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The effect of diffusion on energy transfer from excited donor to acceptor molecules in liquid
solutions is studied with particular attention focused on vibrational energy transfer between
solute molecules in dilute solutions. Such processes are often discussed in the independent
binary collision (IBC) framework and diffusion effects are assumed to be negligible. We
introduce the concept of diffusive collisions (encounters between acceptor and donor molecule
within an effective energy transfer range) and investigate the conditions under which the cross
section for the energy transfer process may be affected by the cross section for the diffusive
collision as opposed to the more common fast diffusion limit where the energy transfer is
dominated by direct binary collisions. We conclude that while in most common situations
vibrational energy transfer is indeed dominated by binary collision events, pronounced
diffusion effects should exist at moderately high pressures. Explicit estimates are provided for

the HCl/Xe system.

I. INTRODUCTION

The process of energy transfer from an excited (donor)
molecule to an acceptor molecule can proceed in one (or a
combination) of two pathways: (a) long range energy trans-
fer by dipolar or exchange interaction,"? or (b) short range
“contact” collisions between the donor and acceptor mole-
cules when both are found within the same solvent “cage.”
In addition, diffusion of the donor and/or the acceptor mole-
cules, when possible, may strongly affect the rate of energy
transfer both because of the strong distance dependence of
long range energy transfer and because of the proximity re-
quired for collisional energy transfer.

When the energy transfer process involves electronic ex-
citations, the usually large dipole-dipole coupling together
with the fact that the time duration of the overall processes is
limited by the lifetime (typically 10~ s for an allowed tran-
sition) of an excited molecule imply that long range energy
transfer, sometimes modified by diffusion, is the dominant
mechanism. In the absence of diffusion this leads to'*=°

Cg+ (1) = Cu exp[ — 1 /7. — 4wC, (mar)''?/3],
(1.1)

where Cg. (2) is the concentration of excited donor mole-
cules at time ¢, C 3. is the same quantity at time t = 0, C , is
the concentration of acceptor molecules (assumed con-
stant), 7. is the lifetime of B* for all processes except inter-
molecular energy transfer. Intermolecular energy transfer is
assumed to take place via the dipole—dipole interaction, i.e.,
the transfer rate is given by

Wi(r) = % . (1.2)

The effect of diffusion on this process has been studied by
many authors. These studies have been recently reviewed.” If
we disregard spontaneous decay of the donor and focus on
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the energy transfer process described by
dCy.

dt
then good approximations for k(¢) are available in the ex-
treme limit of strong and weak diffusion defined according
to Z,< 1 or Z,> 1, respectively, where

Zoz—l— 2 /a2
2 D

a is the contact distance between the donor and acceptor
within which energy transfer is assumed to occur instanta-
neously. In the first case (Z, < 1) one obtains the usual result
for diffusion controlled reactions,?

= —k(1)Cp.Cy, (1.3)

(1.4)

k(t) =4nDa(l + a/\JwDt), (1.5)
while in the other limit (Z,> 1),° at long time
k(t— ) =2.7047D(a/D)""*. (1.6)

For intermediate times and intermediate values of Z, full
numerical solutions of the distribution function P(r,t)

dP(r,t)
or
may be used and good agreement with experiment is usually
obtained.'’

While the physical ingredients in the case of vibrational
energy transfer are similar to those discussed above for elec-
tronic energy transfer, the different time scales associated
with the former process often makes the actual physical be-
havior different for this case. First, the transition dipole for
vibrational energy transfer is ~3 orders of magnitude
smaller than for electronic energy transfer, making long
range dipole—dipole coupling 6 orders of magnitude slower.
Secondly, the spontaneous relaxation time due to infrared
radiative decay and to solvent induced relaxation can be

—pvip_Z%p (1.7)
r()
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quite long, especially for small molecules and low tempera-
tures.'' It is therefore not surprising that in many situations
and provided that the acceptor concentration is not too low,
energy transfer may be dominated by close collisional en-
counters by the donor and acceptor molecules. Indeed, inde-
pendent binary collision (IBC) models'*'* have been used
successfully to account for vibrational energy transfer in li-
quids, mostly in situations involving energy transfer to the
solvent'* but also in processes where donor and acceptor
molecules exist in relatively low concentrations in an inert
solvent.'®

In the IBC model one assumes that the energy transfer
process (or generally the bimolecular reaction) in solution
proceeds via independent binary collisions between donor
and acceptor molecules (reactants), and that the cross sec-
tion is identical to that of the gas phase process. Under this
assumption, the bimolecular reaction rate in solution is giv-
en by

(1.8)

where g(p, T,y;a) is the radial pair distribution function for
the two reactants at contact distance, r = q, for total density
p, and composition y (y denotes the set of molar fractions of
the components). p = 0 is the zero density limit. Obviously
this model assumes that the occurrence of the chemical reac-
tion does not disturb the thermal equilibrium in the solution
and, when applied to energy transfer, neglects long range
transfer. The assumption of thermal equilibrium corre-
sponds to the fast diffusion limit where mixing of the reac-
tants overcomes their depletion by the reaction.

