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Theoretical constructs are developed for discussing diffusivity and conduc-
tivity in polymer ionic materials. Such materials are characterized by exten-
sive disorder, either static (lack of long-range order) or static and dynamic
(lack of long-range order with short-range order evolving with time). Begin-
ning with a dynamic percolation model, we show that, in general, so long
as the mean-square displacement of the charged particle obeys a certain
growth law, the observed charged-particle motion will be diffusive, both in
the ballistic regime, corresponding to electronic motion with strong scatter-
ing, and in the ionic-hopping regime, corresponding to dynamic disorder
renewal of the hopping situation. Some general behaviour for transport
under these conditions is predicted, including definite statements about the
frequency dependence of the conduction, the relationship between the
growth law in a single interval and the growth law for observation times
long compared to scattering or renewal times, and the behaviour in the
neighbourhood of the percolation threshold for the static problem. Interpre-
tations are suggested both for ion and electron-hopping situations.

A statistical thermodynamic model s developed for analysis of contact
ion pair formation and its effect on conductivity in ion-conducting polymer
systems. In this model, the energy (due to solvation and polarization}
favouring formation of a homogeneous complex in which the cations are
solvated by the polymer host, competes with an entropic term favouring the
separated structures (free polymer and contact ion pairs). We derive general
conditions for this phase separation, and an expression for the number of
polymer-bound, homogeneously solvated ions. We show that this number
will, in general, decrease monotonically with increase in temperature, due
to entropic favouring of the phase-separated material, this is reminiscent of
the lower consolute temperature phenomenon in liquid mixtures.

1. Introduction

Polymer conductive ionics, or polymeric solid electrolytes, are the newest and most
actively investigated area of solid electrolytes.'® These materials were first developed
at Sheffield,”* Grenoble® and Evanston' in the 1970s, and interest in them is now very
widespread indeed. Part of this interest arises from possible applications as electrolyte
materials in electroactive devices; the remainder arises from their intrinsic scientific
interest as dynamically disordered solid materials exhibiting ionic diffusivity of a magpni-
tude more characteristic of that of jonic liquids or solutions.

The class of polymer conductive ionics now includes, in addition to the originally
prepared  and investigated polymer-salt complex materials,” ' solvent-free
polyelectrolytes''"” and mixed ionic-electronic conductors, 1*-'6 The mixed conductors
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20 Conductivity in Polymer Ionics

really lie outside the scope of our discussion here, although a number of other contribu-
tions to this Faraday Discussion will centre on so-called redox polymers, a specific
example of such materials."”"® Similarly, we will not discuss polyelectrolytes per se,
though solvent-free polyelectrolytes in fact exhibit behaviour very similar to the polymer-
salt complexes, differing only in the transference-number behaviour. Qur discussion,
then, like most of the experiments reported to date in the field, will centre on simple
polymer-salt complex materials.

These solvent-free polymer ionics are generally prepared by dissolving or suspending
the polymeric host material and a uni-univalent salt in a joint solvent and then driving
off the solvent to prepare either a bulk material or a thin film of the polymer-salt
complex. That a new compound, rather than a simple physical mixture, has been
prepared is obvious from such physical characteristics as glass-transition temperature
(it generally increases, by at least 60 K), viscosity, relaxation time and vibrational spectra.
The simple chemical reaction

P(ru),, + MX — P(ru), MX (1)

represents the formation of the complex, where MX is the salt, ru is the repeating unit
of the polymer and n gives the relative stoichiometry of repeating units to salt. In the
earliest materials to be studied, the repeating units were polyethers, with Lewis-base
oxygens in the backbone. In particular, polyethylene oxide(PEQ)- and polypropylene
oxide(PPO)-based materials were studied extensively in the 1970s. More recent work
is concentrated on more flexible polymer materials, including in particular so-called
comb polymers, in which a very flexible backbone such as siloxane'*?' or
phosphazene®* is substituted with short-chain oligoethers to provide the Lewis-base
sites for complexing to the alkali M.

The polymer-salt complex electrolyte indicated on the right-hand side of eqn (1)
can be structurally quite intricate. It has been convincingly demonstrated experimentally
that the homogeneous elastomeric amorphous phase of the polymer-salt complex in
fact provides the conductivity, partially crystalline phases reduce overall ionic
mobility.'"*** We will therefore concentrate, in our discussion, on ion dynamics in the
homogeneous elastomeric (melt) phase.

Much of the intrinsic interest in these materials arises from their unusual conduction
mechanism. In sharp contrast to ionic conductors based on crystalline solids or glasses,
in these materials the Walden relation, stating that diffusivity is proportional to inverse
viscosity, holds quite well. In this sense, these materials are more like liquid electrolytes,
or ionic fluids, than like characteristic solid electrolytes. The applicability of the Walden
relation argues that the polymeric host environment actively promotes 1onic transport
in these substances. This is in fact true, as will be detailed in Section 3, and comprises
the basis for mechanistic understanding of transport in these substances.

Just as the polymer electrolytes differ from crystalline and glassy conductors because
of the importance of host-chain dynamics in promoting transport, so they difter from
simple liquid electrolytes such as aqueous solutions or molten salts, because the host
itself is a high polymer, and exhibits the slow relaxation times, long-range correlations
and high configurational entropies characteristic of high polymers.

The earliest suggestions for describing mechanistically the transport in these materials
were based on simple hopping models, taken from crystalline solid electrolytes.®* Such
models were introduced for several reasons, partly because the earlier materials (such
as PEO), were in fact partially crystalline. The fundamental assumption of these
suggestions, that ionic motion occurred in structurally fixed pathways, is incorrect. A
number of experimental observations demonstrate clearly the unusual and interesting
mechanistic behaviour of ionic transport in these complex materials. Examples include:

(1) For a number of these substances, there is a linear relationship between the

logarithm of the conductivity, and the logarithm of the so-called shift factor,
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Fig. 1. Correlation between the shift factor ar describing physical relaxation and the conductivity

for PEO networks, with low concentrations of salt. The direct proportionality, with slope of unity,

implies conductivity inversely proportional to viscostty, as assumed in the Stokes-Einstein relation-
ship or Walden relationship. From ref. (25).
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Fig. 2. Conductivity and glass-transition temperature of MEEP complexes containing AgCF;S0,.
Note that the glass-transition temperature increases monotonically with salt concentration, and
that the ionic conductivity maximizes at relatively low salt concentration. From ref. (22).

which describes structural reiaxation in polymeric systems. Such correlation,
measured by the Grenoble group,” is illustrated in fig. 1.

