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We consider an anisotropic multidimensional barrier crossing problem, in the Smoluchowski
(diffusion) limit. The anisotropy arises from either or both the shape of the potential energy
surface and anisotropic diffusion. In such situations, the separatrix, which separates reactant
and product regions of attraction, does not coincide with the ridge of the potential surface,
which separates reactant and product wells, thus giving rise to a complicated time evolution.
In the asymptotically long time limit, the time evolution is governed by crossing the separatrix
and is exponential with a rate which may be obtained as a generalization of Kramers’ theory to
the anisotropic situation. In contrast, in long, though not asymptotically long times, the time
evolution is dominated by repeated crossings of the ridge, and is nonexponential. Such
nonexponential time evolution has been observed in many biochemical reactions, where many
degrees of freedom and anisotropic diffusion processes lead to complicated dynamical
behavior. Our model provides a simple prototype of such situations.

I. INTRODUCTION

The diffusion theory of activated rate processes, first
introduced by Kramers' as one limit of his theory of chemi-
cal reaction rates, has been traditionally applied to models
characterized by (i) one reaction coordinate defined by min-
imizing the potential energy along the reaction path and (ii)
a potential barrier height larger than the thermal energy
kg T. A now standard treatment based on the Smoluchowski
(diffusion) limit of the Fokker-Planck equation for this
model yields?
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where AV is the height of the potential barrier, T the tem-
perature, kp Boltzmann’s constant, y is the friction coeffi-
cient, w? and w?, are the frequencies associated with the
reactive and nonreactive coordinates at the barrier (saddle
point), and w}” are the normal mode frequencies associated
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with the reactant well. The products II,, and II; are taken
over all the corresponding modes.

Equation (1.1) is a very useful tool for describing and
analyzing activated rate processes in the overdamped (diffu-
sion) limit. The reason that the reaction can generally be
described in terms of a single linear reaction path, is that in
the diffusion limit the system is essentially in equilibrium
everywhere but in the immediate vicinity of the saddle point.
The dynamics may therefore be evaluated by considering the
linearized potential surface about this point. There have
been claims® that reaction path curvature may lead to non-
trivial corrections to Eq. (1.1), however some of us have
recently shown* that such corrections result from the anhar-
monicity of the potential surface and from the presence of a
small window frequency (small ®? ) at the saddle, and that
reaction path curvature is irrelevant in the diffusion limit.

Experimentally, the validity of Eq. (1.1) has been veri-
fied in many situations. There are cases however where the
observed kinetics does not follow a simple rate equation even
when the assumptions that lead to Eq. (1.1) seem to be valid.
A notable example is the low temperature kinetics of ligand
binding to heme protein.® In a typical experiment the heme-
ligand complex is pulse irradiated in order to flash off the
ligand, and the recombination kinetics is followed spectro-
scopically on a microsecond time scale. It is believed that the
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observed recombination is a process in which the ligand
moves from the periphery of the protein into the heme pock-
et.’ The observed nonexponential kinetics in this and other
structural reorganization processes in large biomolecular
systems may be explained by models which assume the exis-
tence of intermediate locally stable states, implying that the
observed reaction is dominated by several barrier crossing
processes. The observed kinetics is however not easily re-
solved into a sum of just a few exponentials. Sometimes suc-
cessful fits to power law time dependence suggest that a con-
tinnous spectrum of relaxation times exists. Another
important experimental observation is that the time evolu-
tion becomes more exponential-like at higher temperatures.
This suggests that the nonexponential time evolution is relat-
ed to the multitude of degrees of freedom associated with the
large molecule. When the temperature is sufficiently high,
the rate at which the molecule explores the configuration
subspace associated with the reactant conformations, is rela-
tively fast and the observed rate is dominated by the slower
crossing at the saddle point. At lower temperatures, other
relaxation times may fall within the experimental time scale
and even though the long time kinetics is still dominated by

the slowest barrier crossing process, shorter time nonexpo- .

nential kinetics may be observed.