In this paper we generalize the treatment of energy
transfer in solutions and develop a framework which yields
the IBC model and the diffusion controlled kinetics as par-
ticular limits (Sec. III), thus making it possible to predict
the conditions under which the finite diffusion rates of do-
nors and acceptors start to affect the observed energy trans-
fer rate. Since vibrational energy transfer in solutions is pri-
marily controlled by binary encounters, it is convenient to
cast the whole process, including the long range energy
transfer mechanism in the framework of collisional pro-
cesses. For this purpose, in Sec. II we introduce the concept
of diffusive collisions and show that a stochastic theory of
such collisions leads to standard results for the fast diffusion
reaction rate in the low concentration limit. Short range
collisions and cage effects are considered within this frame-
work in Sec. III. In Sec. IV we use this theory to develop a
unified picture of energy transfer kinetics in solutions. We
conclude by making some numerical estimates and predic-
tions for vibrational energy transfer in solutions.

k(solution) = k(gas)g(p.T,y;a)/g(0,T,y;a),

Il. DIFFUSIVE COLLISIONS

Consider a system in which reactant molecules B and A
diffuse in an inert solvent and react with each other with a
distance dependent bimolecular rate constant W(r) for r>a.
For r = a we take reflective boundary conditions for the dif-
fusion process (we shall later consider more general situa-
tions). ris the instantaneous distance between the donor (B)
and acceptor (A ) molecules. The reaction or energy transfer
process is assumed irreversible. We also assume that the con-

(®

FIG. 1. Schematic of the collisional diffusion model as described in Sec. II.
R is the assumed range of the interaction and a is the “‘reaction” radius.

centration of A and B molecules is low enough, so that at any
instant, for a particular A (or B) molecule, at most one
(nearest neighbor) B (or A) molecule has to be considered
as a candidate for reaction. Focusing on a particular A mole-
cule taken to be at the origin, we consider a sphere of radius
R large enough so that reactive events occurring at distances
larger than R are negligible (see Fig. 1). (The average dis-
tance d between A molecules has to be large enough for
R < d /2 tosatisfy this requirement. The specific value of R is
otherwise unimportant.) We also assume the B molecules to
react with A independently of each other (implying low con-
centration of B) and that, upon reaction, B disappears but A
remains intact. [This corresponds to energy transfer from
donor (B) molecules to acceptor ( A) molecules followed by
fast relaxation of A.] Note that with the coordinate system
defined above, the diffusion coefficient D used henceforth is
the sum of the diffusion coefficient of the two species. '

The model presented above corresponds to a reaction
which may occur with some probability once a ‘‘collision”
occurs. Note that this model assumes that diffusion is fast
enough; otherwise, as is the case in solids, for long enough
times energy transfer will be dominated by long range r > R
events.

Let ¥(R) be the probability that given that a B molecule
entered the sphere of radius R, it reacts with the center A
molecule before exiting the sphere. Also let J;, (R) be the
steady state flux of B molecules into this sphere. The steady
state bimolecular reaction (or energy transfer) rate per unit
volume is then

I =y(R)J,, (R)C,, (2.1)

where C, is the concentration of A. Obviously J;, (R) is
proportional to C . The bimolecular rate constant is thus

k=y(R)J, (R)/Cy (2.2)

and should not depend on the arbitrarily chosen R (R>a is
always implied). Before we calculate y(R) and J, (R) we
consider some general properties of diffusive collisions. We
shall use continuous diffusion theory, however some of our
intermediate results will be expressed in terms of a minimum
length / (conveniently thought of as the mean free path) for
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the diffusion process. Thus, a molecule B is considered to
have entered the interaction sphere of radius R surrounding
A when its distance from A becomes 7 = R — /. This mole-
cule B has left the sphere when its distance from the center
becomes r = R. A more rigorous calculation based on a dis-
crete random walk model leads to results identical to those
obtained below.'®

In Appendix A we calculate some properties of diffusive
collisions. Here we present the results needed for the rest of
our analysis:

(a) The average duration T(R) of a diffusive collision,
namely the average time elapsed between entering the inter-
action sphere and leaving it for the first time is given by

RI!
T(R) =—.
R 3D

(2.3)

(b) The average time spent by the diffusing molecule at
the distance range r...r + dr from the center during a single
diffusive collision is

7(rR)dr = ___lrz dr.
DR

2

(2.4)

Note that f%dr 7(#;R) gives T(R) of Eq. (2.3) if we use
R>a.