(2) Upon change in stoichiometry, conductivity exhibits a highly non-monotonic
behaviour with salt concentration. An example, for phosphazine-based material,
is shown in fig. 2.
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Fig. 3. The relative intensities of the vibrational components of the SO, symmetric stretch in the

triflate ion versus inverse salt concentration for modes due to free ions (@), ion pairs (QO) and

multiple ion aggregates (A).*! The right-hand scale shows ionic conductivity. Note the reduction

in free ions for either high or low salt concentrations. The measurements were made in polypropy-
lene glycol, based on vibrational spectra. From ref. (41).

(3) The number of free ions in such materials changes non-monotonically as a
function of concentration. An example, based on observations?? of vibrational spectra,
is shown in fig. 3.

(4) Inhosts such as PPO, which have relatively lower stability constants for formation
of Lewis acid-base adducts with the alkali, a ‘salting out’ phenomenon is observed at
high temperatures, with the crystalline salt precipitating from the complex, which was
homogeneous at lower temperatures.?®

(5) Addition of crown ethers or cryptates, which form tight cages around the cation,
results in increased conductivity?”*® as a function of temperature, shown in fig. 4.

Our aim here is to discuss microscopic models for describing such behaviour.
Observations (1) and (2) can be understood straightforwardly on the basis of the diffusion
of independent ions in a dynamically disordered polymer host, and are the subject of
sections 2 and 3. The last three resuits are due to the Coulomb interaction of the ions
in the material, which corresponds to a highly concentrated Coulomb fluid. Their
explanation is more complex, but some steps in that direction are made in Section 4.
Finally, Section 5 gives a current view of mechanistic behaviour in these ionic materials,
and relates them to other conduction processes in polymers.
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Fig. 4. Temperature dependence of the conductivities for a sulphonate polyelectrolyte based on
a siloxane backbone, with increasing amounts of polyelectrolyte charge. The symbols A, O and
O indicate 20, 30 and 50% charged groups on the comb backbone, respectively, with Na" as the
mobile ion. The symbols, @, O, @ and W are the conductivities measured after adding tetra-
ethylene glycol, dimethyl tetra-ethylene glycol, MPEG and 18-crown-6, respectively, at a 1:1
concentration ratio to sodium cation. Note the increase in conductivity, due to the break-up of
contact ion pairs, on adding sequestering agents. From ref. (61).

2. Some Experimental Observations: Requirements for Mechanism

We consider single-phase, homogeneous elastomeric polymer-salt complex materials.
These exhibit purely ionic diffusivity and conductivity. The materials in question contain
no small-molecule solvents, with the polymer phase itself acting as a solvent for the salt
MX. The materials are characterized by both static and dynamic disorder. The static
disorder simply arises from the structure and morphology of the polymer chain itseif.
These materials are non-crystalline, and although the polymer may exhibit helical regions
(as PPO does), no crystalline phases occur; no crystalline scattering patterns are seen
either in optical microscopy or X-ray scattering.

The dynamic disorder is a slightly more complicated process. Polymer ionics, unlike
glassy ionic materials, are always studied well above their glass-transition temperature,
T,. While the glass transition is a rather complicated phenomenon, at temperatures
exceeding T, the local structure is in fact molten, with rapid changes in local bond
and dihedral angles. The materials above T, are soft and plastic, exhibiting high
viscosities and solid-like physical properties. These arise from the entanglements of the
long chains; very short-chain materials flow easily above T,, and would not normally
be constdered solids. While static disorder (the absence of crystallographic long-range
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order) is found in the glassy materials such as sodium silicate, these glasses do not
exhibit dynamic disorder: in glasses, local metrical information is preserved in time. In
dynamically disordered systems, like liquid water or polymer electrolytes, the nearest-
neighbour, next-nearest-neighbour, next-next-nearest-neighbour, etc., shells around a
given atom or ton will change in time, as orientational and vibrational modes of low
frequency and high amplitude are excited.

Experimental studies, such as those already discussed in Section 1, place several
stringent requirements on a mechanistic picture describing ionic mobility in these
materials. Perhaps the most important observation is the necessity, as is clear from the
relationship in fig. 1 between relaxation properties and conductivity, for the dynamical
motions in the polymer host itself to promote ion transfer. In this sense, we deal with
a coupled process between ionic motion and host dynamics. Angell”®-*' has provided
a very useful description of the coupling between ionic diffusivity and host motion. He
defines the decoupling index, R, by

R, =1/, (2)

where 7, and 7 are, respectively, relaxation times corresponding to conductivity and
structural relaxation. In molten salts or liquid electrolytes, the structural relaxation is
intimately connected with the conductivity relaxation and this ratio is roughly unity.
As a molten electrolyte is cooled, if it forms a glassy electrolyte, below a certain fictive
temperature,’” at which the relaxation processes fall out of equilibrium, there will be a
decoupling of the large-scale orientational (structural relaxation) modes of the host and
the hopping diffusion of the ions. Thus, in typical glassy electrolytes, the decoupling
index, R,, can approach values of 10'’, as relaxation times, or at least the longer
relaxation times, approach a macroscopic size of the order of seconds, minutes or hours.
In the polymer electrolytes, this ratio is generally of the order of unity; indeed, it will
often fall below unity for concentrated electrolytes, as certain motions that contribute
to structural relaxation do not promote ion transfer. This is evidence for interionic
correlation, and will be discussed in Section 4.

That segmental motion of the polymer host is required to promote ion transport is
obvious from a number of experiments. Perhaps the most striking is the fact that in
many materials the thermal dependence of the conductivity can be expressed in the
so-called Vogel-Tamman-Fulcher'***"** form of

UT:O’OCXP[“B/(T“TU)] (3)

where o is the conductivity, B is a constant related to the inverse expansivity of the
material, and T, is a reference temperature, generally ca. 50 degrees below the glass-
transition temperature. This form was originally used to discuss the viscosity of polymeric
materials; the fact that viscosity and conductivity are inversely related, essentially the
physical content of the Walden relationship, suggests very strongly that structural motions
of the polymer are required for diffusive motions leading to conduction. The explanation
of a large number of other experimental facts, conveniently reviewed elsewhere,'™® also
requires a dynamical coupling of the segmental motion of the polymer host with ion
diffusion. Physically, the picture is simply that well defined passageways, or channels,
such as are characteristic of crystalline ionic conductors like Agl or Ag,S are simply
not present in these soft polymeric substances. Rather, spaces for ionic motion to occur
must form due to activated motions of the polymer host. This physical picture underlies
free-volume theory,’ the quasi-macroscopic model that has been extensively, and very
usefully, employed in the polymer electrolytes field.**’

Although host motions are required for conductivity, by themselves they are not
sufficient. Thus, for example, the conductivity of NaBH, complexes in PEQ is quite
small,” as is, characteristically, ionic diffusion in most non-ethereal polymer hosts.
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Thus, it appears necessary that the acid-base interaction between the polymer hosts and
the salt is strong enough to cause solvation, but not so strong as to militate against
exchange of the coordination environment of the mobile ion.

