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We study the diffusion (and conductivity) associated with the random walk of noninteracting
particles on a disordered lattice characterized by bond disorder, temporal rearrangement, and
spatial correlations. This paper extends previous works on dynamic bond percolation processes

to situations where spatial correlations in the rearrangement process are important. Many
bond effective-medium theory is used to obtain the effective diffusion coefficient D ¢ (@) in
such systems. The resulting D (@) depends on the frequency through combinations of the
form @ — i/7; where 7; are characteristic relaxation times associated with the rearrangement
process. We analyze in detail a model combining single bond renewal with a two bond
exchange process. The resulting DC (w = 0) diffusion coefficient shows a new percolation
threshold for the bond exchange model (in the absence of single bond renewal which
eliminates the threshold altogether), and a crossover between the different limiting behaviors is
seen as the different kinds of renewal process are switched on and off. Implications for ionic

transport in polymeric ionic conductors are discussed.

I. INTRODUCTION

There has recently been some interest in transport pro-
cess in dynamically evolving disordered systems.'™'* The
work done by Druger ez al.>~® was motivated by the applica-
bility of such models to carrier motions in polymeric ionic
conductors where experimental results show strong cou-
pling between the ionic mobilities and the polymer segmen-
tal motion. Works of other groups were related to diffusion
in mixed particle systems®'? and to carrier mobility in water
in oil microemulsions."'*'2

Druger, Ratner, and Nitzan (DRN) have recently con-
sidered a bond percolation model in which the entire envi-
ronment is fluctuating so that spatial correlations are disre-
garded. This was achieved by reassigning the bond
probabilities at random intervals determined by some re-
newal time distribution. Harrison and Zwanzig® (HZ) have
considered a different model were the (spatially and tempor-
ally uncorrelated) dynamics of a single bond is used as an
input. Remarkably the exact solution of the DRN model is
identical to the HZ solution in the effective-medium approx-
imation (EMA). This result, for a Poisson distribution of
renewal times, is

D(w, A) = Dy(w — i), (1)

where A = 1/7is the inverse mean renewal time in the DRN
model or the characteristic rate of switching between the
open and close bond configurations in the HZ model; Dy (w)
is the frequency dependent diffusion coefficient in the static
disorder case and D(w, A) is the corresponding coefficient in
the dynamically disordered system. In the DC (v = 0) limit
Eq. (1) yields

(,,2)0 ren
2dr

where (), ., is the mean square displacement in the static
network during one renewal interval of the corresponding
dynamic network, averaged over the renewal time distribu-

D(0, 1) = , (2)
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tion, and where d is the Euclidean dimensionality of the (as-
sumed isotropic) system.

Similar results where obtained, using somewhat more
heuristic scaling arguments, by Grest et al.,'"® who have con-
sidered the implications of the result (2) near the static per-
colation threshold. More generalized treatments in this spir-
it were given by Kerstein and Edwards'' and by Bug and
Gefen.'? The latter authors have studied the implication of
an assumption which relates the cluster rearrangement time
to its size with an undetermined scaling exponent. A similar
idea has been recently examined in a different framework by
Hilfer and Orbach.'?

The simplicity of the result (1) makes it a potentially
very useful tool, in particular because it generalizes all avail-
able analytical results for the static bond percolation prob-
lem'*"" to the dynamic percolation regime. It is clear, how-
ever, that Eq. (1) cannot hold under all circumstances, since
it relies on the assumption that the network rearrangement
(or “‘renewal’’) occurs on a single timescale 7 without spatial
correlations. It is of interest to explore other simple models
where this arrangement is inherently characterized by more
then one timescale and by spatial correlations.

The purpose of the present paper is to generalize the HZ
effective medium theory® in this direction. First (Sec. IT), we
generalize the usual model of random network, with bonds
either open for transfer or blocked, to the case where a bond
has many states (rather than two), each corresponds to a
different hopping rate of the walker. The probability for a
bond to be in a particular state evolves in time according to a
characteristic rate matrix. It is natural to consider such a
model in view of the complexity of realistic fluctuating disor-
dered systems. For example, an ion moving through a con-
ducting polymer network will experience different transition
rates, in fact a continuous spectrum of rates, depending on
the instantaneous network configurations.

Second, we develop a general many bond EMA formal-
ism for the dynamic percolation (Sec. III). Many bond
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EMA’s have already been formulated for static random net-
works'™'? and have been used to improve the single bond
EMA and to accomodate correlations in the bond network
(such as those that exist in site percolation'®). The dynamic
many bond EMA can be used to study models with spatial
(bond-bond) correlations in the network rearrangement
processes, where the correlations are assumed to be localized
within repeating lattice units (clusters). Although this as-
sumption is not generally valid, solution of such models may
also serve to estimate the corrections to Eq. (1) in more
general cases.

Our specific model with local correlations, the two bond
exchange process, is studied in detail in Sec. IV. In contrast
to the uncorrelated dynamics which leads to Eq. (1) and
which implies that no percolation threshold exsists in the
DC (@ =0) limit, locally correlated rearrangement pro-
cesses only shift the threshold to lower p (bond probability)
values. This is intuitively clear as such processes are insuffi-
cient to insure connectivity in the system. The complete de-
pendence on p and on w and the crossover from one type of
behavior to another (within the EMA ) as we switch on and
off the uncorrelated and the locally correlated rearrange-
ment processes are discussed in Sec. IV. One surprising re-
sult associated with the two bond exchange model is the oc-
curence of a very shallow minimum in Re[D(@)] at low
frequencies and above the static percolation threshold.