Consider now the reaction probability ¥(R) per diffu-
sive collision. It is given by

Y(R) =1—P(R)

i <exp( _ J;Tdt W r(s) ])>,m) e

(2.5)

where T is the first exit time [time for which »(T) = R for
the first time]. Note that both 7 and r(¢) in Eq. (2.5) are
stochastic variables. Equation (2.5) may also be written as a
moment expansion

n—1
YR) =Y =Dt

n=1 n!

=[]

The moments U, (x) are solutions of the following bound-
ary value problem!”®

U,(R—-1), (2.6)

(2.7)

1 d (,4dU,
D——|x +nU, ((x)W(x)=0 (2.8a)
x? dx dx

with

dUu,
U,(Ry=0n>0); — (x=a)=0;, U,=1.
dx
(2.8b)

Next consider J;, (R), the flux of the excited donor (B)
molecules into the interaction sphere. Note that this is not
the net steady state flux, but the total flux into (and in the
absence of reaction also out of) the sphere. This flux is inde-
pendent of the particular reaction mechanism as long as
equilibrium velocity distribution is maintained. To find it we
consider the simple case

W(r) = 0, r>a

w, Fr<a

(2.9)

for which the steady state rate is obtained from the theory of
diffusion controlled reactions

' = kC, Cy = 47DaC, Cy. (2.10)

This rate can be also calculated using Eq. (2.1). For this case
the reaction probability ¥(R) per diffusive collision is the
probability that the diffusing particle, once it enters the
sphere (i.e., starts at »r = R — /) will reach r = a before
reaching r = R for the first time. This probability is [cf. Eq.
(A14) withx = R — lusing R>l,a] ¥(R) = la/R * whence
from Eq. (2.1),

la

F=—1—e—zJin(R)CA. (2.11)
Comparing Eqgs. (2.10) and (2.11) yields
J, (R) =47R?Cy g (2.12)

We note in passing that in Eq. (2.12) the quantity D // plays
the role of the thermal velocity v. Even though the quantity /
was loosely defined, requirements of consistency force us to
choose I = D /v.

A consistency check on these results is provided by the
observation that the average number N(R) of particles in the
sphere, the incoming flux J;, (R) and the average time T(R)
spent by a particle in the sphere per diffusive collision are
related by

T(R) =N(R)/J,,(R). 2.13)

Using N(R) = (4/3)7R*Cy and J,, (R) from Eq. (2.12)
we obtain again Eq. (2.3).

The results obtained above apply, under the conditions
discussed, to any binary reactive process involving diffusion
and long range reaction probability. For the familiar (albeit
rarely relevant to vibrational energy transfer in solution)
case of dipole-dipole energy transfer rate [Eq. (1.2)], Eq.
(2.8) yields (for R>la)

1 la

U](R-—l):?~R—2€, (2143)
UR—l=L12 o (2.14b)
7 R?
21 la
U(R—-) == ¢, (2.14¢)
3 ) 220 R?
23 la
UR—-—D =" ¢, 2.14d)
a( =0 R € (
U R — 1) =180 2 s (2.14e)
177 840 R
and so on where
a (D/a*>)~!
- - _ (2.15)
¢ Da* (a/a®) ™!

These and higher order moments are easily generated using
computer programs for symbolic manipulations such as
MACSYMA or REDUCE. It is seen that Eq. (2.6) is an expan-
sion in the parameter € which is the ratio between the diffu-
sion time across the distance @ and the energy transfer time
at this distance. This parameter is small for small energy
transfer rates and relatively fast diffusion—a typical situa-
tion in processes involving vibrational energy transfer in li-
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quids (it is also quite small for most electronic energy trans-
fer processes in normal liquids ). Note also that all moments
(of any order) are linear in the small parameter a/ /R °.

These results, Eqgs. (2.14), together with Egs. (2.2) and
(2.12) lead to

a1 1 7
k=4 ——(—————6 —
TA\3 T8 T o
_2B sy 16901 e‘*_...). (2.16)
6480 21 340,800

The first two terms in this expansion about the fast diffusion
limit have been previously obtained by Sibani and Peder-
sen.'® Equations (2.6)—(2.8) provide a systematic way for
generating higher order terms in this expansion. Note that
this final result does not depend on the arbitrary choice of R
or on the discretization parameter /.

I1l. BRIDGING BETWEEN THE DIFFUSION AND THE
COLLISION CONTROL LIMITS

In Sec. 1I we focused on the role played by the diffusion
process and by the long range distance dependent reaction
rate. We now modify the model of Sec. II in the following
way: In addition to the sphere of radius R in which diffusive
motion and long range energy transfer occur, we define a
cage sphere of radius r, also surrounding the acceptor mole-
cule (Fig. 2). Within the cage the relative motion of the A
and B molecules is ballistic even if random, and energy trans-
fer is dominated by the short range collisions. The cage radi-
us r, satisfies

(3.1)

In a somewhat loose way we make the model assumption
that entering the cage corresponds to hopping from
r=a + [ tor = a, while leaving it involves the opposite hop.
When the particle entered the cage (reached r = @) it has a
probability g to exit it (to r = a + /). For r < r, we assume
that the evolution is governed by independent binary colli-
sions (IBCs) whose efficiency will determine the exit proba-
bility g.