3. Independent Particle Transport: Dynamic Percolation Theory

Formulation of Model

The results of extensive experimental investigation of polymeric electrolytes, including
those just discussed, place substantial constraints both on the mechanism of ion transport
and on any model that might be formulated to discuss ion transport in these materials.
Perhaps the most important result is that the motion of the ions is strongly dependent
on segmental motion of the polymer host. This is clear both from the near-unity value
of the decoupling index R., and from the adequacy of the VTF form of eqn (3) in
describing the conductivity. The equivalent WLF form,* it should be remembered, is
originally defined for structural and relaxation properties; the close similarity of the
dependence upon temperature of ionic conduction and polymer relaxation, as indicated
in fig. 1, requires that the dynamics of the chain be linked to the transport process.
Additionally, the fairly good relative agreement of the Nernst-Einstein relationship
between conductivity and diffusivity, with no substantial correction factors,”’ argues
that while interionic interaction effects may be important, they are to a first approximation
not needed for understanding the dominant conductivity mechanism in most of these
systems. This conclusion is underscored by recent spectroscopic experiments that
demonstrate quite convincingly that contact ion pair formation, while important, is not
dominant in determining the conduction.*'*?

Based on these two ideas (coupled dynamics of ions and polymer hosts, and fairly
weak dependence of conductivity on interionic interactions), it is reasonable to define
an independent particle, hopping-type model for ionic motion. We will see later (Section
3) that such a model can be substantially generalized, and thus describe the physics of
ionic motion fairly well. The simplest model, then, involves ionic hopping among sites,
defined by simple geometry, in the continucus elastomeric phase of the polymer elec-
trolyte. Note that, in contrast to crystalline ceramic electrolytes, or heavy-metal elec-
trolytes like silver iodide, the sites are not fixed by the crystal structure, but are simply
the nodes of a net arbitrarily defined within the continuous phase. The ions will then,
under rather general conditions, obey a generalized master equation, or hopping-type
equation, of the form:

P =% (W,P,~ W,P). (4)

Here P, is the probability of finding a mobile ion at site i, and W, is the probability
per unit time that an ion will hop from site j to site i. For simplicity it is generally
assumed that W; is zero except between nearest-neighbour sites; in a continuous
elastomeric network, this assumption is eminently justified. The sites are not necessarily
defined in terms of any particular binding geometry; for cations, it is reasonable to
assume that sites are defined by a locally attractive coordination environment of, say,
tetrahedrally disposed oxygens or nitrogens. In contrast, for anion motion the sites are
perhaps best defined simply in terms of sufficient geometric space to accommodate such
large anions as triflate or tetraphenylborate. In either case, in any given metrically
defined region of the continuous material, a stable site for ion occupancy may not exist
at any given time; there may be insufficient volume for the anions, or inappropriate
coordination environment for the cations. Under such conditions, the probability W,
for hopping from site j to site i may be zero, if a favourable environment is not available
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around site i Under these conditions, it is appropriate to simplify the jumping prob-
abilities as:

W. =

i

{0 probability 1—f s)

w probability f

Here w is an average hopping rate between two sites available for tonic occupancy, and
the relative probablllty of the site i being available is denoted f The probablllty
distribution of eqn (5) is essentially that of a random hOppmg model,* in which it is
assumed that particles can hop between sites, with random jump probabllities chosen
from some given distribution. The percolation model is highly appropriate for statically
disordered systems, and has been extensively used in glasses, alloys and related materials.

The polymer electrolytes are always investigated at temperatures above T;. In this
regime, the materials are both statically and dynamically disordered; in terms of our
percolation model, then, a pathway between two sites which was unavailable at a certain
time may become available at a slightly later time, as segmental motions of the polymer
chain change the local void volume and/or the local coordination environment. It is
then appropriate to generalize the static percolation model given by egln (4) and (5) to
a dynamic percolation model or a dynamic disorder hopping model,'”*"**"** in which
the assignment of any given hopping probability W, between sites i and j as available
(W, = w) are unavailable (W, =0) changes in time. The process by which such changes
occur is referred to as renewal or reinitialization, or reassignment and is characterized
by a particular average time, called the renewal time, 7,.,. Just as one can define different
(random) hopping models depending on the details of the distribution of the W);s and
their values among different sites, so one can define different dynamical percolation
models depending on how the renewal process occurs. The simplest renewal process
assumes that on a given average interval 7,.,,, the assignment of which jumps are available
and which are unavailable instantly changes. The simplest dynamic percolation theory
picture, then, involves use of eqn (4) and (5), describing the static percolation, with the
additional feature that after a given time-interval the W;s are reassigned. This is fixed
by the parameters w, f, and 7,.,,. These can be related to such system parameters as ion
size, free volume, temperature and pressure. In fact, the most important of these
parameters is the renewal time, characterizing the rate of change of the availability of
a given intersite hop. This rate of change is determined by the dynamics of the polymer
host, and therefore 7., is simply a characteristic relaxation time for a polymer’s
configurational degrees of freedom.

This smplest dynamlc percolation model has been rather extensively applied in
discussing ionic motion in polymer electrolytes.**”>' Some results and applications are
discussed in the next subsection, and extensions of the model, which illuminate precisely
what is and what is not important about the restrictions deﬁned on this point, are
discussed in the subsection following the next.

Results: Applications of Dynamic Percolation Models to Polymer Electrolytes

A number of very general results follow from the simple definition of the dynamic
percolation model; we will first discuss these, then mention briefly some applications
to experiments.

(1) For any observation time, 1., that is long compared to the renewal time, the
ionic motion in any dimensionality is always diffusive. 4445 This is illustrated in
fig. 5, in which it is clear that, although over a short time compared to the
renewal time, the mean-squared displacement can become asymptotically con-
stant (for a system below the static percolation threshold), the renewal process
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Fig. 5. Mean-square displacement as a function of time, for dynamic percolation on a one-
dimensional chain. Notice that within each small interval (of relative size 5 time units) the
transport becomes limited by the size of the connective cluster, but over many renewal epochs

(2)

(3)

(4)

mean-square displacement is indeed linear in temperature. From ref. (44).

permits concatenation of such motions resulting in overall diffusive behaviour,
with mean-squared displacement proportional to time. This has been shown to
hold in any integer dimensionality.

