site is excluded. Comparing with
Eq. (8), noting that p = 1 — ¢ and ¢ = ¢, we get

=[(z—-1DIr]~% (13)

We thus use the MFA to get a correction to this approxima-
tion. Equation (9) becomes

#@ =T [1- ]
1 — P +Pc€g(6)
€= ia)+(Z—1)F. (14)
¥(o)
(ii) Assume an effective medium hopping rate ¢ for the
background  particles. Under this  assumption
(l—e)yr'=(z— )¢, or
— —1
1'=[—-—(z D]~ (15)
1—-¢

Note that with this choice, the DC (@ = 0) value of € [Eq.
(10) ] becomes independent of ¥ so that Eq. (9) provides an
explicit solution for ¥:

(iii) In contrast to the previous two choices where 7 was
determined by the dynamics of a tracer particle, one may
argue that 7 should be identified with the relaxation time for

T1—p. +p.l— /U< glz— /(1=

. 16)
c)] ] (
f

density fluctuations in sites NN to the tracer particle and is
therefore related to the chemical diffusion coefficient. For
the NILG case, the relevant master equation is Eq. (6). If we
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focus on a particular site / and use the MFA for all other sites
[whereas P(1’, t) = c for all I’ #1], we get

%P(I, t) =Tzc —-TzP(l, ¢). an

However, for a NN site to our tracer particle, hopping to the
tracer site is forbidden and z in Eq. (17) should be replaced
by z — 1. Finally, identifying P(/, ¢) with f (0, ¢) of Eq. (8),
we find that

r=[(z—1I]"!

which is identical to the result of choice (i).

We now discuss the results obtained from the two
choices, Eqgs. (13) [or Eq. (18)] and (15). First consider
the choice Eq. (13), implying Eq. (14) for ¢. Equation (14)
may be solved numerically, however, an explicit asymptotic
expression may be derived for € » oo . This limit may be real-
ized in several ways, e.g., ® - o0, Z— o0, Or the small vacancy
limit c—»1 where ¢—0. In this limit, g(e)~(z+ €)~!

+ o(e3) (see Appendix A) and Eq. (14) leads to

1—c
1+ Qe/m)’

where 7 = ey/T is dependent of 4, and we have also used
Eq. (10). With € of Eq. (14) this becomes
1—

P(w) = ——¢ T.
1+ [2T¢/(iw + (z—1)T) ]
For w— « or z— «, we get, as expected, the mean-field re-
sult ¥ =I'(1 — ¢). For @ = 0 Eq. (20) becomes

z—1
= e (1 — )T
y=-— oy (1—¢)
Noting that the tracer diffusion constant is D, = ya® and
using Eqs. (3) and (4), the correlation factor f (¢) [Eq.
(4)] is obtained in this approximation and in this limit as
fle)=-1)/(z—1+2) (22)

and in the particular case of the small vacancy limit (¢—1)

fle=1)=@z-1)/(z+1). (23)

These results can be generalized to the case where the
tracer B has a bare jump rate I'; different from the bare
jump rate I', of the background particles 4. In this case
r=[(z—1)T' ;17" and Eq. (14) is replaced by

(18)

$=T (19)

(20)

(21)

Cq .
=Igll— :
¥ B[ l—pc+p,.-eg(e)]
e fot z-DI, (24)
¥s

In this case, the large € limit may also correspond to fast
moving background particles I' , » I' . Using, for this limit,
Eq. (19) leads to

Y5

_ 1—c r
T 14 [2elp/ (i@ + (z— 1)T,) ]

- (25)

In the DC (@ = 0) and low vacancy concentration (c—1)
limits, this yields (withy =I5/T",)

z—1
¢B—

=% (1-0T,,
a0

(26)

whereas the correlation factor f (¥) = f (¢—1, ) becomes
S =@-1)/(z—1+2y). 7N

Note that Eq. (23) is a special case of this result with y = 1.