The HZ formalism,” which is the basis of the present
work, starts with a stochastic master equation for the walker
probability P; () to be at site / at time #, which can be written
in the vector form

%P: ~WP=— 3 0,(1)V,P, (3)
where a corresponds to a bond (Z/) between the nearest-
neighbor sites / and j characterized by a time dependent hop-
ping rate o, (#) (which is assumed to be a stochastic vari-
able) and where

Vo = (|0 — | ] = (s (4)
P=73 Pli). (5)

Each bond is assumed to have two possible states with corre-
sponding hopping rates o, =0, or o, =0, (HZ take
0, =0, o, = 1). The probability ¢, (o, t), that the hopping
rate associated with bond « at time 7 is o, is assumed to
evolve in time according to

i ¢a(aa’t):l_i(—p q) ¢a(aa’ t) (6)
at ¢a(ab! t) B T P _q ¢a(aba t)

or, in a more compact notation
%¢a(aa’t) =‘Q'a¢a(0a’t): (N

where the operator (1, is defined by Eq. (6). p and ¢ are the
equilibrium values of ¢,(o,) and ¢, (o,), respectively,
P+ g = 1. The joint probability distribution f(P, ¢, t) to
find the walker distributed according to P and the bonds in
the collective state o = (0, 05, . . .,0,, ...) at time ¢, satis-
fies the Liouville master equation

a d

—f=——(W-P Qf, 8

8tf 3P ( )+ Qf, (8)
where, since all the bonds fluctuate independently

Q=3 Q,. (%9

To avoid confusion, vector and matrix notations are used for
quantities in the site space (such as P and W), while the
operator () which operaters in the bond state variables o is
written as a scalar, but should not be confused as such.

Equation (8), which is still exact within the model, is
the starting point of the HZ treatment. Our present general-
ization considers many states for each bond (Sec. II), and
many bond clusters as basic lattice entities (Sec. III). In
both situations, the general forms of Egs. (3)-(9) is con-
served so that more general EMASs can be carried out. Sec-
tion IV is devoted to the two bond exchange model, which is
a special case of the formalism of Sec. III.

Il. MANY BOND STATES

Our starting point is again Eqs. (3)-(5), however each
bond can be in many possible states, each corresponds to a
different walker jump rate ¢. The probability ¢, (o, t) that
the bond « is in state o at time ¢ is taken to evolve in time
according to the master equation.

%;ﬁa(a, =Y Q,(0,0)4,(0,1)=Q,¢,(0, 1),
o
(10)

where the sum is over all possible o values. Repeating the HZ
procedure leads again to Eq. (8) for the joint probability
distribution f(P, g, ¢) with W and € defind in Egs. (3) and
(9). Defining the partial average of P

P(o,t) = (dPPf(P,q, 1) (11)
leads to

%P(c, t)y= —WP(a,t) + QP(0, 1). (12)
The initial condition for f(P, o, t) is taken to be

f(P,0,t=0) =6(P—Py)p(0), (13)
where

P(o,t=0) =Pyp(0) (14)

with p(@), the equilibrium distribution for collective bond
state, given by

p(o) =[] p.(0.), (15)

wherep,, (o, ) is the equilibrium solution of Eq. (10), name-
ly
ZQa(a, o)p,(d)=0. (16)
4
(We may further assume the existence of the detailed bal-
ance condition but this is not needed in the following proce-

dure.) Taking the Laplace transform (#—z) of Eq. (12)
leads to

P(o, z) =g(o, 2)°P,, 7
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where g(@, z), the partially averaged Green’s operator, is
formally given by

g(0,2) = [21 + W(o) — Q1] 'p(0). (18)
(011 is a direct product of a unit operator in the site space,

and the operator  which operates in the space of the
bonds.) The important quantity is the full average of P

(P(2)) = Y P(0, 2) =g(2)P,, (19)
where g(z), the fully averaged Green’s operator, is

g(z) =) g(o,2) (20)
and can be written in the form

g(z) =[z21+ W, ()], (21)
where

W, (2) =¢(2)Y V, (22)

while the effective medium rate 1(z) is not yet determined.

Exact solution for #¥(z) is difficult and therefore the
EMA is used. First one notice that an effective medium char-
acterized by W =W, and Q) = 0 will automatically yield
Eq. (21). Then, in the (single bond) EMA, one introduces a
second medium consisting of one fluctuating bond imbedded
in an effective medium, explicitly written as

W=4¢@2) ) V., +0o,V, =W, + [0, - %]V,
a#l
’ (23)
Q=0 (24)

The effective rate is then determined self-consistently by us-
ing Egs. (23) and (24) in Eq. (18) for g(o, z) and perform-
ing a trivial summation in Eq. (20) [using also Eq. (15)],
which leads to the (effective-medium) condition

[21+ W, ()] =ZI‘U‘ (25)
with
I, =[21+W,, + (0, — PV, — Qll]_‘pl(al),
(26)

where the sum stands over all the possible states of a single
bond.

From now on we suppress the bond index 1 and rewrite
Eq. (26) in the form

[214+ W, + (¢ —¢)V]T, = Q(g,0)T, =p(o)l.
o
(27)

Reduction of this equation may be achieved by using the left
eigenvectors of the o space operator ( = ,)

ycPa,o)= -4 C¥: A,>0. (28)
4

In particular the eigenvalue A, = O corresponds to the eigen-
vector C,(0) =1 for all 0. Summing Eq. (27) over all o
(after a trivial multiplication by C ) and using Eq. (25)
and the identity

Y plo) =1,yields ¥ (o —)V-T, =0. (29)

Multiplying Eq. (27) with any other C  and summing over
o similarly yields

SCPUE+ANI+ W, + (0 —hV]T, =0 (I#0),

(30)

where, in addition to Eq. (28), we have used the orthogona-
lity relation between left and right eigenvectors of different
eigenvalues

S CPp(o)=0 (I#£0).

