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The problem of two dimensional overdamped aniso- 
tropic diffusion is governed by two small parameters, (i) 
the thermal energy e=kBT/AV, where AV is a reference 
activation energy (e.g., the height of the saddle point above 
the bottom of the reactant well), and (ii) the anisotropy 
parameter S = qx /q,, where qx and vY are the two damping 
coefficients (assuming the friction tensor is diagonal). 
Therefore the two limits, (a) first e-0, then S-+0, and (b) 
first S -0, then e+O, must be considered separately, be- 
cause it is not a priori clear that they are interchangeable. 
Indeed, there are cases when they are not, as correctly 
pointed out in Ref. 2. 

It should be pointed out however that the analysis pre- 
sented in Ref. 1 is concerned with the limit (a). The limit 
(b) is considered there only for the case A > 0, for which 
the limits (a) and (b) are indeed interchangeable (here 
A = V, at the saddle point). The results for the case A&O 
in Ref. 1 are valid only in the limit (a), so that the com- 
ment “the cases A<0 can be handled in a similar manner” 
is misleading, as correctly pointed out in Ref. 2. 

Unfortunately, some of the statements, as well as the 
result 

K= , (1) 

presented in Ref. 2, are not correct. First, the effective 
potential 
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which governs the motion of the slow variable y, does not 
necessarily form a double well, as claimed in Ref. 2. Con- 
sequently ( 1) [that is, formula (2) in Ref. 21 is not correct 
in general. Even in the case that V,e(y,e) does form a 
double well, while the exponential part of ( 1) may be cor- 
rect, the preexponential factor in (1) is not. For although 
the reduced one-dimensional problem appears to be iden- 
tical to that treated in Ref. 3 (the so-called Smoluchowski 
problem), in fact it is not. The effective potential (2) is 
almost sharp, its curvature at the top is 0( l/e), and its 
slopes at a distance O(E) on either side of the point yM 
where it achieves its local maximum, are 0( 1) and have 
opposite signs. Therefore Laplace’s expansion of integrals, 
which is the basis for the results of Ref. 3, and hence of 
( 1) , is inapplicable. 

Instead, we present a different formula for the rate in 
the limit (b), for the case A < 0. We assume that the po- 
tential V(x,y) has two local minima at (xA,yA) and 

(xB, ys), and that V,, is a double well potential. We also 
assume, for simplicity of presentation, that V(x, y,,.,), as a 
function of x, has two wells of equal depth. We find that 
the escape rate is then given by 
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where SY = 1 VJX,, y,J V,,(x,, y,J - ey&l, y,4) 1. 
Evaluating the integral in the denominator of (3) for E( 1 
we obtain 
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where 
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~~,,,=Vt~,(~,>,y~1- V(XA,YA). 

In the very special case that the potential V(x,y) is so 
symmetric that o~=w~G~~~, we find that (4) reduces to 

(6) 

It can be readily seen that the dimensional form of ( 3)) and 
even of (6), differ from (1). 

The problem of anisotropic diffusion in the case A < 0 
has much more structure than indicated in both Ref. 2 and 
references therein, and in Ref. 1. Some elementary notions, 
such as the geographical location of the stochastic separa- 
trix in the (x,y) plane, that is, the location of the transition 
region, the time scales on which changes occur, the relative 
sizes of the first two nonzero eigenvalues, and so on, have 
to be clarified before definite statements about the activa- 
tion process can be made. To clarify the notion of activa- 
tion in the strongly anisotropic case, the reactant and prod- 
uct wells should be defined in a way that reflects the 
sojourn times of the stochastic trajectories in various parts 
of the (x,y) plane. As pointed out in Ref. 1, the ridge R of 
the potential does not partition the plane into two parts 
which are characterized by long sojourn times. It is rather 
the stochastic separatrix S that accomplishes this partition. 
It is defined as the locus of initial points of stochastic tra- 
jectories which are equally likely to end up near the bottom 
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of one well as they are to end up near the other. In certain 
cases S is the deterministic separatrix I’, e.g., if A > 0 (see 
Ref. 1). However, if A < 0, it can be shown that for an 
extremely anisotropic system S tends to the line y=yM 
The point yM can be located practically anywhere on the y 
axis, depending on the structure of the two wells. There- 
fore R, r, and the saddle point are not directly relevant to 
the definitions of the reactant and product wells nor to the 
activation process. Rather, reactant and product are deter- 
mined by S’. 

We observe that the partition into reactant and prod- 
uct wells determined by S, reflects what is actually mea- 
sured in, e.g., single bond rotational isomerization reac- 
tions (see, e.g., Refs. 4 and 5). That is, observationally one 
measures and distinguishes between populations on either 
side of S, rather than R or I. 

These and related issues will be considered in detail, in 
a paper which is in preparation. 
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