A check on the approximate validity of this result is
provided by using the following well known approximation
for the correlation factor £33

f= 1+ {cos@)

1—{cos@)’
where 6 is the angle between two consecutive jumps of the
tracer particle. This approximation results from neglecting
correlations between nonconsecutive jumps. In the small va-
cancy concentration limit where this approximation be-
comes exact, Maning has shown that {cos #) takes the
form'?

(28)

T
I, +IT, 3 F’

where X is a sum over all the NN sites to the 4 atom, itself a
NN to the tracer atom B (so Z; goes overz — 1sites). The F;
are reduction factors associated with the fact that a vacancy,
interchanging with an 4 atom, has a larger than statistical
probability to return to its original position, and then induce
a backward jump of the tracer. If this effect is neglected (in
the spirit of the MFA) all the F; factors are equal to one and

{cosB)= — (29)

{cos @) = — T = — 4 .
g+ (z—-1T, y+z—1
(30)

Using Eq. (30) in Eq. (28) yields again Eq. (27). Itis
interesting to note that Kickuchi'’®® has obtained the same
result using the path probability method in the pair approxi-
mation.

Finally we note that another consequence of Eq. (29)
(based on the observation that =] F; does not depend on ¥)
is the relation

— S
=
where f= f (¥ = 1). This is easily seen to be satisfied by the
result (27).
Next consider the choice (15) for 7, implying Eq. (16)
for ¢ in the DC limit. In the small vacancy concentration
limit, Eq. (16) yields

(31)

p=2=2qa-or (32)
z—1
implying
f=z-3/z—1. (33)

This obviously fails for the one-dimensional case where
z=2,

In Figs. 1-3 we show some results of our approximation
on an fecc lattice (z = 12) compared to numerical simula-
tions of Kehr, Kutner, and Binder.!® To solve Eqs. (14) and
(16), we use a simple form for g(¢) of the fcc lattice”

g(e) =iF(3+€/4), (34a)
where
F(u) = (4/7%) (u + DKk, )K(k_) (34b)
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FIG. 1. Correlation factor fplotted agamst concentration ¢ for tracer self-
diffusion in a NILG system on fcc lattice (z.= 12). The dashed and the
dotted lines are numerical solutions to Eqs. (14) (with @ = 0) and (16),
respectively. The simulation results are from Ref. 15(b). The full line is the
theory of Sankey and Fedders (Ref. 13). The arrow denotes the exact result
for c—1 (Ref. 36).

w1th
—(u+1)‘2[116{(u+1)”2 (u—3)"2}
+{u+ D 2], 433 (34¢c)

and where K(k) is'the complete elliptic integral of the first
kind : ‘ :

K(k) = f 49 ___ (34d)
o J1T—kZsin?8
" Figure 1 shows the correlation factor

Sf=I[T(1 —¢)] ¢ for self-diffusion as a function of parti-
cle density c¢. The full line is the theoretical result of Sankey
and Fedders'® (based on diagrammatic methods). The
dashed line is our result based on Eq. (14) and the dotted
line is our result based on Eq. (16). The simulation results
are taken from Ref. 15(b).

In Figs. 2 and 3 we show the correlation factor f for a
tracer particle B in a background of A4 particles, as a function
of y=TIg/T,. Equation (24) with

= [['5(1 — ¢, )] "¢ and @ = Ois used to generate the
theoretical lines. The simulation results are taken from Ref.
15(e).

1 ‘w E
-.:;,:E:’\_\ x K r'y
[ [ ] \:D\ ]
f CA ;.'\..\'\.B ]
j0-2] +—0.644 RN
--0.868 BN
I --0.983 TN
b\'
\'.
-4 . . .
10 al al sal.
10—2 1 100 104

FIG. 2. Correlation factor f'plotted against the ratio y of the tracer (B) to
background particles (A) jump rates for different concentration ¢, of back-
ground particles. The symbols are simulation results from Ref. 15 (e). The
lines are numerical solutions to Eq. (24) with @ = 0.

1
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FIG. 3. The same as Fig. 2 for concentrations ¢, near the percolation
threshold ¢, = 5/6~0.801. (a) Comparison of two concentrations near
the threshold concentration. (b) Comparison between the solution to Eq.
(24) using the EMA percolation threshiold p, = 1/6 (dashed line) and the
solution to the same equation using the exact threshold p, = 0.199 (full
line).