For motion in one dimension, the closed-form result of eqn (6) holds for the
diffusion coefficient***°

a2f2
=— 6
2(1 _f)z'rrcn ( )

Here a is the mean distance between sites. Dependence on f describes essentially
how far an ion travels before the renewal process must occur, and the dependence
on 1/ 7., arises from the renewal process itself.

In static percolation models, there is generally a percolation threshold, that is
there exists a value f, below which diffusion is not observed.® No such
thresholds exist in renewal models, consistent with experimental observation;
nevertheless, a remnant of the threshold behaviour is found in that the value of
the diffusion coefficient changes substantially in the region of f,,.*"* This is
more extensively discussed in the next subsection,

The frequency-dependent diffusion coefficient can be rigorously related to the
diffusion coefficient D, in the analogous static percolation lattice [ i.e. the problem
defined by eqn (4) and (5) without renewal] by the analytic continuation
formula®

D(w)=D0(w_i/Trcn)' (7)

This formal result can be quite important, since closed-form expressions often
exist, on different lattices with different hopping probabilities, for the mean-
squared displacement or static percolation coefficient.
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(3)

(6)

(7)

(8)

(9)

Conductivity in Polymer Ionics

If certain reasonable assumptions are made relating viscosity to the relaxation,
a Walden product can be obtained as:

Dn=md(x%,_ f/a’. (8)

Here ¢ 1s the speed of sound in the elastomer, and the notation <x2)r,.., indicates
mean-squared displacement in a single renewal interval. The Walden product
is thus predicted to be only weakly temperature dependent, and to depend upon
such material properties as the speed of sound and the segment length. The
near constancy of this product is in agreement with the results of fig. 1, and with
the near constancy of the decoupling ratio R, (which, assuming the validity of
Nernst-Einstein relationships, is essentially proportional to the Walden product).
The predicted dependence of the diffusivity of system properties is entirely
dominated by the dependence upon the polymer renewal relaxation time 7., .
This is in agreement with experimental results. Indeed, it can be shown in
general that**’

D = nd<r2>f"r/ fren (90)

where n; = 1/2d with d the space dimension of the hopping net, and the brackets
and bar corresponding to averaging over a thermal ensemble and the distribution
of renewal times, respectively. The (_ris,,rm is for a single renewal interval.

If the conductivity is plotted as a function of frequency on a log-log plot (fig.
6) one notices substantially different behaviour for the mean polymer host and
the elastomeric ionic conductor. At frequencies above ca. 10 GHz these two
responses are essentially identical; this may reflect displacive motions of charges
or dipoles within the polymer host. For lower frequencies, only the ions them-
selves continue to respond diffusively over longer and longer time scales. Thus
the response of the neat polymer drops essentially to zero, while that of the
electrolyte flattens out to an asymptotic value at low frequency, corresponding
to the d.c. diffusion arising from the renewal process. This is shown in fig. 6,
where the results of the dynamic percolation model are contrasted with
experiment.”’

Depending on the size of the continuous region over which static percolative
diffusion can be observed, the overall diffusivity or conductivity show different
dependences upon the renewal rate. This 1s illustrated in fig. 7, showing two
limits. In the small cluster limit (fig. 7) the mean-squared displacement, assuming
no unavailable bonds, would be very much larger than the mean size of the
connected cluster. Under these conditions, renewal is clearly necessary for
diffusion to occur, and the diffusion coefficient s given by eqn (9a). On the
other hand, if the connected cluster is large enough that the mean-square
displacement for simple hopping in the given ttme is smalier than the extent of
the connected cluster, one expects the motion to be independent of the dynamic
renewal process. Under these conditions one finds, as expected,

D = D,= w{(r¥n,. (9b)

Note here that the result is indeed independent of the re-initialization in the
host. Eqn (9a) and (9b) describe, respectively, conduction in polymer elec-
trolytes above T and the glassy solid electrolytes beiow T;. In the former case,
dynamic host motion is necessary to promote ionic diffusivity, whereas in the
latter case dynamic diffusion occurs in a relatively fixed host environment,
promoted by thermal motions of the host.

The result (9a) implies that

(1) 1T T, F(T)
log [cr(m] =log [—r,m(:r)] *log [ T F(m] (10a)
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Fig. 6. (a) Calculated frequency-dependent conductivity for a simple dynamic percolation mode!.

The lower line is the diffusion coefficient without renewal, the upper line that with renewal. (b)

For comparison, the frequency-dependent conductivity of pure PEO (- - - - - }and PEO salt complex

(—) at 22°C. Only the salt ions are capable of long-distance diffusive motion, corresponding to
renewed diffusion. From ref. (51).

where F(T) is the correlation factor correction to the Nernst-Einstein relation-
ship. Writing the shift factor as

tog [n(T)/n(T.)] =log [+(T)/+(T,)] (10b)

the combination of (10a) and {10b) explains the linear curve of fig. 1, if
correlation corrections to Nernst-Einstein are reiatively unimportant.

Other applications of the dynamic percolation model, including comparison of

semicrystalline and fully amorphous materials,* frequency dependence,’** relation to



30 Conductivity in Polymer Ionics
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Fig. 7. Difterent diffusion limits for dynamic percolation. In the upper cartoon, the blob represent-

ing the mean connected cluster is small compared to the line, representing root-mean-square

displacement within a renewal epoch. Under these conditions, conduction will be proportional

to the inverse renewal time. The lower cartoon shows the opposite situation, with large mean

connected cluster. Under these conditions, the medium will renew before the local connected
region is filled and D will be independent of the renewal time.

quasimacroscopic transport theories,”’ threshold behaviour and the importance of
correlations,*”>"** are discussed in later papers on dynamic percolation.