In this paper we investigate a simple two-dimensional
model which has these properties and which may be used as
a prototype for such processes. The model consists of a diffu-
sional barrier crossing in two dimensions (Fig. 1) where
anisotropy in both the shape of the potential surface and in
the friction coefficients, and consequently also in the diffu-
sion tensor, is taken into account. For simplicity we consider
the situation in which the principal axes of the reactant and
product wells, as well as the principal axes of the diffusion
tensor, are parallel. In our analysis, we employ a coordinate
system which is parallel to these principal axes. We shall see
that in this situation a one-dimensional reaction coordinate
defined near the saddle point (taken to be the origin) is not
sufficient to describe the time evolution of the system. We
shall also show that such anisotropies may lead to nonexpon-
ential transient evolution, that may correspond to relevant
experimental times. In Fig. 1 we show two examples for the
systems considered here. Figure 1(a) is a schematic repre-
sentation of the ligand—heme protein potential surface. Fig-
ure 1(b) is a plot of the potential corresponding to the lower
eigenvalue of the 2 X 2 vibronic coupling potential matrix

Vixux,) = (iklx:; +40x3 + Aix, + pix,
1v2/7 —

with parameter values given in the figure caption.

A similar point concerning the inadequacy of a one-di-
mensional treatment of the diffusion along the reaction coor-
dinate has been previously made by Agmon and Hopfield®
who studied a diffusion equation with a reactive sink

dp(x,t) d% 1 4 ( 8V)
=D —lp—]] -k . (L3
ot ox? + kpT Ox ax ] e (1)
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FIG. 1. (a) A schematic sketch of the potential surface for the ligand pro-
tein rebinding reaction. R denotes the ridge, I" the separatrix, and S the
saddle point. The stable reactant and product configurations are denoted by
a and b, respectively. Note that the shapes and orientations of R and I are
schematic and other possibilities exist as discussed in the text. (b) A plot of
the potential corresponding to the lower eigenvalue of the 2 X2 vibronic
coupling matrix (1.2). The parameters used are k, =20, k, =1,
L=5L=1,4,=014,=0262,u,=1,4,=2618,A=0.1,andt=0.1.
The ratio of the diffusion coefficients is § = 0.1. The ridge and separatrix
shown in the figure have been calculated for this choice of parameters. Note
that unlike the situation in the schematic picture (a), R and T touch (at the
saddle point) but do not cross each other.

1.2
t $hoxt + 3x3 — AgXy — poX, + A) (1.2)

The origin of the sink term k£(x)p can be, for example, quan-
tum mechanical electron tunneling, in which case Eq. (1.2)
may be used to describe diffusion control of electron transfer
processes. In the case of CO binding, discussed in Ref. 6, the
sink was taken to correspond to irreversible binding of CO
when the system crosses the ridge, separating reactant (un-
bound CO) and product (bound CO) regions of the poten-
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tial surface. Equation (1.2) is indeed a useful tool for de-
scribing processes in which the reactive step [corresponding
to the last term of Eq. (1.3)] is not diffusion controlled. For
processes in which the process modeled by £(x), originates
from a diffusion along another coordinate, it is not clear that
Eq. (1.3) is valid. In this case, which seems to describe pro-
cesses such as ligand—heme protein binding, the full multidi-
mensional diffusion equation has to be investigated, as is
done below. We do however retain an essential point of the
Agmon-Hopfield treatment, namely that the nonequiva-
lence between the two directions is expressed in terms of
anisotropies in both the potential surface and the diffusion
tensor as discussed above. We remark that our treatment is
classical. A quantum treatment of a related model of elec-
tron transfer was considered in Ref. 7.

The existence of nonisotropic diffusion in our model is
associated with the fact that different degrees of freedom
(e.g., different motions and/or motions of different atomic
groups) in a large molecule, usually interact differently with
solvent molecules and with other intramolecular degrees of
freedom, and therefore experience different frictions. A de-
tailed study of such a situation is presented in Refs. 2(h) and
23).

An important point concerning experimental observa-
tions is the fact that the observable is not necessarily asso-
ciated with the most stable product (or reactant) configura-
tions, i.e., the point b (or a) of Fig. 1, but may correspond to
the entire population on the product (or reactant) side of the
ridge in Fig. 1. Thus, in the ligand—heme protein binding
experiment the recombination product is observed spectro-
scopically, and the probe is sensitive to where the configura-
tion is located on the multidimensional potential surface. In
the case of CO binding to heme we may expect that gross
changes in the optical spectrum, monitor crossings of the
ridge that separates the reactant well (heme and ligand un-
bound) from the product well (heme and ligand bound). On
the other hand, the dynamics of such activated processes is
primarily controlled by the separatrix which is the boundary
of the regions of attraction of the reactant and products
wells. In cases where the observational separator (e.g., the
ridge) differs substantially from the separatrix (Fig. 1), the
probe employed will detect transient (nonexponential) be-
havior for the system. In this paper we provide a mathemat-
ical description of such a situation.