It is seen from Figs. 1 and 2 that there is a good agree-
ment between our simple theoretical approximation and the
simulation results for the NILG both for the self-diffusion
problem (Fig. 1) and for the mixed tracer diffusion problem
(Figs. 2 and 3) provided that the background particle den-
sity ¢, is not close to the percolation threshold. Figure 3(a)
demonstrates our primary source of error close to the perco-
lation threshold: the EMA percolation thresholdisp, = 1/6
(implying the threshold value 5/6 for c, ) while the exact
threshold for an fec*® is p. =0.199. Hence, e.g.,
¢, = 0.807, the approximate f remains finite when y— oo
while the exact f vanishes in this limit. If we replace in Eq.
(24) p, by 0.199 rather than 1/6, a substantial improvement
of the results is obtained [Fig. 3(b)].

In Table I we compare the results (23) and (33) to the
exact result of the correlation factor in the vanishingly small
vacancy concentration limit (c— 1) for different lattices.??
Both approximations agree with the exact trend-and become
better for larger coordination number z as expected from
MFA and EMA considerations.

As noted before, the simplest version of our theory ne-
glects both static and dynamical correlations: static correla-
tions are neglected because we use bond percolation results
for what is really a site percolation problem; dynamical cor-
relations are neglected between occupying—deoccupying
events on neighboring sites. A way to partially incorporate
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d Type z f s re

1 2 0.333 0.000
2 Hexagonal 3 0.500 0.000 0.333
2 Square 4 0.600 0.333 0.467
2 Triangular 6 0.714 0.600 0.560
3 SC 6 0.714 0.600 0.653
3 bee 8 0.777 0.714 0.727
3 fec 12 0.846 0.818 0.781

*From Eq. (23).
*From Eq. (33).
° Exact results from Ref. 36.

these correlations is to use the many bond EMT. A many
bond EMT solution of the dynamic percolation problem was
recently formulated by us®® and solved explicitly for a two
bond exchange model with two perpendicular bonds having
a common site, in a two-dimensional square lattice. This
model has two rate parameters, renewal and exchange, de-
noted by 7~ ! and @ ~ !, respectively. Applying this formalism
to the NILG (see Appendix B), we find these parameters to
be approximately 7' = (5/2)T', and @ ~' =T, /4. In Fig.
4 we compare the resulting self-diffusion correlation factor
[using Eq. (B9) with @ =0and 'y =T 5 =TI'] with the
results from Eq. (14) (withz=4,i.e., 7' =3I in the HZ
model), with the theory of Nakazato and Kitahara'* and
with numerical simulations.’® Also shown is the exact re-
sult for c— 1.6 It is seen that the use of the two bond ex-
change model slightly improves the results as compared with
the simulation results and the exact c— 1 value. The theory
of Nakazato and Kitahara'* is seen to agree rather well with
the simulations for this case where y =I'5/T", = 1. How-
ever, we note that this theory, although formulated for arbi-
trary jump ratio ¥, does not lead to a percolation threshold
for ¥— . A better way to account for dynamical correla-
tions on a square lattice is obviously to use a four bond ex-
change model (still with two rate parameters, renewal rate,

1.0 <= .
A,
r'y \\
08} T
f A ~ -~ g e
N N
0.8} : ~
A
e
0.4 :
0.0 0.5 1.0

C

FIG. 4. Correlation factor f plotted against the concentration c for tracer
self-diffusion in a NILG system on a square lattice (z = 4). The dotted line
is the solution to Eq. (14). The dashed line is the result of the two bond
exchange model, [Egs. (B8)-(B13)]. The full line is the theory of Naka-
zato and Kitahara (Ref. 14). The simulation resalts are from Ref. 15(f).
The arrow denotes the exact value for c— 1 (Ref. 36). s

and exchange rate between perpendicular bonds), or for a
general lattice, a 2>’ bond exchange model. In the rest of this
work we shall continue to use the HZ model.