Aspects and Extensions of the Dynamic Percolation Model

In addition to the specific applications discussed above, the dynamic percolation model
has been extended to apply beyond the simple independent hopping of particles on a
regular lattice. A number of generalizations have in fact been published. Perhaps the
most important conclusions to be drawn from these generalizations are as follows.
The important results, particularly in the analytic continuation rule, the diffusive
nature of the transport and the monotonic increase of diffusion coefficient with frequency
for low frequencies, can be shown to hold under much more general condtions. One
can relax the site model, permit certain correlations among the different renewal
processes and allow the renewal times to be chosen from nearly arbitrary
distributions.*>“****° In fact, the only real requirement for these general results to hold
is that the displacements obey a particular growth law.>® The growth law is illustrated
in fig. 8, showing an arbitrary function, F, such as the mean-square displacement for a
specific sequence of renewal or reassignment events. Analytically, it can be expressed as:

N
F(t)=g(r)+ L f(7). (11a)

Pa=]

Here g(7) is the growth that would be observed, without further renewal, starting from
an arbitrary time 0, before which random renewal had been an on-going process. f(r,)
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Fig. 8. An illustration of the growth law for mean-square displacement. The solid lines represent

the mean-square displacement addition within each time interval. Notice that the growth law, in

the sense that the mean-square displacement is additively incremented within each time interval,
is obeyed. From ref. (50).

of ¢ is the growth that would be observed without further renewal, starting from a
previous renewal at ¢t =0. The time sequences are defined by

I i=0
T=4t,—t O0<i<N. (11b)

Physically, fig. 8 and egn (11) mean that a particular property (F might, for example,
be associated with mean-square displacement) grows by addition of finite increments,
and these finite increments depend upon time intervals. The behaviour illustrated in
fig. 8 is precisely that expected for ionic diffusion in a dynamically disordered medium
(including both polymer electrolytes and liquid solution), and therefore the growth law
will hold, and the results of the simplest dynamic percolation model will be applicable,
for these situations also. The growth law clearly does not require a lattice with sites,
nor approximations involving either the correlation of subsequent renewals or the
distribution of renewal times. An alternative proof that important results of dynamic
disorder hopping apply under more general conditions can be derived in quantum
mechanics, starting with the linear response expression for the conductivity. One can
then show that the analytic continuation rule of eqn (7) will hold if and only if the
velocity auto-correlation functions satisfy

8 3
J‘ (vg(O)vn(r-Hha))da:exp(—Ar)J’ (0e(0)v, (t+1ha)), da. (12}

¢

Here ¢ and 7 represent space variables X, y Or z, A is the inverse mean renewal time,
BkgT=1 and the expectation vaiues on the left and right sides are evaluated in a
renewing lattice and a static lattice, respectively. The importance of eqn (12) lies in
providing yet a further generalization of dynamic disorder motion to quantum behaviour.
For example, fig. 9 shows the effective renewal as a function of time for two situations.
The upper situation corresponds to hopping-like transport, in which the mean-square
displacement is beginning to flatten out asymptotically with time, before renewal occurs.
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Fig. 9. The effective renewal times, at ¢, t,,... (a) on a concave-down and (b) on a concave-up

mean square displacement {r’(1)), dependence, corresponding relatively to hopping-like (ionic)
and coherent or ballistic (electronic) transport. Notice that the growth law is obeyed in both
cases, guaranteeing diffusive conductivity along times. From ref. (50).

This is characteristic of diffusive hopping transport. On the other hand, fig. 9(b) shows
a coherent-like transport situation, corresponding to scattering in band conduction.
Here the mean-square displacement without renewal is quadratic in time; the renewal
process in fact reduces the expected growth in the mean-square displacement, in sharp
contrast to the diffusive situation. The applicability of dynamic disorder hopping models
in both the quantum (coherent)’® and classical (hopping) cases makes the results useful
both for ionic conductors and for electronic conductors of relatively short mean free
path, such as redox polymers and molecular metals.

While correlations in the renewal process will generally have rather small effects on
the growth law and the diffusion coefficient, spatial correlations in the renewal pattern
can in fact change the rate substantially. Harris et al’® show by means of simple
simulations that if bond renewals are restricted to occur between nearest-neighbour
sites, the d.c. conductivity is reduced relative to that for random renewat since the carrier
must occasionally wait for the slower renewal chain of events before it can proceed
along the chain. More recent work has extended these considerations substantially, by
examining a situation in which there are two renewal processes. The first corresponds
to a simple fluctuation of each site with a characteristic renewal rate 1/7,., between
open and closed, or available and unavailable, positions. The second renewal process
corresponds to pairs of adjacent bonds interchanging thetr status as available or unavail-
able; this rearrangement occurs at a rate a. The interchange is related to models such
as the Grotthus picture for proton transport in hydrogen-bonded systems, in which case
the rotation of water molecules permits protonic hopping.

Granek and Nitzan and others*”* have analysed a renewal problem containing such
processes in the effective medium approximation. Fig. 10 shows, for a two-dimensional
square lattice, the effective medium rate of transport as a function of the bond filling
factor, f, for the situation in which only adjacent-bond interchange is permitted (7.,
goes to infinity). Notice that the threshold, which for the two-dimensional square lattice
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Fig. 10. The effective medium diffusion rate as a function of p (equivalent to the f of text), the
percentage of available bonds. The static percolation threshold for this square lattice system is
at 0.5; notice that the dynamic renewal process (in this case corresponding to correlated renewal,
the exchange of nearest-neighbour bonds) drops the percolation threshold to much lower values
of p. The different curves are for different rates of interchange of status (open + closed) between
adjacent jumps; this rate increases by a factor of 3750 from (e) to (a). From ref. (47) and (49).
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Fig. 11. Calculated frequency-dependent conductivity for dynamic percolation, or for general

growth-law diffusion. The different curves have slightly different renewal processes, but the

generalized behaviour (flat near the origin, monotonically upward, flattening out at high frequen-
cies) is common for all growth law or renewal processes. From ref. (50).
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occurs at f=0.5 in the static, ¢ =0 limit, is downshifted to f=0.34. This threshold is
independent of the actual magnitude of «, so long as « #* 0. Notice that for increasing
a, the effective medium transport rate increases montonically, as expected, with increas-
ing a; for large enough a, this increase is unimportant.

Some generalized results on the frequency dependence of dynamic percolation
models follow from the growth law itself.’>>* Fig. 11 shows the calculated dependence
of the diffusion coefficient on frequency. The high-frequency, asymptotically flat result
is an artifact of the hopping model, since any real conductivity must eventually roll
over and vanish as the mobile species, due to its inertia, cannot follow the instantaneous
reversals of the field. The more important behaviour is the relatively flat slope at very
low frequencies, becoming monotonically upward in the intermediate frequency range.
While it is generally true that any hopping model must yield an increasing diffusion
coefficient with frequency at low frequencies,”’ the general roll-over behaviour observed
in fig. 11 will always hold in dynamic percolation models.

Thus the dynamic percolation model has been extended to deal with situations far
beyond the original simple picture discussed at the beginning of this section. While
correlations among renewals can affect the diffusivity, unless such correlations are very
strong*"***** the effects are quite small. This is not necessarily true with correlation
effects among the ions, arising from Coulombic forces.