Equations (29) and (30) are equivalent to Egs. (22) and
(23) of HZ.?

Next we multiply Eq. (30) from the left by V-H‘” where

30

HY =[(z+Ai)1+W, ]! (32)
and use the fact that

VH®V=phV (33)
where A, is a scalar. This leads to

ZC,‘,”[1+(0—¢')h1]V'Fa=0 (1 #0). (34)

(23

Equations (29) and (34) have a nontrivial solution (such
that V-T", are not all equal to zero) provided that the deter-
minant of the coefficients of V-I', in these equations vanish-
es. This is the required equation for the effective medium
rate ¥(z). While we shall not attempt to solve this equation
for a specific model, we note that the result for (z) depends
on z only through the quantities #; which in turn depend on z
through the combinations z + A,;. It is seen that unlike in the
DRN model or in the original HZ model which are charac-
terized by a single environmental relaxation rate 4, the diffu-
sion coefficient depends, in this case, on all the relaxation
rates A, (eigenvalues of the o space operator (2, ) and cannot
be obtained from a simple analytical continuation of the fre-
quency dependent diffusion coefficient for the static medium
case. It can be however evaluated by solving the secular
equation associated with Egs. (29) and (34). A similar pro-
cedure will be used when we next deal with the evolution in
time of clusiers of bonds for which a particular model will be
discussed.

{lIl. CORRELATED BOND FLUCTUATIONS BY MANY
BOND EMA

As discussed in Sec. I, a shortcoming of both the DRN
and the HZ models is the neglect of spatial correlations
between the on/off switching of the bonds. In some physical
situations, e.g., in systems where the potential barriers for
hopping fluctuate randomly due to random motion of an
underlying lattice characterized by short range correlations,
this may be a realistic assumption. However, in most phys-
ical applications of dynamic percolation models, the phys-
ical picture is that of moving barriers or, equivalently, mov-
ing transport channels. Thus, when a particle A is moving on
a network together with other particles B, the network as
seen by A is disordered, with sites containing B unavailable,
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and the positions of these blocked sites changes in time as the
B particles move. If the number of B particles is conserved,
this time evolution of the site availability is obviously corre-
lated in space, with one site opening as a neighboring site
becomes blocked. A similar situation exist for an ion moving
through a polymer network where opening and blocking of
pathways result from polymer segmental motion.

A simple two dimensional model that take such spatial
correlations into account is depicted in Fig. 1. Here the 2d
square network is made of correlated pairs of bonds. Such a
pair (e.g., @ and £ in Fig. 1) can be in four different states:
both open, both blocked or (two possibilities of) one open
and one blocked. Correlated dynamics is introduced by pos-
tulating a rate process which switches between the two latter
states as indicated by the arrows in Fig. 1. Physically this
amounts to a double sided gate where one side is open when
the other is closed and vice versa. It mimicks a picture of a
polymer segment which, while fluctuating between two con-
figurations, can block one transport channel or the other.

More generally, we consider a lattice which can be sepa-
rated into identical finite network units (clusters) of n bonds
(n =2 in Fig. 1). Denote by o, the vector (o,,, 7,,, ...,
o,, ) whose elements denote the state of the bonds within the
cluster v (each bond can have several states as in the pre-
vious section). The probability f, (e, ¢) to find the bond
configuration o, in the cluster v evolves in time according to

2 11001 = 3 0,00, )1, (01, N =0 S0, D).
” (35)

Thus, the different network units are assumed to evolve in-
dependently. If the cluster is large enough so that the average
residence time of the walker within a single cluster is large
relative to all characteristic timescales associated with the
cluster rearrangement process, this assumption is of no con-
sequence. The state of the whole bond network is given by

f(o.’ t) = va(o.v’ t)

with the time evolution

(36)

N

FIG. 1. A schematic representation of the two bond exchange model. The
arrows denote the allowed exchange processes.

—g;f(o, H=0o,1); Q=Y Q,. (37)
The random walk itself is described by Egs. (3)—(5).
Applying the HZ formalism result again with Egs. (8),
(11)-(22); the only difference from previous sections is the
new definition of the bond evolution operator (). The EMA
is invoked now by introducing a medium consisting of one
fluctuating cluster (v = 1) imbedded in an effective medium

W=4(2)3 Z Vie + Y 01aVia

vEl a=1 a=1

(38)

(the first index refers to the clusters and the second is the
bond index within a cluster) and

Q=0,. (39)
0, is an element of the vector o, which describes the state of
the fluctuating cluster v = 1. We can write Eq. (38) in terms
of the effective medium matrix W,, Eq. (22)

W= wm + Z (ala - ¢)Vla’ (40)

a=1

Using Eqs. (39) and (40) in g(o, z) [of Eq. (18)] and per-
forming a trivial summation in Eq. (20) leads to the effec-
tive-medium condition
[zl+Wm]_‘=zF(,', (41)
where the sum is over all possible values of the vector o,

namely over all possible configurations of cluster v = 1, and
I, is

o,

n 1
r, - [zl Wt S (01— Vi — nll] pile).
a=1
(42)

This equation is very similar to Eq. (26). Note however the
differences: in Eq. (26) p, (0,) was the equilibrium probabil-
ity that the bond 1 is in state o,. Here p, (o, ) is the equilibri-
um probability that the network cluster 1 is in state o,
namely that the # bonds belonging to that cluster are in
states {0, },a =1, ..., n. InEq. (26) the operator £}, oper-
ates in the space of state of bond 1 while here it operates in
the space of states of all bonds belonging to cluster 1. The
solutions of Egs. (41) and (42) proceeds along the same
lines as in the previous section. We drop the cluster index 1
and rewrite Eq. (42) in the form