To conclude this section we comment on the suitability
of the different choices (i), (ii), or (iii) made above for 7.
For the NILG model choices (i) and (iii) lead to the same
final result, but this is no longer so when other then blocking
interactions are considered. It is seen from Fig. 1 and Table I
that choice (ii), which postulates that 7 is determined by the
effective medium hopping rate, works somewhat better than
the other choice (i/iii). On the other hand, the association of
r with D, that leads to choice (i/iii) is physically more ap-
pealing because D, is directly related to the density fluctu-
ations of the background particles. In fact, none of these
choices is entirely satisfactory because 7 reflects a local be-
havior while both D, and D, are global quantities. (For the
simple NILG model, however, D, also controls local dy-
namics). Thus, for particles moving on a disordered
network (static disorder), both the DC (@ = 0) limits of D,
and D, vanish at the percolation threshold, however, the
local population fluctuations should remain finite. More-
over, the exact (disorder a\;eraged) local density dynamics
is expected to be non-Markovian.

This observation suggests that perhaps a better choice
for 7 (with the Markovian ansatz) may be obtained by relat-
ing it to the frequency-dependent chemical diffusion coeffi-
cient at finite @, where a reasonable frequency scaleisw ~T,
the bare hopping rate. (For the NILG model used above this
will not change our results since D, is frequency indepen-
dent.) In this work, however, we limit ourself to estimating 7
from the DC (@ = 0) chemical diffusion coefficient. In the
next section we use this same approach for the interacting
lattice gas (ILG) model.

1Il. INTERACTING LATTICE GAS

We now consider an interacting lattice gas (ILG). We
again consider a tracer particle B moving'on a lattice and
interacting with a background of particles 4. The tracer dif-
fusion coefficient is conventionally written in the form

Dy,y = ‘12WB/A Vesaf 8/as (35)

where W is the averaged effective jump rate of the B particle
(i.e., averaged number of jump attempts per unit time to a
neighboring site when this site is restricted to be vacant), Vis
the averaged vacancy availability factor (i.e., the equilibri-
um probability to find a vacancy NN to a particle), and f is
the correlation factor correcting the result of random walk
for the effects of correlations between subsequent jumps.
The subscript B/A denotes that we focus on a particle B
moving in an 4 background. In the NILG case V=1 — ¢,
and W = T';. In the present situation both vacancy avail-
ability and effective jump rate depend on the interparticle
interactions and can be approximately obtained from con-
figurational averaging of these quantities over an ensemble
of configurations about the tracer particle. In simulations
WYV may be obtained as the mean number of performed
jumps of the tracer particle per unit time.

To apply dynamic percolation theory to the ILG, we
assume that in analogy to the NILG case [ Eq. (24) ] we may
now write (for w = 0)
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I Ty (36a)

6:%‘7(:‘7'5;; 7= (z—1)D., /@, (36b)
or

Diaa zaZWMO 1-p, rpceg(e))’ (37)

e=(z—1) 2 (37b)

tB/A

Equations (37a and 37b) give the B /4 (Bin A background)
tracer diffusion coefficient in terms of the chemical diffusion
coefficient of 4 and the effective B /4 jump rate Wy, ,,. An
approximation for W ,, may be easily obtained within the
quasichemical approximation>*1¢®-3® (QCA) by averag-
ing the (configuration-dependent) jump rate of B over an
equilibrium ensemble of configurations of 4 around it and
around the vacant site towards which it is hopping (see Ap-
pendix C). Thus Egs. (37a and 37b) provide a relation be-
tween D, ,, and D, or when Band 4 are identical, between
the tracer and the chemical self-diffusion coefficients. For
the latter we may use the MFA result!*¢

T
D, =a’T'|1 —4c(1 —¢) ’Ii]’ (38)
where
kpT, = z i3 Iy = Uy /4 (39)
Jj#m

with v,; being the interaction energy between particles at
sites m and j (v,,,; > O for attractive interactions.* ;
To test the applicability of these results, we have used
Eq. (38) for the chemical diffusion coefficient together with
the simulation results of Kutner et al.'*® for the effective
jump rate W in order to evaluate the tracer self-diffusion
coefficient (y =T3/I", = 1) in a fcc lattice with NN at-
tractive interactions. Figure 5 shows the tracer self-diffusion
coefficient (in units of I"a®) as a function of concentration