As before we consider a single diffusive collision (the
diffusing particle starts at #, = R — /). We consider first the

a<r.<a—+1.

C:

FIG. 2. Schematic of a model including diffusive collisions and cage forma-
tion. . is the cage radius.

situation where there is no long range reaction: all energy
transfer occurs in the cage r < r,. Let P(#, — R) be the prob-
ability that the particle goes from r, to R (and terminates the
diffusive collision) without going through r = a. Similarly
P(7, —a) denotes the probability that in a single diffusive
collision (without going through R) the particle reaches a.
Also P(a+!/—R) and P(a + [—a) are the probabilities
that a particles which starts just outside the cage (r =a + /)
will exit (» = R) without ever entering the cage, or enter the
cage (r = a) before ever exiting, respectively. Note that

P(ry—a) + P(ry,—»R) =1, (3.2)
Pla+!-RY+ Pla+1I-a)=1. (3.3)
In terms of these quantities, and the probability ¢ to
leave the cage, the probability P, to survive a diffusive colli-
sion is
P = P(ry—R) + P(ry,—a)g [P(a+[-R)
+ Pla+1-a) q[Pla+1-R)
+ Pla+[-a)q[...[...]
P(r,—a)gP(a +1-R)
1 —gPla+1-a) '

The probability ¥(R) = 1 — P, to react during the diffusive
collision is

=P(r,-R) + (3.4)

l—¢

1 —gP(a+Il—a)’
To get Eq. (3.5) we have used Egs. (3.2) and (3.3). The
probabilities P(7, —a) and P(a + /—a) may be calculated
from the continuum diffusion formalism of Sec. II: Starting
from position x, @ < x < R, the probability to reach 7 = a be-
forereaching r = Ris [cf. Eq. (A14)] (R — x)a/(R —a)x.
Putting x = R — / we get (using R>a,/)

y(R) = P(r,—a) (3.5)

l
P(ry—a) :R—”z (3.6)
while putting x = a + / leads to
Pla+l-a)=—2—. (3.7)
a+!

Using Eqs. (3.5)-(3.7), and denoting by W =1 — g the
probability for reaction when the diffusing particle has been
trapped in the well we get
la(a +DW
R +aW)
Next we estimate the cage reaction probability W as-
suming the validity of the IBC model. This probability is
governed by two times: 7., the mean time for a particle in
the cage to escape the cage and 7., —the energy relaxation
time for the donor in the cage. An estimate for .. may be
obtained as follows: It should be proportional to the diffu-
sion time /2/D and to the donor-acceptor radial pair distri-
bution function at distance r = a, g5 (@) (g depends also on
the solution density and composition).

2

T%:/l—_ aj.
es DgAB( )

7(R) = (3.8)

(3.9)

/D measures the time for negotiating the cage in free diffu-
sion. The factor g.p (a) arises from detailed balance consid-
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erations. It takes into account the fact that the average es-
cape time should be proportional to the average donor
concentration in the cage. The parameter A is of order 1 (see
Appendix B).

Assuming an exponential distribution for the escape
time, the reaction (or energy transfer) probability is

W= Tesc — 9 , (310)
7-esc + Trelx 1 + 9
where
T Al a
g T _ M 8an@) (3.11)

Dr

relx

T

relx

Interms of 6 the rate k [using Egs. (2.2), (2.12), (3.3),and
(3.10)] is

k = 4zDq 2+ D9 (3.12)
[ +(a+ D0
In the fast diffusion limit 6(a+ 0)/I<€1 and

k =4wDaf(a + 1)/l. Under the IBC assumption this
should be equal to k ,ga (@), where k, is the ideal gas limit
[gag (@) = 1] of the bimolecular rate coefficient. This im-
plies

_ ko8as (@) !

. (3.13)
47Da | +a

This, with Eq. (3.11) provides some information on the pa-
rameter 7, . Indeed, taking A from Eq. (B7) leads to

L % (3.14)
Trelx B %77'[(0‘{-[)3—(13] .

providing an explicit estimate 7., ~ V. /k, for the cage re-
laxation time in terms of the cage free volume V. and the
ideal gas phase bimolecular rate coefficient. More relevant to
the present discussion is the fact that Egs. (3.12) and (3.13)
lead to

11,1
k k,g 4wDa

which says that in this model, which has neglected long
range energy transfer, the total donor relaxation time (per
unit volume) is the sum of the diffusion and the collisional
times.