[zl +W, + z (o, — ¢)Va]-I‘,,I

a=1

- Q(o,0")T, =p(0)l. (43)
Then we multiply by the element C {” of the / th left eigenvec-
tor of the operator 2, which corresponds to eigenvalue — A,
[4,>0; cf. Eq. (28)] and sum over all 0. Using also Eq.
(41), the identity

Y plo)=1,

and (an equivalent form of) the orthogonality relation (31)
we get

(44)
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Z[ E (0, —w)va]-r,=o (45)

ola=1

and, forA;, =0

3 COlG+HAN+W, + 3 (0. — ,/,)va]-r., =0.
pe a=1
(46)

Equation (45) corresponds to the zero eigenvalue of ( [cf.
Eq. (28)]. If N is the number of different vectors ¢ [and
hence the order of the matrix Q(o, ¢')], then there are
N — 1 equations (46) corresponding to A; >0, and N equa-
tions altogether (when each bond has only two states
N=2").

In order to extract from Eqs. (45) and (46) an equation
for the effective medium rate ¥(z) we multiply Eq. (45)
from the left by (g| — (7|, where 8 = (gr) in any bond with-
in the cluster under consideration. Denoting

o=l — (jD)T, (47)

[I'S is a left vector in the site space and a = (ij) is the bond
index] leads to

n

S > (0, —¥)Ag TG =0 (48)
o a=1

with
Ay, =6, +6,—6,—6,. 49)

Similarly, multiplying Eq. (46) from the left by

({g| — {(r})’H'” where

HO = [(z+A)1+ W, ]~ (50)
yields

Scot+ S (0, —hKE rz] =0, (I0),

7 o (51)
where

KQ=HP+HP _HP —HP. (52)

Equations (48) and (51) form a closed set of equations for
the unknowns I'2. There are n-N unknowns (where # is the
number of bonds in the characteristic cluster and N is the
order of }). The number of available equations is the same
because we have a set of N equations for each of the n possi-
ble choices of the bond £ = (gr).

To set a non trivial solution for I'? the determinant of
the coefficients in Eqs. (48) and (51) should vanish. The
resulting equation is the EMA equation for 1 (z). This equa-
tion contains matrix elements of H”. These however can be
written explicitly in terms of the desired . Since H” has the
Green’s operator form, we find (see also Appendix A)
G;(¢))

[¢)
HP = — 2210,

(53)
where G (¢) is the lattice Green’s function, defined by’

(C,, +€)Gy — %ij= — 8 (54)
el

where {i} denotes the group of sites which are nearest-neigh-

bors to i and where C,,,, is the number of these nearest-neigh-

bors. ¢, is given by

z+ 4,
€= .
/
Explicit expressions for G; are available for simple lattices
[see Eq. (A9) for a simple cubic lattice and Refs. 17 and 20].
In the single bond EMA the cluster is made of one bond
and Eqs. (48) and (51) reduce to

(55)

Slo—Ppri=0 (56)

2Cf,”[1+(a—¢)h,]l‘§=0, (57)
where

h,=K,§2=2(Hflf,’—Hg’ (58)

Equations (56) and (57) are identical to Egs. (29) and
(34), so the many-states single-bond EMA is recovered as a
special case.

For the sake of completeness we discuss the HZ model,
defined by Eq. (6), in detail. When each bond can have only
o = 0,1 Eqgs. (56) and (57) reduce to

YT~ (1 -9 =0, (59a)
p(1—yhTy—qll+ (1 —PAIT, =0. (59b)
To get Eq. (59b) from Eq. (57) we first find C, (o =0,1),

the coefficients of the left eigenvector of the bond evolution
operator with non-zero eigenvalue (which is 1/7), from

—p/T q/r)
e

(Co C) p/T —q/T
namely C, = p, C; = — ¢. Equations (59a) and (59b) are
identical to Eqs. (22) and (26) of HZ.° We have thus recov-
ered the HZ result as a special case of our formalism. The
condition for Egs. (59a) and (59b) to have nontrivial solu-
tion is

1
= '—;(Cm C[)y (60)

p(1—¢)(1 —hy) —qp(1 + h— hyp) =0. (61)
Using, for any nearest-neighbors i, j [cf. Eq. (A11)]

Gij—Gii=—1--—€‘g-, (62)

Con
where
= — Gy (63)

we get [using Egs. (53) and (58)]

h=K,, =%[1 — ()] (64)
with [cf. Eq. (55)]

€= z+ (1/71) (65)

¥
and with
2
= , 66
P C (66)

nn

the EMA percolation threshold. Together with Eq. (61),
this finally leads to the result (expressed in units of the walk-
er bare hopping rate)

P — P +pceg(€)

. (67)
l _Pc +pc€g(6)

v=
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(a)

,Q

FIG. 2. Sites and bond labels
for a specific connected pair in
the two bond exchange model.
(a) shows the actual model dis-
cussed in Sec. IV. (b) shows an
alternative model that leads to
a slightly different dynamics.

[ =]
e OF

The limit 1/7 = 0, namely € = 2/ in Eq. (67), is the stan-
dard frequency dependent (with z = iw) EMA result [see,
e.g., Eq. (109) of Ref. (17)]. For z+ 1/7-0 (e-0), the
static percolation DC result®! ¢y =p —p./1 —p, (p>p.) is
recovered, while for z + 1/7— w [€— « and therefore
€g(e) - 1] we get ¥ = p, which is the expected exact result.

We now turn to the two bond EMA where the cluster is
]

3789

formed from two nearest-neighbor bonds. In the indepen-
dent bond fluctuation (HZ) model this calculation leads to
an improved EMA. For dynamic percolation processes this
theory enable us to treat correlated bond fluctuations of the
kind depicted in Fig. 1.