1.0 = :
KT/J
N +—20
Dy NG o----12
-
oo e "1-¢c
05! o u“\ ]
AN
BN
b~b .
0.0 .
0.0 0.5 1.0
C

FIG. 5. Tracer self-diffusion coefficient D, (in units of 'a?) as a function of
the concentration ¢ for an ILG-fcc system, for two interaction parameters
kT /J = 20 and 12. The lines are numerical solutions to Eq, (37) using Eq.
(38) for D, and the simulation results for W taken from Ref. 15(c) [shown
in Figs. 6(a) and 6(b)]. The symbols are simulation results of Ref. 15(c).
The dotted line is the mean-field result D,/Ta* = 1 ~c.

for NN interaction parameters k3T /Jyn =20 and k, T/
Jnn = 12. Shown are the results obtained from the simula-
tions of Kutner et al."*® and from solving Egs. (37a) and
(37b) using Eq. (38) for D, and the numerical simulation
results for W. Also shown is the high temperature limit
D,/T'a*> = 1 — c. We note again that W can also be obtained
from configurational averaging: Figs. 6(a) and 6 (b) com-
pare the results of a calculation based on the QCA (Appen-
dix C) to the simulation results.

It is seen from Fig. 5 that a close agreement exists be-
tween the result of the present theory and the simulations for
the higher temperature (k; T /J nn = 20) while for the low-
er temperature ky T /J y = 12 (the MF critical tempera-
ture for phase separation) considerable deviations exist for
¢ <0.5. The breakdown of the theory in this range is empha-
sized in Fig. 7, where we show D, from the simulation results
for ky T /J 4 = 12 together with the result from static per-
colation simulation (frozen A4 particles, ¥— « ) using the
effective jump rate W for the same temperature. The latter
(which vanishes at the critical concentration ¢, = 0.801)
should be a lower bound on the actual tracer diffusion rate
under our assumptions, however, we see that for ¢ < 0.5 the
actual rate is lower.

Several sources of error in the present calculation have
been discussed above and are mainly associated with the
problematics of choosing 7 (see the discussion at the end of
Sec. IT). Figure 7 shows another (familiar) source of error—

1.00 v r
\ kT/J=20 /
\ //
LR ’
/
‘\\ (/
o s’ o
d - .
0.95 | -2 i
[ ]
0.90 . L
0.0 0.5 1.0
{a) C
1.00

KT/J=12

0.95

0.90 | RN e o ]
LN s
~ rd
0.85 T
0.0 0.5 1.0
(b) C

FIG. 6. Effective jump rate W in an ILG—fcc system. The dashed and the
dotted lines are theoretical QCA resuits, (C8) and (C11), respectively. The
symbols are the simulation results of Ref. 15(c) and the full line is a least-
square fitting of the simulation results to a polynomial of order 5 in
c(l—c). (a) kT /J=20; (b) kT /J= 12.
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FIG. 7. Dotted line—mean-field result. Open squares—the same data as the
opensquares of Fig. 5: D, (for kT /J = 12) obtained by direct simulationsin
Ref. 15(c). Filled squares—D, of a single particle in a static site percolation
having an effective jump rate W instead of I'; obtained by multiplying W
[simulations from Ref. 15(c)—the same as the circles or the corresponding
full line of Fig. 6(b)] by the simulation results [from Ref. 15(e)] for a
single particle particle diffusion in a static disordered lattice. All results are
in units of I'a”.

the use of single bond dynamics. This approximation ne-
glects static correlations in the distribution of the back-
ground A4 particles (for the NN attractive interactions used
here, it neglects the tendency of the 4 particles to cluster).
These correlations are less important at higher tempera-
tures, hence the much better agreement of simulation and
theory at kp T /J n = 20. Also, the effect of such correla-
tions is expected to be larger for D,y > D,, because, in this
case, the tracer particle explores more of these correlations,
before they relax via chemical diffusion of the A background.
For self-diffusion this means that the approximatiorn should
work better when s = D, /D, €1. Figure 8 shows that there
is indeed such correlation between the value of 4 and the
success of the present theory at moderately low tempera-
tures. The divergence of 4 at ¢ = 0.5 results from the vanish-
ing of the (mean field) D, at this concentration at the critical
temperature (kT /J = 12).