4. Tonic Correlation Effects: Coulomb Interactions

Characteristically, the ionic concentration in polymer-salt complex electrolytes is
roughly one molar, and the mean distance between ions is of the order of 6 A. This
means that all ionic motion is within a relatively strong Coulomb field of other ionic
particles, and therefore that the material can be considered as a solvated Coulomb fluid,
rather than a simple set of independently hopping particies. Under these conditions,
one seriously questions not only the simple independent particle description of diffusivity
which underlies both the free-volume theory and the dynamic percolation model just
discussed, but also any simple extension in terms of ion-pair formation. Indeed,
spectroscopic studies, both in liquid polymer hosts® and in actual polymer
electrolytes,’'***"*>*? indicate strongly that independent ions, ion pairs, ion triples, and
higher ion multiples can be observed. Moreover, the experimental data seem to argue
that both solvent-separated ion pairs and tight, or contact, ion pairs exist in these
materials. Before proceeding to some simple theoretical considerations concerning ionic
interactions in polymer electrolytes, we discuss some of the critical experimental observa-
tions.

Greenbaum and collaborators'>*° noted that complexes based on PPO, when heated,
often broke down into a remaining complex phase and isolated salt crystals. This was
not so clearly observed in the more strongly solvating PEQ, nor has it been repeated in
ionic conductors of stronger solvating ability, such as the comb polymers. Nevertheless,
the observation itself indicates that, especially with weakly solvating hosts, there is a
substantial thermodynamic driving force at higher temperatures toward the formation
of separated salt structures and polymer host (the latter possibly containing some salt).

Cheradame suggested* early on that one could modify the simple WLF form of eqn
(3) for the conductivity, by including an activation form relating the stoichiometric
concentration of 1ons to the concentration of mobile ions. This results in:

oT=ca,exp(—AEe/RT)exp[—B/(T-T,)] (13)

where A Eg is the activation energy involved in forming mobile ions from immobile ions.
It was suggested that this is the energy necessary to break up ion pairs, to produce free
carriers. This form has been used in several subsequent investigations,®® and indeed
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Watanabe reports®® values of the activation energy AE, of the order of 0.3 eV for
polypropylene oxide electrolytes.

More recent investigations, as well as older investigations in the general solvation
literature, indicate that the situation may in fact be more complicated. Thus, Toreil has
discussed’"*! vibrational spectra in terms not only of concentration effects, as indicated
in fig. 3, but also of temperature dependence. Indeed, she suggests that the number of
contact ion pairs actually increases with temperature; this is consonant with the spirit
of Greebaum'’s observation of salt precipitation. Extensive work in the simpler situations
of ethereal solvents has also shown that the concentration of contact jon pairs,
as opposed to looser solvent separated ion pairs, in fact increases with increasing
temperature.®'

That ion pairs are relevant to conductivity in ionic conductors has been demonstrated
several times, notably in the early work of Shriver and collaborators in PEQ hosts.’®
These studies show that ions, such as BHj, spectroscopically demonstrating contact
pair formation yielded much less conductive complexes than ions such as BF,, for
which no vibrational spectroscopic evidence for pairing occurred. Analogously, several
workers have shown (compare fig. 4) that addition of a sequestering agent, capable of
fully and selectively solvating the cation, can often increase the ionic conductivity, ?728¢!
One obvious argument is that the chelating agent, such as 18-crown-6, tetraethylene
glycol or various cryptands, form such a tight sheath around the cation that no contact
ion pairs can in fact be formed. Watanabe suggests® that remnant cation-anion attrac-
tions, whose strength is indicated by the cohesive energy of the parent salt, can actually
reduce overall ionic conductivity in polymer-salt complexes. Finally, as has already
been pointed out, the value of considerably less than unity for Angell’s decoupling index
R, might well indicate reduction of conductivity by means of Coulombic attraction to
counterions.

From the viewpoint of simple thermodynamics, the free-energy of desolvation to
form pairs can always be written

AG,=AU,- TAS, (14)

where the subscript p indicates pair formation, and enthalpies and energies are taken
to be equal. Simple thermodynamics then suggests

(0 AG,/3T ) pressure = —AS,. (15}
Thus, the stabilization of the homogeneous complex in free energy will become less
favourable with increasing temperature, if the entropy for the contact ion-paired, or
salt-separated, material is in fact greater than the entropy of the homogeneously dis-
tributed ionic complex.

To assess, then, the free-energy for desolvation to form ion pairs is necessary to
evalaute both the energy term A U, and entropy term AS,. An actual derivation of these
terms, involving some fairly elaborate arithmetic, is given elsewhere.®> We recap here
the important physical points involved, and discuss how this theoretical approach relates
to experiment.

We first consider the energetics involved, Generalizing the approach of Debye,
Hiickel and Onsager,®® we can consider forming a dipole within a cavity in the uniform
fluid of charges. For the polymer electrolytes, however, the concentrations are in fact
extremely high. The inverse Debye screening length is given by

k=V({4nZngl/ekyT) (16)

with n; the charge density of carriers with charge g, and ¢ the static dielectric constant.
For most polymer electrolytes, the high concentration makes this inverse Debye length
of the order of 1 bohr™".% This means that the usual expansion, to first order in inverse
temperature,®** is no longer justified. Instead, one must treat the problem numerically

T1bohr=529177x10""" m.
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to evaluate the energetic contribution AU, of eqn (14). Our preliminary calculations®
indicate that for the complex electrolytes of interest, for which the concentration is near
one molar, the energetic term will always favour separation of the contact ion pairs, to
form solvated ions. This of course is evaluated in the continuum-cavity model, and
ignores specific solvation effects and the molecularity of the solvent These latter would
in general tend to favour pair separation even more strongly,®® so in the absence of
entropic terms contact pairs would not be very favourable even at high concentrations.
This is in accord with a number of experiments, which indicate that at relatively low
temperatures contact ion pairs are less probable than quasi-free ions.

One caveat must be remembered: specific energetic interactions may in fact over-
whelm the solvation stabilization of separated pairs, and result in contact pair formation.
This has been observed with very small anions® such as BH;, and with very strong
Lewis-base anions, such as tetra-alkoxy aluminates.”” Also, simple mass action suggests
that the equilibrium

polymer solvent

M:-olvattd-{—x_ = > MX (17)

will in fact favour the right-hand side (contact ion pairs) to a greater extent as the
overall concentration of salt increases. This is in accord with the simple physical
expectation, as well as the observations of Torell, Smid, Shriver and others. Finally,
we should remember that ‘quasi-free’ in this context means that the ions are separated
to their stoichiometric average distance. In highly concentrated salt solutions, this
average distance will be a number ca. 6-10 A, rather than the large separations fam:llar
from dilute electrolyte situations.