IV. CORRELATED TWO BOND MODEL

We consider a particular situation where the lattice is
constructed from distinct identical two bond clusters, as the
pairs connected by arrows in Fig. 1. We focus on one such
cluster, Fig. 2(a), which contains the sites 0, a, and b and the.
bonds a and S. Each of these bonds can be in two states, o,

=0,1 (4 = a, ). The bond dynamics is assumed to occur
independently within each cluster and is described by

_f(a-ay Uﬂ’ t) - Z z Q(Ua, aﬁ;

0,=0,105=0,1

«r O8)

Xfog, 0p, 1) (68)
so that the operator {2 forms a 4 X 4 matrix. In particular we
shall consider the following explicit form of the bond evolu-
tion

£(0,0) — /7 q/T a/r 0 £(0,0)
alrao) [ e —/r+1/0) 1/6 g/t £(1,0) )
ar\ fo, ] p/T 1/6 ~(U/r+1/0) g/t fon )

ALD) 0 p/T p/T —2q/7] \f(1,1)

wherep + g = 1. For 8 ! = Otheevolution equation (69) is
just the independent single bond on—off switching process
considered by HZ. For 7~ = 0 this equation describes the
bond rotation depicted in Fig. 1. The equilibrium solution
[Qp(0y, 5,) =0] of Eq. (69) is p(0,0) = ¢ p(1,1) = p?
andp(1,0) = p(0,1) = pg, corresponding to a random bond
structure with probability p for an openbondandg=1—p
for a blocked one. The left eigenvector and the correspond-
ing eigenvalues of the matrix () are

|
In accord with Eq. (69) we shall use the notation (C {2,
C{), C, CV) for the elements of the vector ¢!”.

With the vectors ¢'” and the eigenvalues A, explicity
known and with the appropriate matrix elements H {” as
sumed known [cf. Egs. (53)-(55)] we can write Egs. (48)
and (51) explicitly for the present case. As discussed after
Eq. (52) there are altogether eight equations for the eight
unknowns I | (u=a,B; 0,0,=00, 10,01, 11), how-

ever, by symmetry we have

c@=(1,1,1,1); A4,=0, (70a)
1 ’ re, =I?; o=0,1,
=(-2p,9—p,9—p 29); /11'—'7: (70b) (7D
1 2 LG = I-“1;0; I = rgl
?=(0,1,—1,0); A,=—+=, (70c)
T 0 so only four equations for (say) T3, (00,
2 =00, 10, 01, 11) are needed. These are obtained in Appen-
B _(_ 2 — 2. =
= (—P\r3.p4: =) 4 r (70d) dix B. We get (wtih the superscript @ on I' omitted)
|
-9 1—4¢ 4 -9 Loo
2p(—1+ay) (@—-pll+a(l—-P] (@—p)(A—a) 2g[1+a,(1—9)] Fol_o (72
0 14a,(1—19) — 14 a9 0 | N B
(—14a)  pg(1+as(1—9)) pq(1 — az3h) —¢[1+a;(1-9)}/ \I,,
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or compactly
MTI =0 (73)
with M being the matrix in Eq. (72) and where
a,=3HP-4HLP+HY; 1=1,3, (74)
a,=H®» -HP. (75)

The effective medium hopping rate ¥(z) is obtained from the
requirement

det(M) =0. (76)

This equation has more then one solution and the correct
solution is identified as the one which approaches the correct
limit [the single bond EMA result, Eq. (67)] for 8 ~'-0.
The resulting implicit equation for ¥(z) is given by Egs.
(B13) and (B14), and the solution for this equation was
obtained numerically. Noting, however, that the single bond
EMA result is linear in the bond probability p [cf. Eq. (67)]
and can be regarded as a first order expansion near p =1
(i.e., in powers of ¢ =1 — p), we search for a similar ap-
proximate solution by expanding #(z) up to the first order in
g. This will enable us to study the dynamical bond exchange
effect within the same accuracy as the single bond EMA
solution. For the 2d square lattice this yields?

p=1-— 24 , (7
B(e,) — B(e,) + 1+ €,8(€y)
where
B(e) =g(e) + G, (€) (77a)
€=Z+(1/T). P =Z+(1/T)+(2/0) (77b)

1 ’ 2
Y ¥
and where g(€) and G, (€), defined by Egs. (54) and (63),
are explicitly given by [cf. Eq. (A9) with d=2,
= —G((0,0), G, =G(1,1)]

g(e) =_1_f°° dtexp(—-Zt—-l—et)I(z, (1), (78a)
2 Jo 2v

G, (e) = —lJ’ dtexp(—2t——l—et)v1f 1),
2 Jo 2

(78b)

where I, (¢) is the modified Bessel function of order m. Note
that Eq. (78b) holds for the particular geometry of Fig.
2(a). Note also that in Eq. (77): (a) all timescales, namely
7,0, v~ ' and 27!, are expressed in units of the walker bare
hopping time (which was omitted from the beginning for
convenience), and (b) the eigenvalue 2/7, which appears in
the complete solution {Eq. (B13)], does not appear here.
The following limits can now be examined:—For 6 ~' -0
(bond exchange kinetics frozen) we have €, =€, = €. Eq.
(77) reduces to the HZ result Eq. (67) with p, = 1/2, the
threshold for a square lattice.—Forz + 77! — o0 (€;, €, 0,
hence B(¢,), B(¢,) -0 and €,g(¢€,) —1) we have that, for
any value of 6, ¢¥ = p, which is the expected exact result.—
For 8 ~'- (6, ) Eq. (77) takes the form

g=1— 2q .
B(e)) + 14 €,g(€))

Considernowthecasez + 7~ ! >0while @ ~ !> 0. Thisis
the DC limit in the absence of bond renewal but with a bond