In Sec. II we describe our mathematical model and in-
troduce our notation. We also show that under our simplify-
ing assumption that the principal axes of the diffusion tensor
and of the potential wells are parallel, only one parameter is
needed to describe the two anisotropies. Section III provides
the asymptotically long time solution for the reaction rate in
this model and thus constitutes a generalization of Kramers’
theory (in the diffusion limit) to nonisotropic situations.
Section IV considers transients that, due to the anisotropy in
the problem, can occur on experimentally important time
scales. We end with a discussion of our results and some
predictions.

Il. FORMULATION

We consider the Smoluchowski system of equations cor-
responding to overdamped motion in the plane

1% 2k, T
lﬂ_*_ B

il = — - lbl,
my, 9%, my,

. ¥ 2k, T

K= — L a—f/+ 2" w,, (2.1)
my, 9%, my,

where 7, , are the friction coefficients (assumed large rela-
tive to all characteristic frequencies), k5, 7, and m denote
the Boltzmann constant, the temperature, and the particle
mass, respectively. Here w, and w, are independent standard
Gaussian white noises. The potential V(,,%,) is assumed to
have two minima located at M, = (X,,,%,,) and M,
= (X, X,;, ) whose domains of attraction in the plane are
denoted by & ,and 7, respectively. As shown below, these
domains of attraction may be affected by the anisotropy. For
an isotropic diffusion tensor they are determined by the po-
tential alone and the separatrix (the common boundary of
2, and 9,) is identical to the ridge in the potential sur-
face. In the anisotropic case the ridge and the separatrix are
not the same. We assume that there is a single saddle point
S = (X;0,%,) of V(%,,%X,). The height of the potential bar-
rier_in D (i=ab) is defined as AV, = V(%10:%20)
— V(X,;,X,;). The Smoluchowski equation for the transi-
tion probability density p(i,,iz,;) of the process
[%,(2),%,(2)] defined by Eq. (2.1) is

p__1 0 9

L2 5+ 7,
T, ax,( P) — aiz( . P)
kpT 11 92 2 ~
(SR 2=y, 2.2)
m \yn, 9% v, 9%
whose stationary solution is
p=e "7k, (2.3)

Here .V,-,, denotes 3V /3%,. For simplicity of presentation, we
have assumed that the principal axes of well Z,, as well as
the principal axes of the diffusion tensor, are parallel to the
X, X, axes.

We nondimensionalize the problem by introducing the
scalings:

% %, AVi

v
== x="2; t=———; =— (24)
S PR mL2y, AV
and we introduce the two parameters € and & by
kT L?
e=—2_, s=0Z=L, (2.5)
Ay 72 L

Here the characteristic lengths L, and L, represent the
widths of the reactant (@) well in the directions X, and X,
respectively, and AV'is its depth (barrier height).

We note that in dimensionless variables the barrier
height is 1, and that the domains of attraction &, (i = a,b)
of the stable equilibria M, and M, become &; (i = a,b).
The scaled separatrix is denoted by I (see Fig. 1). The prin-
cipal frequencies of vibration », and w,, at the bottom of the
well &, in dimensionless variables, are defined by

(2.6)

Finally, note that only one parameter & is needed to charac-
terize the anisotropy in the present simple model.

2 a2 .2
Vxlxl Vx'zxz - Vx,xz |x|wx2a = 01@;.
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The deterministic dynamics [cf. Eq. (2.1) with T= 0],
in dimensionless variables, is written as

xl = - Vx, H
xy= — V. @7

For 5§ €1, we observe that there are two distinct time scales, ¢
and 8t. The relatively rapid dynamics in the x, direction,
evolves on the time scale ¢, while the slow dynamics in the x,
direction, evolves on the time scale &¢. The separation of time
scales will be employed to advantage in Sec. IV, where we
analyze the long time transient behavior of the Fokker—
Planck equation.