Two comments should be made at this place: (a) The
IBC result can be trivially generalized by replacing the relax-
ation kpc = kog by k = kg4, where A, is a correlation
factor which accounts for the possibility of correlation
between consecutive collisions in the cage. A, is an empirical

1|

(3.15)

parameter which can also be estimated from numerical sim-
ulations. Recent simulations of vibrational relaxation of io-
dine in solutions'® indicate that 4, may be considerably larg-
er than 1 under certain circumstances. Equation (3.15) is
then replaced by

r__1r .1 (3.15a)

k kogA., 4mDa

(b). The result (3.15) could be derived from the theory of
diffusion controlled reactions with radiative boundary con-
dition at the contact distance a, by setting the boundary con-
dition parameter such that the IBC rate is obtained in the
infinite diffusion rate limit. In fact, the calculation given
above is little more than performing this derivation in the
diffusive collision framework. This becomes convenient
when we next include long range energy transfer.

V. THE COMBINED SOLUTION

In the previous sections we have focused on the diffusion
effects on (a) the short range energy transfer rate, via IBC
model (Sec. III), and (b) the long range (e.g., dipole—di-
pole) coupling rate, with the contact distance taken as an
inert reflective boundary (Sec. IT). In the present section we
will derive a unified expression, which will combine both the
short and long range effects. Long range, i.e., dipole—dipole,
energy transfer is usually not important for vibrational ener-
gy transfer because of the small transition matrix element
involved. However, for very low concentrations of donors
and acceptors and for low diffusion rates this channel cannot
be ruled out because of the long time it takes the molecules to
approach each other. The results obtained below are of
course valid also for electronic energy transfer.

Focusing again on a donor particle which starts at
ro = R — I we denote by P, (r, —a) the conditional proba-
bility that a donor particle that diffused fromr = r, tor =a
without exiting the R sphere (namely without passing
through r= R) still remained excited upon reaching a.
P (r, > R) is the probability that an excited donor that
starts at , and reaches R without passing through r = a is
still excited. [Note that P(ry—a)P (r,—a) and
P(r, —»R)P, (ry — R) are the corresponding joint probabili-
ties.] Similarly P, (a 4+ /—a) and P, (@ + [— R) are the cor-
responding excitation survival probabilities given that the
donor which started at » =a + / reached r = a (without
passing through R) or r = R (without passing through a),
respectively. Using these quantities, the probability to sur-
vive a diffusive collision can be written in the form

P, =P(r,—>R)P,(r, > R) + P(r,—»a)P,(r,~a)g[Pla + [-R)P,(a+ [-R)

+Pla+1-a)P(a+I-a)q[P(a+ [-R)P(a+I1-R)+..[.[ 1.]

= P(’o —>R)P5(ro —-’R) +

qP(ry—a)P,(ry—a)P(a+[-R)P,(a+I[-R)

4.1

1 —gP(a+I-a)P (a+[-a)
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The probability ¥(R) = 1 — P, to react during a diffusive
collision is therefore [using Eq. (3.2)]

Y(R)=1—-P(r,—R) +P(r0—>a)[Px(r0—»R)

gP (ro—a)P(a+[1-R)P (a+ l—»R)}
1 — gP(a+I-a)P,(a+I-a) '
(4.2)

The calculation of the various survival probabilities up to
second order in € [Eq. (2.5) ] is performed in Appendix A 3.
Using Eqs. (A2la)-(A2lc) for these quantities with Egs.
(3.3), (3.6), and (3.7) we find (with Ja<R?)
€ 11 s
R) =~ €
VR) =~ R’ ( 30 12600

1q< LA 62)2
20 50400

1(1+i——62—) Wa+1
q s 355 + Wia+1)

+1-

(4.3)

Neglecting terms of high order than €%, we get after some
algebra,

(R)_

( € 11
30 12 600

3 133

I 2N 4 wia a1
q(lO 12600€>+ (@+h
14( +——— 25) + Wia+1)

(4.4)

Using also Egs. (2.2), (2.12), and (3.10) we find the bimo-
lecular rate in the form (with 6 = 7. /7.1, )

ese

ko~ 477Da[ 1 €
30 12 600
130 € 121363)0 €+ a;Ll ¢
- : (4.5)
€ € " a—+/
5 225 [

Using Eq. (3.13) for 6, the rate in terms of IBC model is
given by

k~477£(L— 1 6)
T @ \30 12600
a ( 3 133
77'._ —
10 12600

6) + kogap (@)

€’ k()gAB (a)
225 47 Da

1+
5

with € = a/Da*. As mentioned in Sec. III, correlations
between binary collisions may be phenomenologically taken
into account by inserting a correlation factor A, that multi-
plies k.