(79
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exchange process of the type shown in Fig. 1. Using®
B(e=0) = 1/mand eg(€) -0 for e»0in Eq. (77) yields
2q 1 1
=1~ ; P>—— —.
4 I+/r—Bop) *72 2x
This equation implies a threshold at p, =1/2(1 —1/
m) =0.341 for any @ ~' > 0. Thus the DC percolation thresh-
old is lower in the presence of bond exchange, as intuitively
expected. In the limit 8 ~' - o, i.e., infinitely fast bond ex-
change, Eq. (80) reduces to

jo1-_2 11

1+/7 P72 2n
from which the threshold is more readily seen. Eq. (81) de-
scribes also the DC conductivity of a static network for
which each pair of bonds [Fig. 2(a)] has the probabilities
2pg for bond transition rates (1/2, 1/2), p for (1.1) and ¢*
for (0,0), since infinitely fast bond exchange implies a time
averaging of the bond rates.

Our results for the (2d) square lattice for ® = 0 are
summarized in Figs. 3-5. These figures (except Fig. 5) are
based on the numerical solution to Eq. (77), while in Fig. 5
we compare them to solutions to Eq. (B13), which includes
small corrections (valid far enough from the threshold) due
to second order (two bond) EMA. Figure 3 show the de-
pendence of the effective medium hopping rate 1 on the frac-
tion of available bonds p for z= 7! = 0 and for different
values of the bond exchange rate  ~'. For @ ' = 0 ¢is (al-
most) a linear line going to zero at p_, = 0.5. Deviations
from linearity (seen in Fig. 5) are barely observed on this
plot. For  ~! > 0 ¢ vanishes at p,, ~0.34, however, if @ ~'is
much smaller then one, deviations from the regular EMA
result are considerable only for p < p,,. As p approaches the
P., threshold we see a crossover behavior towards p,, . For
6 15 « the ¥(p) function again becomes (approximately)
linear. A similar crossover behavior to p, = 0 occurs when
the independent bond renewal process is switched on,
7~ 1> 0. The full DC behavior is seen in Fig. 4.

The higher order (in ¢ =1 — p) corrections improve
the results far enough from the percolation threshold (Fig.

(80)

(81)

EFFECTIVE RATE

FIG. 3. DC effective-medium rate for the bond exchange process alone, for
different values of exchange rate 1/6. 7=! = 0 in all cases. The results are
obtained from a numerical solution to Eq. (77). All rates are in units of the
primitive bond hopping rate.
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FIG. 4. DC effective-medium rate for the combined process, renewal and
exchange, obtained from Eq. (77). Filled squares: 1/7=0.1, 1/6=3.0;
filled triangles: 1/7 = 0.1, 1/8 = 0.025; open squares: 1/7=0, 1/6=3.0;
opentriangles: 1/7 =0, 1/6 = 0.025. The lines marked by open squares and
open triangles are the same as in Fig. 3.

5). From Eqgs. (B13) and (B15) we get in the static, DC
limit (77 '=0"'=2=0)

b=1—2g— 8¢+ 0(g®); 6=m(l —2/7)>=0.151.
(82)

The very small curvature of ¥(g) implied by Eq. (82) (and
seen in Fig. 5) can be actually seen in numerical simulations
above the percolation threshold.?! The corrections are larger
in the semistatic, # ~'— o limit, where, from Egs. (B13)
and (B16), we similarly find

29 2 3
Y [P, S 0(3*);
¥ Ty ng9° + 0(g*)
1—1/17)3
=l —=") ~0.434. 83
g "(1+1/1r (83)

However, as is well known, the lowest order (or the single
bond) EMA result spariously gives the exact threshold for
the static 2d square lattice bond percolation, so the second
order (twobond) EMA result near p,, is actually worse then
the first order one. It is therefore not obvious that the full

1.0
o A
g e e Eq.(77) -
o e——s a—a Eq. (B13) V4
=1 //“‘
> e
= 05+
= ’
&) g /(
E e
= /" 75/
e /‘ 4
= L R/
o2 i
g ‘,‘/
0.0 ¥ a t t
0.3 0.5 0.7 0.9

FIG. 5. Comparison between the full two bond EMA results [Eq. (B13)]
and the O(g) results [Eq. (77)] for the DC effective-medium rate. The
triangles and the dashed-dotted line correspond to the static case (1/7
= 1/6 = 0), and the circles and the dashed line are for the dynamic case
with 1/7=0.1; 1/6 =0.25.

two bond EMA result, Eq. (B13), is better for all p values,
then its linearized form even in the dynamic situations. The
qualitative behavior in both cases is the same.

The frequency dependence of Re D(w) [ = Re ¢(iw) in
our reduced units], the real part of the diffusion coefficient,
is displayed in Figs. 6-8 for different values of p, 4, and 7.
Comparing (for a given p) the dependence associated with
different values of 8 and » (Figs. 6 and 7), we see that the
large @ behavior (o> 6 ~', 77 !) is identical, while the small
@ limit is largely that characterized by the DC behavior (see,
however, Fig. 8). The transition from the small to the large ®
behavior is sensitive to the particular system. An unexpected
result obtained for the two bond exchange model (in the
EMA) is a very shallow minimum seen at low frequencies
(Fig. 8). Although this result is based on the solution to Eq.
{77) and not to Eq. (B13), we have found that the minimum
vanishes very slowly as p—1 and persists even for
g =1 — p = 1072 where the ¢* corrections should be negli-
gible (compared to the minimum depth which is ~107%).
The minimum does not disappear for 8 ' - «, suggesting
that it exists also in the static correlated bond model ob-
tained in this limit, at least in the EMA. The minimum
smears out and disappears, however, as 77 lincreases from
0. We note that an apparently general argument due to Kim-
ball and Adams®® suggests that this is perhaps an artifact of
the EMA. Hilfer and Orbach'? have suggested that a similar
effect may occur in some other correlated dynamics situa-
tions, although below the percolation threshold.