The dimensionless Fokker-Planck (Smoluchowski)
equation for the probability density function p of the process
[x,(8),x,(0) ] is

pi=Lp=(V, p)x, +8(Vs, P)x, + €(Prrx, + OPsx, );;
(2.8)

Near the saddle point S, assumed to be located at (0,0) for
simplicity, the potential } may be written locally as

Vi[Ax? +2Bxx, + Cx3] + - . (2.9)

We now describe the structure of the separatrix I', near
§ = (0,0). The linearized deterministic dynamics has the
form

5&'1 = — (Axl +BX2) ’

X2 - - 6(Bx1 + sz) . (2.10)
The eigenvalues of Eq. (2.10) are given by:
— — pd 2
4 (4460 3 VA—BOT 4B,

+
2.
with A, >0and A_ <0, and the corresponding eigenvectors
are given by

=27,
* T4+, /)

The saddle point condition is 4C < B2 We note that for
small §,

_B 1 ) .
~ ~ A0,
Vs ( A)’ V- (&B/A’ if 4>

1 —B) )
- ~ . ifA<0,
Ve (5B/A)’ V- ( a) A<

and
—B B
V+( ), V_.~( ), if4=0. 2.13
V6|B| veB|) ! (2.13¢)

In all cases, the direction of the separatrix I" at the saddle
point S, is determined by the eigenvector ¥_, associated
with the negative eigenvalue A_. For 4> 0, we see that as
-0 (i.e., diffusion in the x, direction is much faster than in
the x, direction), T approaches the x, axis, with an O(5)
angle between them. The fast diffusional motion (along x,)
is therefore nearly parallel to I, and crossing I essentially
involves the slow diffusional component. In contrast, for
A4 <0, theanglebetween I" and x, is O(1), and the crossing of
I' is dominated by the rapid diffusional motion. The interme-
diate case 4 = 0, corresponds to an angle which is O(1/8).

(2.12)

(2.13a)

(2.13b)
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A trajectory [x,(¢),x,(r)] that starts at a point (x,x,)
in 4 ,, hits T for the first time at a random time 7*, at a point
x (%) = £&,, x,(7*) = £,. The scaled mean first passage
time (MFPT) 7(x,,x,), from a point (x,,x,) in &, to T,
satisfies®

L*r=V, 7, + 0V, 7, +€(7, +67.,)
ing,, r=0 onl, (2.14)

where L * is adjoint to L. The MFPT is also referred to as the
lifetime of the system in & ,. The probability density of hit-
ting points (£,,£,) on T, starting at a point (x,,x,) in &, is
Green’s function p(x,,x,,£,,£,) of the boundary value prob-
lem®

L*u=0 ing,,

u=f onT, (2.15)
where fis an arbitrary smooth function, prescribedon I".

= -1

ill. THE LIFETIME AND THE DISTRIBUTION OF HITTING
POINTS

In this section we calculate the MFPT rtoreach I (the
lifetime in & ), and the distribution p of hitting pointson T".
The MFPT determines the rate k at which the product well
is populated at asymptotically long times, as the Kramers
rate

ket
27

where the factor 1/2 accounts for the fact that particles
reaching T, are equally likely to cross I' into the product
well, or to return to the reactant well &, . (As discussed in
Sec. I, this rate does not necessarily represent the time evolu-
tion of the system which is observed experimentally. These
observations may correspond to shorter time transients,
which will be studied in Sec. IV.) The rate k which we calcu-
late, depends on the anisotropy parameter 8, and thus gener-
alizes Kramers’ two-dimensional formula.

A method for treating the singularly perturbed bound-
ary value problem (2.14) for the MFPT 7, was introduced
by Matkowsky and Schuss.” Employing this method in the
form used in Ref. 10, wefind that fore<€1and 6 = O(1), 7is
given by

3.1

B B
T~M es, (3.2)
A Loy
where A [cf. Eq. (2.11)] is the positive eigenvalue of the
linearized dynamics (2.10) about the saddle point. The re-
sult in the form was first obtained by Grote and
Hynes.2"-2® In the isotropic case (5§ =1), 1, = (o?)?
and Eq. (3.2) reduces to the dimensionless MFPT corre-
sponding to the rate (1.1) according to k = 1/27.
The extremely anisotropic limit § -0 yields

i/e
ro— e if 40,

(3.3a)
8/B? = ACw,w,

TN‘)T_—_Mel/G ifA <O,
— Aw,0,

(3.3v)

and
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ﬂel/E

T~ >
dw,w,

These three results are associated with the different relative
directions of the rapid diffusional motion along x, and the
separatrix I', near the saddle point S. For 4 > 0, the angle
between the two directions was seen to be O (). In this case
the process of crossing I'" is dominated by the slow compo-
nent of the diffusional motion, so that r = 0(1/6). For
A <0, the angle is O(1), as is 7, which is dominated by the
rapid diffusional component. Finally, for 4 = 0, the angle is
O(V'8),and 7= O(1/v8).