To end this discussion, the fast and slow diffusion limits
(compared to the short range transfer rate) should be
examined. These are determined by the parameter x

= k o gap (@) /47 Da. In the fast diffusion limit, x € 1, we get

1 € kogan (@)
mir s (L€}, @
a\3 14 € €

4.7

5 225

This is simply the sum of the long range contribution when
the contact distance is treated as a reflective boundary [first
two terms in Eq. (2.16)] and the short range (IBC) rate
(modified by a factor which is usually only slightly less than
unity). In the slow diffusion limit, x> 1, it can be easily seen
that

ke 47’7’——(—1—— L
30 12600

which is the sum of the diffusion limited rate with quenching
at contact and the long range energy transfer rate as can be
seen by putting ¢ = 0 in Eq. (4.2). Using the identity 47a/
a* = 4Dae, Eq. (4.8) can be also written as

(4.8)

6) + 47 Da

k~4mDa (1+i— 11 eﬁ). (4.9)

30 12 600
The first two terms in this expansion were already derived by
Sibani and Pedersen. '

V. EXPERIMENTAL IMPLICATIONS

While for electronic energy transfer in liquids diffusion
effects have been observed experimentally, no such effects
have been seen for vibrational energy transfer in solutions. In
the latter systems the IBC model has been widely used. The
results obtained in the previous sections show that indeed
most processes of this kind correspond to the large diffusion
rate situation. It is however of interest to explore the limits to
this fast diffusion assumption, both because its failure may
affect the interpretation of observed vibrational energy
transfer and relaxation kinetics and for predictions of possi-
ble diffusion effects. The estimates provided below are for
V-V energy transfer in the system HCl in Xe that was recent-
ly studied experimentally.'*® From Eq. (3.15) written in
the form

Koo
k= Jfr : (5.1)
X
where
k(gas
Kipe = ko8 ko = "(—g—)‘§
g(gas)
. kog
and (using D =2D,)x = —— (5.1a)
87D ,-a

with D, is the diffusion coefficient of HCI in Xe, we can
predict deviations from the IBC model rate due to finite dif-
fusion rate, with the factor 1/(1 + x) determining the devi-
ation.

Data on transport properties of high density Xe may be
found in Refs. 20-22. From Fig. 1 in Ref. 20 we find that the
self-diffusion coefficient D, of Xe, at the temperature 298 K,
in the density range 6.2 to 21.4 mol/¢ varies approximately
between 4.1 X 107* to 5.4 X 107> cm?/s. For the diffusion
coefficient D,, of HCl in Xe, we get from Ref. 23 Eqgs. (8.2-
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44,46) and (9.3-38).

1 m . 1/2 o . 2
D,=D, [—(1+ X )] ( X )
2 Mya (4P
« Q(l,l)‘(T*)Y(p;O.XC)
Qié’x),(sz)le(p’X;Ulz)

(5.2)

withT* =k, T/€ex.,TH = kzT/€,,;where my, and myc,
are the molecular masses, y is the molar fraction of HCl in
the HCl/Xe mixture, and p is the total density; o, 0,2, €xe»
€,, are molecular (Lennard-Jones) potential energy param-
eters (effective diameters and well depths) characterizing
the Xe—Xe and HCl-Xe interaction, respectively. Following
Ref. 23 (Egs. 3.6-8,9) we take 0, =0y + Oua;

€12 = \/ €x. Ency Where oy, €yc are the Lennard-Jones pa-
rameters for HCI-HCl interaction. The factors Yand Y,, are

essentially the Xe-Xe and Xe-HCI radial pair distribution
functions at contact and for low concentrations of HCI are
approximately equal. Their ratio in Eq. (5.2) is taken as 1.
The parameters Q""" are related mainly to the attractive
part of the interaction and are available from Ref. 23 (Table
I-M in the Appendix). From Ref. 23 (Tables 8.4-1 and 8.6-
1) we have eye/kg =218 K, oy =3.506 A,
€xe/ky = 229K, oy, =4.005 A.>* At room temperature
T =298 K we have T* = 1.301 and T}, = 1.334, whence
QD" = 1.273 and Q1" = 1.260. From this data we find
that at 298 K, in the density range 6.2 to 21.4 mol/4, D,,
varies between 7.1 X 107% t0 9.4 X 107> cm?/s.

In Eq. (5.1a) we take a, the average hard sphere diame-
ter of HC], as twice the sum of H and Cl covalent radiuses;
a = 2.6 A. The contact values of the radial pair distribution
function are [from Ref. 12(a) using the parameter values
given above]: g(gas, 298 K) = exp(218/298), and (for low
HCI concentration in high density Xe) g= (1 —u/2)/
(1 —u)? withu = (7/6)pox..> The value of k(gas) at 298
K is taken from Ref. 26 to be 0.90 10° s~ Torr™' or
1.17x10'% cm® mol ~ ! s~ ! for the process

HCl(v =2) + HCl(v = 0) - 2HCl(v = 1).