The results discussed above are for a square lattice and
are based on the repeating two bond clusters of the kind
shown in Fig. 2(a). Obviously other lattices in 24 can also be
built from (various kinds of) two bond clusters. A simple
alternative for the square lattice isshown in Fig. 2(b). In this
case [by Eq. (A9)]

0.60

" 0.50

RE(D)

040

0.30

LOG(w)

FIG. 6. The real part of the AC diffusion coefficient plotted against the
frequency for p = 0.6 and for different values of the renewal and exchange
rate parameters. (a) 1/6=0.5 1/7=0.5; (b) 1/6=0 1/7=0.5; (¢)
1/6 = 0.5 1/7 == 0. Note that in these dimensionless units ¥(iw) and D{w)
are the same.
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FIG. 7. Same as Fig. 6 but for p =0.4.

G, (€) = ——l—fw dtexp( —2t— iet)lz(t)lo(t).
2 Jo 2
(84)

This leads to'® B(e =0) = 1 — 2/7 so that, by the same
analysis as above, p,, = 1/7~0.318 for this case. The quali-
tative behavior depicted in Figs. 3-7 is unchanged.

Finally, we note that the n bond EMAs discussed in Sec.
ITI-IV give successively better approximations (as » in-
creases) to the disordered transport problem both in the
static and in the dynamic situations. Thus, the result (1) for
the HZ model is obtained in the single bond EMA. The for-
malism described above implies that the  dependence of the
exact D(w) for the HZ model enters through infinite num-

0.567 ‘ ; ,

0.563

T
|

T
1

0.559

RE(D)

0.555r- 7

T

0.55I

| | |
O 547O.O 02 04 06 08

w

FIG. 8. The real part of the AC diffusion coefficient [obtained from Eq.
(77)] at low frequencies, for p = 0.75, 1/6 = 0.5, 1/7=0.

ber of terms w — id,, where A,, =m/7 (m=1,2,...) are
the eigenvalues of the infinite order transition matrix.?* Yet,
for p close to 1 as well as for large @ and/or 7', Eq. (1)
should be an adequate approximation.

V. CONCLUSIONS

In this paper we have examined within an effective me-
dium theory the implications of bond renewal and bond ex-
change dynamics on the diffusion of a particle in a random
bond network. Bond exchange leads to a new percolation
threshold p,, whose position depends on the particular ex-
change process. The behavior of the diffusion coefficient as a
function of the bond probability p for different values of the
dynamical timescales 7, 6, and @~ is governed by the three
thresholds p, =0, p.;, and p, (P, being the usual percola-
tion threshold for the static lattice), as seen in Figs. 3 and 4.
In particular, a crossover from p,, to p,, occurs when the 8
process is switched on, and a crossover to p, occurs when
the 7 process is switched on or when w becomes different
from zero.

When we have more then one time scale for lattice rear-
rangement, the result (1) is no longer valid. Even when the
single bond rearrangement is characterized by one time scale
(asin the HZ model) the exact diffusion coefficient depends
on an infinite spectrum of relaxation times. However, we
have seen in Secs. II and III that the diffusion rate still de-
pends on  and on these relaxation times {7, } through com-
binations of the form @ — i/7;. Thus, if all the (single bond)
relaxation times are roughly similar and if correlations in the
network dynamics are relatively small, we may use Eq. (1)
with one characteristic time 7 to get a rough estimate of the
diffusion coefficient.

Finally, we note that application of the present theory to
problems such as ionic diffusion in polymeric ionic conduc-
tors is still limited by our lack of knowledge of microscopic
parameters such as 6 and 7, and by questions concerning the
effect of carrier—carrier interactions. A way to circumvent
the first problem is offered by our recent calculation of the
viscoelasticity associated with a renewing random
network.?® This calculation makes it possible to relate lattice
renewal rates to observed mechanical properties.
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APPENDIX A

Here we derive the simple relation Eq. (53) that exist
between the matrix elements of H, defined in Eq. (50), and
the lattice Green’s functions, defined by Eq. (54). We start

from the definition
HH '=1 (Al)

or
S HuH ;' =6, (A2)
k

By Eq. (50) (with the subscript / omitted)
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Hg'=(kH'j) = (z+ )8 + (k|W,| /). (A3)

Using the definition of the effective-medium matrix W, giv-
en by Egs. (22) and (4) we have

(k|W,,|j) =9(2)(C,.64 — Ay), (A4)

where C,, is the number of nearest-neighbors and
1 if k, j are nearest-neighbors
= AS

Ay [0 otherwise (A3)
so from Eq. (A2) we get

[z+A+C,¥(2)H; — ¢¥(2) H, =6;, (A6)

kel j}

where { j} denotes the class of sites which are nearest-neigh-
bors to j. The last equation can be rewritten as

(Co +G,— S Gy = —8, (AT)
kedi}
with
G, = — vH,; e=z;’l, (A8)

where use was made of the symmetry relation H; = H,,.
Equation (A8) is the desired relation. The elements G;
which satisfy Eq. (A7) are the lattice Green’s functions.'”*
For a simple cubic lattice in d dimensions the solution of Eq.
(A7) is"?

G, =G(im,my...,m,)

d
II 7...(nat,

i=1

= _1 exp[—it(2d+6)
o 2

A9
> (A9)

where m, is the (bond number) separation along the princi-
pal axis k and /,, () is the modified Bessel function of order
m.