In this calculation, we first considered the limit e<1
[leading to Eq. (3.2) ], and then § € 1. If we reverse the order
of taking the limits, i.e., we first consider § €1 and then e <1,
the analysis proceeds differently. Nevertheless, it can be
shown (Appendix) that the same result holds, i.e., the result
isindependent of the order of taking the limits. We also show
in the Appendix that in the interesting case 4 = 0, the life-
time 7 can be obtained, to leading order in &, by solving a
one-dimensional barrier crossing problem in the effective
potential ¥V *¥( y) defined by

oo
eff —
e Vi (py/e f dx e V(x, )')/e,
- o0

if4=0.

(3.3¢c)

34)

where the starting point is y = x,, and where the barrier is
located at the saddle point y = x,,. Thus in the extremely
anisotropic limit the two-dimensional barrier crossing prob-
lem is reduced to a one-dimensional problem which is ob-
tained by averaging over the fast coordinate. Note that since
for e<1, V°7( p) is essentially equal to ¥ [x( y), y] where
x( p) is that value of x for which ¥ [x( y),y] is a minimum
for a given y, the reaction path y is exactly the minimum
energy path leading from the bottom of the reactant well a,
through the saddle point, to the product well b. This result
should be contrasted with the picture of Agmon and Hop-
field® in which the reaction is dominated by motion perpen-
dicular to the reaction coordinate. As an example of the dif-
ference, consider a model where a double well potential
surface is constructed from two shifted harmonic surfaces

Ax*+ A,y
A(x—a) +A,(y—b)+AE’
Defining 6 = 4,4° + A,b> + AE, we find that saddle point
energy AV is given by

52
T4+ AbD

Vix,y) =min[ (3.5)

AV (3.6)

This is also the activation energy associated with Egs. (3.2)
and (3.3). [ Note however that the preexponential term will
be different due to the discontinuity at the barrier, of the
force associated with the model (3.5)]. On the other hand,
the Agmon Hopfield result [based on the model (1.3)], in
the fast diffusion limit [Egs. (20), (35b) of Ref. 6(a)] is
k = (k( y)) where k( y) is the Kramers rate associated with
the one-dimensional diffusional motion along the x axis for a
given y and the average is taken over a thermal distribution
in the y direction. The y dependent barrier for this motion is
easily found to be

5—Mh02
AV(p) =A =222 4 a2
(») x( e + 4,5

Taking the average of k( y) ~e ~#2¥» gver the thermal dis-

3.7)

tribution P( p) ~e ~#” yields k in the form k~e—P2"",
where
2
AV* = 5 (3.8)
2(24,a*+ 4,07

which does not agree with Eq. (3.6). This is due to the fact
that taking the fast diffusion limit in the y direction is incom-
patible with Eq. (1.3), at least in situations where the motion
in the x direction is also diffusional.

This does not mean however that the behavior predicted
by Agmon and Hopfield cannot be observed experimentally.
Such effects can dominate in the transient regime before the
asymptotically long time behavior sets in. This is discussed
in the next section.

IV. TRANSIENT BEHAVIOR

The asymptotically long time behavior, governed by the
MFPT, as described in Sec. III, may in some situations not
represent the experimentally relevant behavior, as discussed
in Sec. I. In this section we focus on the earlier transient
behavior. We observe that for small §, two time scales, fast
and slow, govern this transient dynamics. On a relatively
short time scale, local equilibrium is obtained in the x, direc-
tion within the reactant well. On a longer (but still tran-
sient) time scale, two processes occur: (i) transition over the
ridge, which is dominated by the diffusion along the x, direc-
tion, and (ii) slow diffusion along the x, direction. On this
(long, but not asymptotically long) time scale, the product
region (for each x,) is populated by what is effectively a
continuous distribution of one-dimensional fluxes along x,.
The slow diffusivity along x, changes the relative weight of
these fluxes, thus the average ridge crossing rate. This ap-
pears as a nonexponential relaxation behavior, which may,
in some cases, be the dominant contribution to the observed
dynamics. In order to describe this process mathematically,
we employ the two time method, ? to solve the dimensionless
Fokker—Planck equation (2.8). Specifically, we assume the
solution p is a function of both ¢ and ¢ ' = 6¢, in the form

p(x13x27t,596) ~po(x1,x2’t9t ')6) + 5Pl(x1,x2,t,t',f) + T
4.1)