To end this section we note that we have applied here a
particularly simple version of dynamic bond percolation the-
ory, using a single bond dynamics and taking for eachbond a
transition rate W (the effective jump rate) or O according to
whether the accepting site is populated or not and associat-
ing the transition rate between these two “states” with the

10~%
0.0

FIG. 8. Theoretical ratio & = D,/D, against the concentration for kT /J
= 12 together with the results for D, shown in Fig. 5.

chemical diffusion rate. A better (more complicated, but
still straightforward) approach would be to associate many
states (each with a different jump rate) with the bond de-
fined by the origin and destination sites. A zero jump rate is
related to occupied destination site as before; other jump
rates are associated with the local microscopic environment
of the two sites in question. The equilibrium probabilities for
these bond states may be obtained from the quasichemical
approximation. The transition rates between these states are
associated with the local microscopic environmental
changes and therefore may be related to the chemical diffu-
sion coefficient (using the detailed balance conditions). Giv-
en these, the many bond states dynamic percolation theory®®
may be used to yield the final tracer diffusion rate. Such an
approach will be explored in future work.

IV. CONCLUSIONS

In this paper we have developed an effective medium
theory for the diffusion of interacting particles in lattice-gas
models with hard core (the so-called noninteracting lattice
gas) and with nearest neighbor interactions. The method is
based on an approximate adaptation of the recently devel-
oped effective medium theory for dynamic bond percolation
and has been shown to constitute a considerable improve-
ment over mean-field approximations. As expected the
method fails quantitatively when aggregation or phase sepa-
ration begin to dominate the diffusion dynamics and also for
a two component system with a large difference in jump
rates, near the percolation threshold for the concentration of
the slow component. A considerable improvement of our
results for the latter case is achieved if we replace (artificial-
ly) in our theoretical expression [e.g., Eq. (24)], the EMT
value for p. ( = 2/z, where z is the coordination number) by
the actual value for p, .

The method advanced in this paper is based on the ob-
servation that tracer diffusion in a system of interacting par-
ticles may be viewed as a motion of a tagged particle in a
system characterized by a time-dependent disorder. Our
main assumption involves the use of an ansatz for the char-
acteristic fluctuation time of the disorder. Obviously, this
time is associated with the diffusion of the background parti-
cles and, for practical reasons, it should be expressed either
in terms of the given elementary jump rate, or in terms of the
macroscopic diffusion rate. In the present paper we have
taken the second route and concluded that a fluctuation time
based on the chemical diffusion rate is the best choice within
the present framework. For a lattice gas with hard core inter-
actions (“noninteracting lattice gas”), this gives a complete
approximate solution [by solving the self-consistent equa-
tion (14)] for the tracer diffusion coefficient, since the
chemical diffusion for this problem is trivial. For longer
range (e.g., nearest neighbor) interactions, this procedure
yields a relation between the chemical and the tracer diffu-
sion coefficients.

The procedure described here is approximate and can be
improved both by using more accurate effective medium the-
ories (e.g., many bond theories?®) and better choices for the
relation between the timescale of the dynamic disorder and
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between the diffusion process. Such improvements will be
considered in future work.
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APPENDIX A: LARGE ¢ LIMIT OF g(¢)