Using these and the semiempirical values of D, we find that
in the density range 6.2 to 21.4 mol/# (studied experimental-
ly in Ref. 20) the factor 1/(1 + x) varies between 0.997 to
0.939. This variation is not sufficient for a clear cut experi-
mental study. However, using the equation of state for Xe
given in Ref. 27, we find that a pressure of ~ 7000 atm corre-
sponds to Xe density of 45 mol/4 and 1/(1+ x)~0.5.
While this is a rough and uncertain estimate, it suggests that
observations of deviations from the IBC behavior is possible
with modest high pressure systems.

To end this discussion we note that these corrections
will be more pronounced if the correlation factor A, [Eq.
(3.15a) ] is considerably larger than 1. (We should keep in
mind, however, that the density dependence of 4, will make
it difficult to interpret deviations from IBC behavior purely
in terms of the theory advanced here.) Also, smaller diffu-
sion rates and therefore larger deviations from the fast diffu-
sion (IBC) limit may be obtained using other solute mole-
cules (e.g., replacing HCI by HBr or HI).
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APPENDIX A: SOME CONSEQUENCES OF THE
DIFFUSION EQUATION

1. The exit problem for the diffusion equation in a
sphere

Here we derive some properties of first exit problems for
the diffusion process in a sphere. In particular we consider
the spherical region a<r<R (Fig. 1).

(a) Let

T n
U, (x) = <(f k[r(z)]dt) > ,
(¢] r(0) =x

where #(1) is the position of the diffusing particle, T is the
first exit time, k() is an arbitrary function, and x is the
starting position. » and T are stochastic variables. The aver-
age should be performed over all possible (infinite) trajec-
tories.

Consider first regular diffusion where » = R is the exit
boundary and r = a is a reflective boundary. Following Kar-
lin,'”® the U, moment can be shown to obey the recursive
differential equation

(A1)

d*U, 2p dU,
D dxz _x__(;x—: —nk(x)U,,,l(x) (A2)
with
dUu
“(x=a)=0, U (R)=0n>0); U,=1
dx

Itis convenient to use the Green function, defined as the
solution of
2
D d*G(x,r) 4 _Z_Q dG(x,r) _
dx? x dx

—8(x—7r) (A3)

with
4G —a)=0, G(R)=0.
dx

Using this Green function, the U, moment can be expressed
in terms of the U, _, moment

R
U,=n f Gx,n)k(rU,_,(r)dr. (A4)
In particular
T R
U(x) = <f k [r(t)]dt> .—_J G(x,r)k(r)dr.
0 r(0) =x a
(A5)

From this relation we can see that G(x,r)dris the time spent
in the interval r...r + dr before exit. This Green function is
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found to be
271 1
TR -
r
G(x,r) = IR (A6)
— (— — —), a<r<x<R
D \x R

Next we define a “conditioned diffusion” process.'”*®’

This process is built from regular diffusion, when it describes
only trajectories that do not pass through a certain bound-
ary, called an “‘entrance boundary.” This condition is trans-
lated into a special drift term, which prevents the process to
pass through the entrance boundary; however, it can start as
close as we want to this boundary. Consider first ¥ = g as the
entrance boundary, while » = R is the exit. For the condi-
tional process, the U, moment defined in Eq. (A1) satis-
ﬁesl7(b)

dZUn+£D_<1+ a )dUn

D
dx? x dx

= —nk(x)U,_,(x)
(A7)

and the related Green function, defined as the solution G . of

X —da

d*G. 2p a \ dG.
D + — (1 ) = —8(x — A8
dx? x +Jnc—a dx (x—r) (AB)
is found to be!”t<?
R-—n(r—a) x<r<R
D(R —a)

G. (x,r) = (R —x)(r ) (A9)

—9) | 4<r<x<R

Dix—a)(R —a)
Similarly, for the case when r = ais the exit, and » = R is the

entrance, the related Green function is found to be!”¢¢’
(x—a)(R—r)" ’ <x<r<R
D(R —x)(R —a)
G.(x,r) = . (A10)
R-_nNir=—a) <r<x<R
D(R —a) SIS

(b) Let f(x) be the probability to arrive at ¥ = R for the
first time before arriving at » = g, if the starting position is
r = x. Similarly, g(x) is the probability to arrive at r = a for
the first time without passing through r = R. It is therefore
clear that

Jx) +g(x) =1 (All)

f(x) is the solution of the boundary value problem!”(®

d s df)

—_— —_— :O

dx (x dx (A12)

with f(R) = 1 f(a) = 0. This leads to

_ R(x—a)

Sf(x) e R (A13)
a(R — x)

g(x) = R —arx (A14)

2. Diffusive collisions

Here we derive some of the properties related to diffu-
sive collisions. A ““diffusive collision” is defined as the event

Granek, Nitzan, and Weitz: Energy transfer in solutions

in which a diffusive particle enters and leaves the interaction
zone once. The fact of entering is established when the parti-
cle’s distance from the center is R — / where / is a typical
hopping distance, and where the interaction is assumed to
vanish for r> R.