Therefore Eq. (2.8) becomes

P80 +p)~ WV, p%) ., + €0l
+ [ (V) + (Ve D, + €05, + €030 ]+
(4.2)
The leading term p° in the expansion (4.1) satisfies
Lop°=(V,, p°)s, + €05, =p7. (4.3)

The general solution of Eq. (4.3), obtained by separation of
variables, is

— A (x>t
b

P’= 3 Pu(xux;)a, (xpt")e (4.4)
n=0

where 4, (x,) and p% (x,,x,) are the eigenvalues and eigen-
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functions, respectively, of L, in Eq. (4.3), with x, held con-
stant, and the coefficients a,, (x,,# ') are as yet undetermined.

For n = 0, we have 4, = 0 and pJ = e~ ¥*»*)/¢ while
for n = 1, 4,(x,) is essentially Kramers’ rate constant corre-
sponding to the potential ¥(x,,x,) for fixed x,. The eigenval-
ue A,, as well as the corresponding eigenfunction p] were
calculated in Ref. 13, as

A106) = A,(x;) + A, (x3) (4.5)
with
Aixy) = 28O avinre (j_gpy, (46)

2r

where AV ‘(x,) are the activation barriers along the x, direc-
tion for a fixed x,, starting from the well / (i = a,b):
AVi(x) =V [x5(x)x,] — V[x (x),%5) ]
xi (x,) (i=a,b) are the values of x; at which V(x,x,)
achieves its local minimum in well i, for a given x,, and
x5 (x,) is the value of x; at which F(x,,x,) achieves its local
maximum for fixed x,. The frequencies w; (x,) and w(x,)
are defined by o(x,)=V,, [xi(x)x,] and
@*(x;) = — V., [%5 (x2),%,], and

— WV(x,x;)/€ m(xz)

V2r

[ = xf(x]/ve 1
XJ- exp{ — *(x,)s*/2}ds + 7] .(4.7)
o

0
Pi~¢€

To find a,(x,,¢ '), we consider the next order equation
Lop'= — (V. p°),, — €2, +p7 - (4.8)
The solvability condition for Eq. (4.8) is that the right-hand

side of Eq. (4.8) must be orthogonal to 1, which is the solu-
tion of L ¢ = 0. Therefore,

f [(szpo)xz + epg,xz _P?' ]dxl = O

Employing Eq. (4.4) in Eq. (4.8), we find that a,(x,,t")
satisfies

4.9)

(4.10)

which is the backward Kolmogorov equation® for a one-di-
mensional diffusion in the effective potential (defined in Sec.
III and the Appendix), on the slow time scale ¢'. Clearly
ay(x,t’) approaches a constant value asymptotically as
t = — oo at a rate which is dominated by the 7°, which we
calculated in Sec. III. The functions a, (x,,t’') are deter-
mined from solvability conditions for p”, determined at
0( o + l).

The population in the product well can now be calculat-
ed as

eff —
eaO,x,x, - Vx; (x2)a0,x, — o, = 0 ’

p(t) ~ ff [e Ywx)/eq (x,,61)

product well

+ 08 (x1,%,)a, (x,00)e = 1= 4 - 1dx, dx,
(4.11)

where a, satisfies Eq. (4.10), and 4, and p? are given in Eqs.
(4.5) and (4.7), respectively. We note that since
A(x,,€) -0, as €¢—0 while A_,(xz,e) = 0(1) for j>2, after

long enough time the evolution of p(#) is dominated by
A (x55€).

On the fast time scale ¢, the time evolution is dominated
(for large enough ¢) by the second term in Eq. (4.11). (The
first term describes the growth of the equilibrium population
at asymptotically long times.) We observe that the evolution
on this time scale is not necessarily a single exponential, but
is rather described by a continuous distribution of rates
A,(x,,€) which correspond to the continuous distribution of
almost independent fluxes, depending on the point x,, which
cross the ridge in the x, direction. This distribution evolves
on the slow time scale &t [via a,(x,,67)] due to the slow
diffusion along the x, axis. Only at much longer times (when
all processes on the time scale ¢ have relaxed ) do we expect to
obtain the asymptotic behavior described in the previous
section.