A simple relation between the nearest-neighbors
Green’s function Gj; (J, j are nearest-neighbors) and G;;, the
Green’s function at the origin, results from Eq. (A9) by
writing this equation for i = j

(Con +6)G; — G,=—1

kel i}
or, since all nearest-neighbor Green’s functions are identical
by the rotational symmetry of the lattice,

1+ €G;

(A10)

G, —G; = ; I,jnearest neighbors.  (All)

nn

APPENDIX B

To arrive at Eq. (72) we first apply Eqs. (48) and (51)
to a two bond cluster (i.e., two bonds with one site in com-
mon ) with two states for each bond, o = 0, 1. Sites and bonds
are labeled as in Figs. 2(a) or 2(b), although we do not refer
at first to a particular lattice or geometry. Rewrite Eqs. (48)
and (51) with indexes a’ and B’ (instead of @ and 3); For
B’ = a Eq. (48) reads

3 [2(0, — 9 TE, + (05 —

0,08

and for ' = B we find

PIrs,1=0 (B

3 [(0a — 0TS, +2(05 —

0,03

By taking linear combinations of Egs. (B1) and (B2) we get

M2, 1=0. (B2)

(B3)
z (U - ¢)ra aﬁ -
o, UB
8 _
z (g5 — ¢)I‘%aﬂ =0. (B4)
08
Similarly, from Eq. (51) we get
z Ct(rl)aﬁ [ra g + (aa - I/])K(l) I‘ﬁ 05
aaa'ﬁ
+ (UB ¢)K(I) aa’ﬁ] =0; l= 1,2,3 (BS)
2 Cc(rl)aﬁ[ro og + (0 - ¢)K(l) 0,05
O, G’B
+ (o5 — ¢)K"’ {jﬂaﬂ] =0 /=123 (B6)
where, by Eq. (52)
KL =K@ =2HP ~H)
K@3=Kg=HQP+H{—2Hp,
i,j nearest neighbors. (B7)

We can perform the summation in Eqgs. (B3), (B4), (BS),
and (B6) for the bond values o = 0,1 to get explicit equa-
tions. The eight equations for I'},, [two from (B3) and (B4)
with three types from (B5) and (B6) for three nonzero
eigenvalues of (o, 0g; 0%, 03) ] can be reduced to four
equations if one of the following symmetries holds

C(l) C(I) (B8a)

or

CP=CP=0 and CH= —~CP (B8b)
for any /. Since we are interested only in the physically cor-
rect solution for the effective-medium rate ¥(z), it is possible

to reduce the number of unacceptable solutions by taking the
special choice

re, =1%; o0=0,1 (B9a)
and
I's, = rfo and I, = rgl' (B9%)

The choice of Eq. (B9a) seems to follow only from the rota-
tional symmetry of the underlying (square) lattice, while
Eq. (B9b) follows from the dynamical symmetry between
the two bonds. More relevant to our purpose is the fact that
with the choices of (B9a) and (B9b) and with the assump-
tion that Eqs. (B8a) and (B8b) hold, Eq. (B3) becomes
identical to Eq. (B4), and the three types of Eq. (BS) be-
come identical to the corresponding types (same /) of Eq.
(B6). Therefore, we are left with a set of four independent
equations for four unknowns, either I'? o OF i 05 (Ta0p
=00, 01, 10, 11).

Indeed, for the model of Sec. IV, we see from Eq. (70)

- that for / = 1, 3 the relation (B8a) is obeyed, and for / = 2

Eq. (B8b) applies. Using the coefficients from Eq. (70) we
write explicitly four equations for I'S . This leads to Eq.

(72) with the coefficients a,, given in Eqs (74) and (75),
found by
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— ] 0,
al _Kc(za +K¢(zﬁa
— K@ 2)
a, _Kaa —KaB

with the K elements given by Eq. (B7). Using the relations
(53) and (A11l) we can have explicit forms for these coeffi-
cients

1=1,3
(B10)

b
aIEJI; b2=B(62);
by =2p.[1—¢€g(€)] —Blg);

where g(¢€), B(e€), €,, and €, are defined by Eqgs. (63), (77a)
and (77b)

z+ (2/7)
€ ="

¥

and p, = 2/C,,, is the static (EMA) percolation threshold
of the lattice under consideration. This analysis can apply
only to lattices which can be built from identical (up to rota-
tion) two bond clusters. From Eq. (76), which is the re-
quirement that the determinant of the coefficients of I'; ,,
should vansih, we get®* an implicit quadratic equation for
the effective-medium rate ¥(z):

1=1,3 (B11)

(B12)

X9 + X, (PP + Xo() =0 (B13)
where
X,=2[1—-5,]1[1—b,][1 — b5], (Bl4a)
X, =2p[b, — 1][1 — b,] + b;[4b,b, — 3b,
—3b,+ 2] + b, + b, — 2b,b,, (B14b)
Xo =p’[2b; — b, — b1 + 2p[b,b, — b;]
+ by[b, + b, — 2b,b,]; (Bl4c)

only the 4+ sign solution of Eq. (B13) should be taken
(since the minus one is not physical). In the static, DC limit
(1/6 =1/r=2z=0) wedenote B(e =0) =B, (B,= 1/,
1 — 2/7 for the configurations of Figs. 2(a) and 2(b), re-
spectively] and, for a square lattice (p, = 1/2), we get

X,=2B%(1 —B,), (B15a)
X, =B,{2p(B, — 1) + 4Bj — 6B, + 3}, (B15b)
X, =p*(1 —2By) — 2p(1 — B,)*> — 2B;

+4B2 —3B,+1 (Bl5c)

whereas in the fast bond interchange, DC limit (60,
1/r=z=0)itis

X,=2B2, (B16a)
X, = B,{3(1 — By) — 2p}, (B16b)
X,= (1 —B){(1—p)>—B,}. (B16c)
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