The lattice Green’s function at the origin g(€) is related
to the autocorrelation function of random walk Py(z), the
probability to return to the origin at time #, by Laplace trans-
form, namely

gle) = fw dtexp( — et) Py(1).
0

(A1)
At very short times P, () is clearly given by
J
'£(0,0) —2p/T q/T q/T
s} | p/r —/1+1/6) 176
al rony |\ prr 1/6 — (/74 1/6)
f( L1) 0 p/T p/T

where flo,,,05) =f(0,,05,t) is the joint probability that at
time ¢ bond a will have the (hopping rate) value o, and
bond B will have the value o, and where p + ¢ = 1. For
6~ = 0, theevolution equation (B1) is just the independent
single bond on—off switching process considered by HZ.2®
For 77" =0, this equation describes a direct exchange
mechanism. From Eq. (B1) we get

41 £0,0) +£0.D]
dt

=g/1—77'f(0,0) — (7'_l +671£0,1)

+6- lf(l,O), (B2a)
%{ﬂo,m +AL0)]
=q/7—770,0) — (+7' 4+ 0 ~1)f(1,0)
+6-0,1). (B2b)

In order to find the NILG parameters 7~ 'and @ ~'fora
tracer B moving in an 4 background, we start from the mas-
ter equation for the site occupation probabilities P(a,t),
P(b,t), and P(c,t) for the sites a, b, and ¢ in Fig. 9, respec-
tively, where the tracer is taken to sit at site o [denoting
a = (oa), B = (ob)]. From Eq. (6) we have

d p

EP(a,t) =T, IE%} [P(Lt) — P(a,)], (B3a)
d N

o P(c,t) =T, ;} [P(L,t) — P(c,t)], (B3b)
——P(b =T, 2 [P(Lt) — P(b,1)]. (B3c)

kE(b)
The tracer site o is not included in the sums in Eqs. (B3a)
and (B3c). We now use the MFA for all sites other than a, b,

Py(t) =1 —zt + 0(t?), (A2)

where z is the coordination number of the lattice and where ¢
is dimensionless (measured in units of the walker hopping
time '), Thus, for large e(e»2), g(¢€) is approximately

ge)=€""—ze 2+ o(e ) =(z4+ €)' +0(e?)
(A3)

valid for any lattice in all dimensions.

APPENDIX B: DYNAMICAL CORRELATIONS

Here we use a two bond exchange model,? recently
solved by us, to incorporate some of the dynamical correla-
tions associated with the site occupation. The model as-
sumes that the lattice is formed from distinct identical pairs
of bonds and that the dynamics occurs independently within
each pair and is described by »*

0 £(0,0)
q/7 S1,0)
q/T fonyr (B1)
—2q/7 1L,1)/ -

{
and ¢, namely P(/,t) = c, for all / #a,b,c. This leads to

%P(ait) = FA [ZCA +P(C’t) - 3P(a’t)]) (B4a)

%P(c,t) =TI"4[2¢c, + P(a,t) + P(b,t) — 4P(c,1) 1>
(B4b)
%P(b,t) =T, [2, +P(c;) —3P(b1)].  (Bde)

Eliminating P(c,t) from Eqs. (B4a), and (B4c), in or-

a. X ‘O

s

c® *hH

FIG. 9: Sites and bond labels for a specific connected pair (bonds and B
in the two bond exchange model (Appendix B).
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der to arrive to an independent two bond description, will
generally lead to a non-Markovian dynamics. A Markovian
approximation can be obtained by making a steady-state as-
sumption for Eq. (B4b), d /dt P(c,t) ~0, to obtain

P(C,t) =£ Ca +A(P(ayt) + P(b9t))’ (BS)
which, inserting in Egs. (B4a) and (B4c), leads to

£ Plan) =T4[ic, +1 P60 — 4 P@n],  (Béa)

%P(b,t) =T [3cs +}Pat) —4 P(bt)]. (B6b)
Finally, identifying ¢, = ¢ and

P(a) =ﬂ0,0) +.f(091); (B7a)

P(b) = f(0,0) + £(1,0) (B7b)
and comparing with Eq. (B2) we find

r'=3T,; 6 '=4ir,. (B8)

We use this result in the solution for the two bond ex-
change model (in a square lattice), which is?®

2c
=T [1 - 4 ] (B9)
¥s B B(e,) — B(&,) + 1+ ¢, g(€y)
where_
B(e) =gle) + G, (€), (B10)
. -1 . —1 —1
€1=La.)i.:r—; €2=la)+1' +20 (Bll)
¥ ¥
and where3?
gle) =-1—J.m dtexp( — 2t—iet)1(2,(t)
2 J 2
=31_(1 +e/4)T'K([1+€/4]17Y), - (B12)
T

G, (€)= ———l—-fw dtexp(—2t—iet)1§ (n),
2 Jo 2
(B13)

where I,,, (1) is the modified Bessel function of order m and
K (k) is the complete elliptic integral of the first kind [Eq.
(34c)].