The temperature dependence of ion pairs really depends, as suggested in eqn (15),
on the entropic changes that arise from the formation of contact pairs. A very simple
statistical model has recently been developed®” to characterize this entropy change, and
it suggests [in agreement with most experiments, and contrary to the imphcation of eqn
(13)] that with increasing temperature contact ion pair formation, and salt separation,
might in fact be favoured.

This model is based upon the effective cross-linking between polymer strands brought
upon by coordination to the alkali cation. Such cross-links reduce the configurational
entropy of the polymer chain, and thereby the overall configurational entropy of the
system. While this effect will be exaggerated in polymer systems, it will hold even in
polar solvents, where strong coordination to cationic metal species will substantially
limit the translational entropy, and orientational entropy, available to the solvent itself.
This extra entropic contribution will be proportional to the number of such cross-links.
If we denote by n the number of free polymer segments, then this entropic contribution
can be written n ln A, where A is the contribution to the entropy from each free polymer
strand; that is, 1f the free polymer strands are complexed, and therefore immobilized,
the entropy cost will be proportional to n:, In A.

We consider then, the formation of contact ion pairs according to the simplified

relation

pc+a « ptac. (18}

Here we have denoted by p, ¢ and a, respectively, polymer segments, cations and anions.
When reaction (18) proceeds to the right the cation complexed by the polymer strand
decomplexes and forms a contact ion palr The polymer segments and cations can then

exist in two states: we denote by ne, ng, nE, respectively, the number of bound (to

solvent) cations, the number of free (unsolvated) cations and the number of bound
(complexed) polymer segments. Since the total number of segments and ions must be
conserved, we have

Ny=n'+n® (19)
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N.=n+n! (20}

where N, and N, are, respectively, the number of polymer segments and the number
of cations (equal to the number of anions). There will then be three independent
stmchlometrlc variables: N, and N, describe the overall make-up of the material, and
n,=nd=n_ is the number of bound (complexed) cation-polymer segment pairs.

The energetic component for the free-energy can be defined by setting the zero of
energy as the fully uncomplexed material (separated salt and polymer). Then we can
write the thermodynamic energy term as

-AU,=en, (21)

where we expect the constant ¢ to be negative, corresponding to energetic favouring of
the formation of the homogeneous polymer salt complex. If £ were in fact positive, the
thermodynamic driving force for complexation would not exist, and the complex would
never form. Indeed, it was noted early on in studies of PEO materials that for salts of
sufficiently high lattice energy, there is not sufficient energy gain on complexation to
overcome the cohesive energy of the lattice, and complexes simply never do form.>'
- If indeed the constant ¢ is negative, then the energy will be minimal when all cations
are complexed, and no contact ion pairs exist.
Using simple combinations, the entropy can be written as

N 'N ' ";N("h-*'”;"'";ra]
S/k=ln{ E (A) }

(22}
np! 1 !nb1

Here the factorial quantities simply refer to the division of polymer segments and cations
among the two categories free and bound; the A-dependent term is the extra entropy
contribution that arises when the polymer segments are not limited by being complexed
to cations. The term proportional to N; is simply a volume term, that arises from all
the different ways to distribute bound pairs, free cation segments and free polymer
segments over all the sites in a lattice model of the system. (We have already discussed
extensively in Sections 2 and 3 that although no real lattice exists in these systems, an
effective lattice can be defined simply as a spatial net in the amorphous material.) This
form is reminiscent of the term in the Sackur-Tetrode equation in which the entropy is
proportional to the number of particles times the logarithm of the volume per particle:
the role of the volume is taken by N, the number of sites. In fact, this simple form is
valid only in the dilute limit, which we can assume here since the lattice spacing is
entirely arbitrary.

Inserting the energy and entropy expressions of eqn (21) and (22) into the thermo-
dynamic form of eqn (14), and minimizing the energy with respect to the constitutive
parameter, n,

oF/on, =0 (23)
we obtain the temperature dependence of the number of bound pairs as
NpNc=ny{N,+ N))+ni

Any Ng

exp(e/kT)= (24)

This can be solved for n, itself, yielding:
n,=3{Np+ Nc+A exp (6/kT)Ns=V([N,+ Nc+ A exp (e/kT)NJ —4Np N} (25)

This is, then, the desired expression for the temperature dependence of the number of
ion pairs. Taking derivatives and rearranging, we obtain

eAny N, exp (e/kT) (anh
kT? aT

Since £ is in fact a negative quantity, and the factor in the second parenthesis on the

)[Np+ N.=2n,+AN; exp(e/kT)]. (26)
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right-hand side of eqn (26) must be positive, we have
an,
oT

This shows, in agreement with experiment, that the number of cations bound to the
polymer, and therefore not tied up in contact ion pairs, decreases with temperature.
This is in agreement with the experiments, both those showing the number of contact
ion pairs increasing with temperature, and those observing actual segregation of salt
with increase in temperature.

The general phenomenon of phase separation with increase in temperature is contrary
to naive interpretations of entropy in terms of disorder, since fully dispersed phases
would appear to have lower distributional order, and therefore higher distributional
entropy, than partially separated phases. On the other hand, precisely such behaviour
occurs in liquid mixtures exhibiting lower consolute temperatures;®® we suggest that
perhaps the same sort of energy contributions (configurational entropy decreases with
increasing temperature overwhelming simple arguments) may be operative in such
thermodynamic systems. In any case, such a model appears entirely reasonable for the
polymer salt complex electrolytes, and the simple model contained in eqn (18)-(22)
does yield, in agreement with experiment but in contrast to arguments based solely on
energy [such as the negative value of € or the activated form of eqn (13}], that ion pair
formation will be increased with rising temperature.

Several obvious limiting cases of eqn (25) for the number of complexed cations can
be derived. When ¢/kT becomes very large, n, =0. This is reasonable, since under
these conditions there is an energy cost associated with separation of cation and anion,
and this energy is unavailable. A second obvious limit 1s when £/kT becomes a very
large negative number. Under these conditions, ny, is equal to the smaller of N, and
N.. Once again this is reasonable; at very low temperatures the cations will be entirely
complexed if the energy change is negative for complexation. The third obvious limit
is the high-temperature limit, where £/ kT vanishes. Here n,, also vanishes, since at very
high temperatures only the entropic terms are important, and the entropic terms favour
formation of contact pairs according to eqn (18).