V. CONCLUSIONS

We have extended Kramers’ theory of chemical reac-
tions in the diffusion limit, to cases where anisotropy in the
multidimensional potential surface and/or in the diffusion
tensor plays an essential role in determining the rate. Our
result, given in Eq. (3.2), for the mean first passage time 7 to
reach the separatrix, which is related to the study state rate
by k = 1/2r, explicitly depends on the anisotropy param-
eter: for §— 1 it reduces to the well known multidimensional
generalization of the Kramers® isotropic result, while for
small & it corresponds to a one-dimensional motion in an
effective potential ¥ °%, given by Eq. (3.11), along the direc-
tion of slow diffusion. As we saw, this small § limit never
leads to the large D limit of the model described by Eq. (1.3)
[Egs. (20) and (35b) of Ref. 6(a)]. That result was ob-
tained as a Boltzmann average over the position dependent
rates k(x) of Eq. (1.3), while our result is obtained as the
inverse of the MFPT to reach the barrier of the effective
potential (3.11).

In addition, we note that while the usual treatment of
Kramers’ problem is an expansion in the small parameter
€ = kz T /AV, in the case of anisotropy there is the possibil-
ity of an additional small parameter §. We have shown that
the result for both € and 6 small, is independent of the order
in which the limits are taken.

As a model for chemical reactions, the anisotropic mod-
el adds an important feature to the usual treatments of chem-
ical reactions based on the diffusion equation. For reactions
where the rearrangement leading from reactants to products
involves motion of large and small atomic groups, each hav-
ing different interactions with the solvent, the friction and
diffusion tensors are expected to be strongly anisotropic.
(Anisotropy in the structure of the wells appears because of
the intrinsic shape of the molecular potential; we have seen
that its consequences are essentially the same as that of the
diffusion anisotropy.) This may lead, as noted previously, to
acompetition between the potentially rate determining steps
of crossing the potential barrier, and diffusing in one particu-
lar direction. We have shown that in the very long time limit,
the MFPT is given by the generalization (3.2) of the
Kramers result. In this result the effect of anisotropy is pri-
marily due to the geometry of the separatrix and of the reac-
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tion path coordinate, near the saddle point. However, rela-
tively long time transients may exist and sometimes
dominate the experimentally relevant time scale. These tran-
sients may in turn be dominated by the slow diffusion pro-
cess across a ridge of the potential, which is not necessarily
the separatrix.

Such a picture has recently been used by Agmon and
Hopfield® to analyze the kinetics of ligand attachment to a
heme protein. However they analyzed such processes in
terms of Eq. (1.3). This equation may be a valid description
of a process in which diffusion along one coordinates is cou-
pled to a nondiffusive chemical step (such as an electron
transfer). For cases such as protein-ligand recombination in
solution, where all relevant motions appear to be diffusive,
Eq. (2.2) is the correct starting point. Both Eq. (1.3), and
our treatment, lead to nonexponential time evolution in the
transient regime as is frequently observed. This nonexponen-
tial behavior is associated with the “nonhomogeneous” na-
ture of the process in this regime, where the observed kinet-
ics is associated with a continuous distribution of nearly
independent fluxes [cf. Eq. (4.11)]. A recent analysis by
Agmon'* of the low temperature behavior of the CO-myog-
lobin system gives support to this picture. We note that even
though the Agmon analysis is done in terms of the Agmon
Hopfield model, the essential ingredient—the superposition
of independent fluxes—is the same as that seen in the tran-
sient regime of our present calculation.

Another feature of reactions in complex chemical sys-
tems, is the fact that when the dividing surface between reac-
tant and product wells is defined operationally by an obser-
vation (e.g., a particular spectral shift may indicate that the
system occupies only a specific part of configuration space),
the dividing surface is not necessarily identical to the separa-
trix that separates reactants from products according to the
stability of trajectories determined by the equations of mo-
tion. It is in such situations, where the mode of observation
selects a transition surface not identical to the separatrix,
that we expect the most pronounced nonexponential behav-
ior. This also makes the interesting prediction that different
kinetic behavior will be observed when different probes
(e.g., different interrogating absorption wavelengths) are
employed.

Finally we note that at higher temperatures the param-
eter € is larger so that the MFPT 7 becomes smaller and the
time evolution becomes exponential sooner.