APPENDIX C: EFFECTIVE JUMP RATE WIN THE QCA

Here we calculate W, the averaged jump rate of the trac-
er particleto a NN vacant site, in the framework of the quasi-
chemical approximation®®'¢(®-*8 (QCA), for the self-diffu-
sion problem with NN interactions. Let W, _ , be the actual
jump rate if there are i/ particles NN to the tracer and k
particles NN to the vacancy (itself a NN to the tracer)
ik =0,.,z— 1.Let (¥ and P {* be the equilibrium proba-
bilities to find k particles NN to a particle or to a vacancy,
respectively. Assuming the configurations around the parti-
cle and the NN vacancy to be independent (in consistency
with the QCA), the averaged jump rate W is given approxi-
mately by

z—1
PPPOW,,.
k=0
The NN correlation functions P,, and P, are defined as the
‘probabilities to find a particle NN to a particle or to a va-
cancy, respectively. In terms of these functions, we may
write

W= (W_.)= (C1)

P{k)=(z;I)(P11)k(1“Pu)z—l_k’ (C2a)

PP = (’; l)(P,O)"(l — Ptk (C2b)

" In the QCA the NN correlation functions are given by*®

P, =ne/(1 + ne), (C3a)

Po=¢/(1+¢), (C3b)
where

7 =exp(v/kT), (C4a)

e=(f—1+2c)/2y(1 —c¢)), (C4b)

B=11—4c(1-c)(1 —]"? (C4e)

where v is the NN interaction energy (v> 0 for attractive
interaction).

Inchoosing W,_, , we need to satisfy the detailed balance
condition

Wik _ [ v(k —i)

, (C5)

and one needs another condition for a unique determination.
Kutner ef al."*** have chosen the symmetric condition

Wi+ W, =2T, , (C6)
where T is the bare jump rate. This and Eq. (C5) lead to
2r
1 + 1]:' -k’
where 77is defined in Eq. (C4a). Using Egs. (C2), (C3), and
(C7) in Eq. (C1) finally leads to
W= o
(1 +7ne)*" (1 +€)~
ol fz—1\fz—1 !
I et
ik=o\ 1 k /14 7'
which can be shown to have the symmetry property
W(c) = W(1 — c). This symmetry is clearly a result of the
choice (C6). For c—~0 (or c— 1) at any temperature, or for
T— « at any concentration, we have W T as expected.

A more compact expression may be obtained by using a
mean-field-like approximation

((A+7"5 D=+ 9" %), (C9)
which results from expanding the expression in {...) on the
right-hand side of Eq. (C9) in a power series of (i — k)
[ (i — k) is the difference in number of NN particles to the
tracer particle and to a neighboring vacancy) and approxi-
mating all moments as being equal to the corresponding
powers of the average. This should be a good approximation
when the probability distributions (C2a) and (C2b) are

strongly peaked, i.e., for large coordination number z. We
then have in the QCA

(e7))

ik =

(C8)
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(i—k)=(z—1)(Py; — Py) (C10)
and together with Eqs. (C3) and (C4), we find
(z—1Nu(B-1) ]
W=T{1— tanh| —————=-11 | C11
{ 2, 7B+ 1) (“ib

which is also symmetric with respect to ¢ = 1/2, since
B(c) =B(1 —c). In Figs. 6(a) and 6(b), we compare both
results (C8) and (C11) to the simulation results of Kutner
etal*® for kyT/J=20and ky T /J = 12 with® J = v/4.
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