This thermodynamic model is simple and reasonable, and gives the correct experi-
mental observations. The important fundamental inputs to the model are the energy
difference upon solvation of a contact ion pair, called ¢ and the entropic penalty involved
in complexation associated with the A term of eqn (22). For any given substance, a
generalized Debye-Hiickel treatment is available to calculate £; a number of terms can
contribute to A, including configurational entropy of the polymer, and even vibrational
entropy, since vibrational frequencies are higher in complexed solvents (either polymeric
or small molecule) than in free solvents. The term involving configurational entropy
reduction upon complexation would suggest that at smaller chain lengths the entropic
favouring contact ion pair formation, and salt separation, should be reduced. Notice
that A and ¢ enter the expresston for n, only in the combination A exp (¢/kT). Thus
kT In A is in some sense equivalent to ¢, and a change in the value of A from A <1 to
A > 1, like a change in € from negative to positive, favours decomplexation and ion-pair
formation; this agrees with the interpretation of A as an increase factor for the number
of configurations available to the free solvent.

< (. (27)

5. Comments

Polymer ionic materials are always characterized by the presence of static disorder,
arising from the disordered polymer host. Above the glass-transition temperature, they
additionally have dynamic disorder, by which we mean that the local environment of
any given site will undergo substantial change with time, due to liquid-like local motions.
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These two types of disorder have important roles to play in determining charge transport
in these polymeric materials.

For temperatures above T, we are in the realm of dynamic disorder. Here substantial
changes in the local structure arise; this change in the local geometry results in ‘renewal’
processes, or reinitialization processes, which can modulate either ion transport (in
electrolyte materials) or electron transport. Examples of electron transport modulated
by dynamic disorder include situations in which ion motion is needed to provide
homogeneous doping, as in a large class of doped conductive polymer systems.” A
second example is provided by redox processes on polymer-modified electrodes; for
example, recent work from several groups®*® has utilized a network of donor-acceptor
relays, or electron-transfer modulators, suspended along a polymer chain leading from
a modified electrode to a redox active terminating group, such as a redox enzyme. Under
these conditions, the relays along the chain (for example, ferrocene/ferrocenium sites)
can provide efficient ET pathways from the redox enzyme to the electrode; the electronic
motion is promoted by large-scale motions of the host polymer chain, which permit the
sites to become close enough for efficient hopping transport to occur. Thus, very flexible
chains, with low glass-transition temperatures, such as are provided by siloxanes, have
proven optimal for the design of such relay systems. The role of dynamic disorder in
promoting ion transport in polymer electrolytes and polyelectrolytes has been extensively
discussed in Sections 2 and 3.

For temperatures below T, local ionic sites undergo quasiharmonic vibrations, and
no easy diffusion pathways will exist. Electrons can still move, but such motion occurs
in largely static structures. Under these conditions, electron transfer over very short
distances is ballistic or band-like. Scattering processes can then lead to growth laws,
with the conductivity being diffusive over long times [as is clear from fig. 9(b}]. Under
these conditions, the temperature dependence arises from the scattering problems, but
the diffusive transport is due to the growth law, %

Thus the role of static and dynamic disorder in promoting charge transport in polymer
lonics can vary from situations reminiscent of glass-like substances (T < T,) to those
more characteristic of liquids ( 7> T;). Charge-transport mechanisms in polymer ionics
are unusual, and understanding requires models, like the dynamic disorder hopping
model discussed in section 2, that differ substantially from those more appropnate for
crystalline solids.

Polymer ionics contain charged species, and therefore the issue of Coulombic
interactions among charge sites is highly relevant. For doped polymers in the glassy
state below T,, Mott-type transitions’® are possible. Under these conditions, the ions
are not mobile, but electrons or holes can be, if the local screening length becomes
comparable to the hopping distance. Analogous ideas are relevant for ion hopping in
these materials, if appropriate pathways for long-range ion transfer exist.”’

In polymer electrolytes and polyelectrolytes, Coulomb interactions are important
because they can lead to segregation of charged species either as ion pairs or as more
highly charged multiples, and thus impede conductivity. If the lattice energy of the salt,
or the inter-ionic Coulombic interaction attraction, is too large no.complexes will form,
no ions will become free and relatively low conductivity will be observed. If, on the
other hand, the solvation energy is strong enough, formation of contact ion pairs will
be energetically unfavourable compared to solvent-separated pairs, leading to quasi-free
ions and substantial ionic conduction.”*" Solvation energy clearly must be larger than
the ion-pairing stabilization, as indexed by the lattice energy of the parent salt. If the
stabilization energy to separate the contact ion pair is very large, the material will remain
a homogeneous conductive substance over broad temperature ranges. If, on the other
hand, the stabilization energy is smaller, entropic effects can lead to instability of the
separated pair compared to contact ion pairs, and to the formation of contact ion pairs
(with concomitant reduction in the number of charge carriers) with increasing
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temperature. Such a situation can be described by a quasi-thermodynamic model, as
discussed in Section 4. The overall temperature dependence, then, of the mobility and
the concentration terms will differ: the mobility will increase with temperature according
to the usual VTF, but the number of fise carriers may decrease with temperature due
to ton-pair formation at higher thermal energies.

For very low concentrations of ions, the inverse Debye length will be small, and a
simple analytic extension of Debye-Hiickel theory can be used to estimate the energy
involved in separating charged pairs.®? For the concentrations appropriate for most
polymer electrolyte systems, however, the inverse screening lengths are quite large (of
the order of 1 bohr™ ')}, and the analytic treatment (involving expansion in the smallness
parameter proportional to inverse temperature)®® is no longer valid. Under these condi-
tions the energy of solvation stabilization must be calculated numerically. The dominant
concentration effect for many systems will come from raising the glass-transition tem-
perature due to effective cross-linking of polymer strands arising from ion complexation;
this decrease in mobility dominates the stoichiometry dependence of conduction in most
regimes.

Perhaps the most interesting theoretical insight arising from the models discussed
here is that there are significant commonalities in the charge transport processes due to
ionic and electronic motion in polymer ionics. The effects of the dynamical events and
the growth law as well as Coulomb interactions are similar in both sorts of materials.
The dynamic and static disorder of the polymers is the dominant effect on all dynamical
processes, including charge transport. In this sense, the polymer ionic materials offer
an interesting continuum of behaviour, ranging from liquid-like transport in the high-
temperature regime (where dynamic motions of the solvent are involved in the charge
transport) to glass-like, hopping behaviour for temperatures below the glass-transition

temperature.
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