Kinetic processes involving real biomolecules are of
course much more complicated than the simple model used
in this paper. The numerous degrees of freedom and the mul-
titude of possible intermediate configurations make a de-
tailed theoretical analysis (short of full scale simulation)
practically impossible. We believe however, that the simple
model investigated contains enough of the essential physics
of these processes, to be useful in achieving a qualitative un-
derstanding of the observed dynamics.

APPENDIX

Here we show that the results (3.3) can also be obtained
by first taking the limit § <1 in Eq. (2.14), and then taking
the limit € €1, i.e., reversing the order of the limiting proce-

dures in Sec. III. We consider explicitly the case 4 > 0 only.
For 6 €1, we expand + as

TSI AT (A1)
The leading terms 7, and 7, in the expansion satisfy

ngOEGTO,x.x. - Vx. (%1,%,)70x, =0 (A2)
and

L= —€Topn, + Vo, (X0X)70,, — 1, (A3)
respectively. Equation (A2) implies that

Tox, = eV(x,,xz)/e¢(x2) , (A4)

where ¢(x,) is an arbitrary function of x,. For the solution
of Eq. (A4) to be bounded, it must be independent of x,, so
that 7, = 74(x,) [recall that (x,,x,) is the starting point of
the stochastic trajectory]. The solvability condition for Eq.
(A3) is that the right-hand side of Eq. (A3) must be orthog-
onal to all solutions fof

jOfEGf;qx, + (Vx,f)x. =0’ (A5)
where the operator .7 is adjoint to the operator .Z ¥ defined
in Eq. (A2). Therefore

— V(x,, —_
fe Cx €[ — €70z, + Vi, (X1%2) 70, — 1]dx, =0,

(A6)
so that 7,(x,) satisfies the averaged equation
€Toxx, — Vo (X)To,, = — 1, (A7)
where 77 is an effective potential, defined by
o e Yomey (x.x,)dx,
Vefi(x,) = —= 2 (A8a)
2 2 foi - e V()c,,x,)/sdxl
or
on e= Vixum)/e dxl —e— V‘"(x,)/e. (A8b)

A sketch of VT is given in Fig. 2. We solve Eq. (A7) with the
boundary conditions

Tox, (X24) = To(Xp0) = 0 (A9)
which represent reflection at the bottom of the effective well
and absorption at its barrier, respectively. We note that the
barrier for ¥ *¥(x,) is located at the saddle point &,,. [ This

follows from the argument that leads to Eq. (A11) below.]
The exact solution of Eqs. (A7) and (A9) is given by

Veff

1 ]
Xz
X2a X20

FIG. 2. A sketch of the effective potential {cf. Eq. (3.11)].
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To(X24) =-£-J " dz e"m(”/‘f dye”" V¢ (A10)

Next we evaluate the integral f= _dx e~ "*»/¢ defining
V¥ ( y) by the Laplace method'® for each fixed y. The main

|

contribution comes from the point x, =x,(y) where
V(x,, y) has a minimum, namely,

V, (x,) =0
Hence

(All)

el e

xx, [x,(z),z] €

1
T/ Vx,x (X100%20) € 7€

Ver [x:103), ¥] xp{ Vix,(p)y]l — VIix (2),2]

]dydz

(Al12)

\/(dz/dyz)V[xl(y))y”y=xm "\/(dz/dyz)V[xl(y)’y]|y=x2a.Vx,x,(xla’x2a) '

To derive Eq. (A12) we recall that (i) contributions to
the asymptotic form of the integral, from end points of inte-
gration, are one half the contributions from interior points,
(ii) the barrier height in the scaled variables is 1, and finally
(iii)

x,(xy) =%, (i=4a0). (A13)
The second derivatives are calculated as
d? ,
T V[xl(.V):Y] = xx, Vxx,xl + I/)rzx2 ’
(Al4)
where, by Eq. (A11),
-V
w =B _ = T (A15)
dy Ve,
so that
d? -V
—VIx ] =74V . Alé6
p: [x,(»), ¥] V.. - (A16)
Now, setting Y = X,o, We obtain
AC — B?
e V5 My ey = == (A17)
and at y = x,, we obtain
d? @3 w?
—Vix R ey, = Al8
dy2 [x,(») .V]|y e me (%1000 ( )

Employing Eqs. (A17) and (A18) in Eq. (A12) we obtain

r

Eq. (3.3a). The cases 4<0 can be handled in a similar man-
ner.
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