First consider the average time spent by the diffusing
particle at the distance range r...r + dr in one collision. Us-
ing x = R — /in Eq. (AI6) with R >/, this time is

[ 7

RYdr=—~_d Al5
T(r,R)dr D r ( )

2

while the total time of the diffusing collision is just

R I(R*—a%)
T(R) = RYdyr = —— L Alé
(R) f T(rR)dr TE (Als)
for R>a
IR
T(R) =—. Al7
(R) D ( )

If we are interested only in trajectories that do not pass
through » = a, we put x = R — /in Eq. (A9) to get (using
R>la)

T;.(r;R) :iL—’a_)h
D R-

which gives the same T(R) as in Eq. (A17) if we use R>a.

dr (A18)

3. Survival probabilities for long range energy transfer

In this part we give some details of the calculation for
the various survival probabilities needed in Sec. I'V. The defi-
nitions given in Sec. IV are translated into the following: The
quantities P, (R — /- R) and P, (a + /- R) are associated
with conditional diffusion processes of the type discussed in
Part II where r = a is the entrance boundary, r = R is the
exit, and where the starting positions are R — / and a + /,
respectively; P, (R — I—a) and P, (a + l—a) are related to
conditional diffusion processes where » = R is the entrance,
r=a is the exit, and the starting positions are R — [ and
a + [, respectively. Therefore, the appropriate Green func-
tions are Eq. (A9) for P,(R — [—-R) and P,(a +[-R),
and Eq. (A10) for P,(R — /-a) and P, (a + [—a). Using
these Green functions, the first and second moment (as a
function of the starting position x) are, by Eq. (A4),

R
U,(x) :J G. (x,r)k(r)dr, (Al19a)

R
U,(x) :2[ G. (x,r)k(ryU,(r)dr. (A19b)

We set x = R — / for the calculation of P, (R -~ /- R) and
P(R—I-a) and x=a+ ! for P (a+[/-R) and
P (a +[1-a); R>a,lis always used. Finally, since by mo-
ment expansion

)
P(x)= <exp(—J k [r(!)]d1)>
o o = x

= i *(—_—1)—U,,(x)

n=20 n!

(A20)

the surviving probabilities up to order € (where € = «/
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Da*) are given by
P.(a+1-R) =P, (R —I->a)

€ 91
=1 —— 2 &+ 0>),(A21
20 T50400¢ (€),(A2la)
Px(a—|—l—»a)z1-—Le+~l——iez+0(€‘),
5q 225 a
(A21b)
PR—I-Ry=1—-L 12,
30 R?
n la ,
—— =+ 0(). (A2l
2600 RZ© T (€. (Ale)

APPENDIX B

Here we find 7., the escape time from the cage, for the
model considered in Sec. III. Consider a large sphere of radi-
us R around the acceptor, containing one donor in it. The
sphere is taken to be closed (reflecting boundary conditions
at7 = R). From equilibrium statistical mechanics, the prob-
ability of the donor and acceptor to be within the distance
range a...a + [, is

Wiaa+ D — Setlanrg, o (rdr ’

4R’

where g, (7) is the radial pair distribution function. This
probability should be also equal to the fraction of time for
which the acceptor and donor are in this distance range dur-
ing an infinitely long period. If 7;, is the average time to get
back into the cage for the first time after escaping from it,
then this fraction f is just 7../{(7, + Te.). Assuming
gas (7) to vary slowly between a and a + /, we can approxi-
mate

(B1)

a + 1
f 47rr2gAB(r)drz%7r[(a+1)3-03]gAB(a)

(B2)
and therefore 7., can be obtained from
a l P Tesc
exl) o g @ (B3)
R ) Tin + Tesc

if 7, is known. 7, can be easily found by solving for the time
to arrive at » = a for the first time starting at » = x [using
n=1and k = 1in Eq. (A1), (A2) with a difference in the
boundary conditions].

Dii(xzj‘!’I): 1
x? dx dx

with T(a) =0, dT/dx|gz =0 and setting 7, = T(a + 1),

(B4)

since right after escaping the distance is @ + /. This leads to
_ R?I _1Qa+ D
3Da(a +1) 6D

Using it in Eq. (B3) and solving for 7., we get (using
R>aD)

(B3)

Tin

12 12
Tese = 57 (a) 1 +—]. B6
D gaB 3@t ) (B6)
The parameter A, defined in Eq. (3.9), is therefore
12
A=14——- B7
da(a+ D) (B7)

and is of order 1 in most situations.
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