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A semiclassical theory of stimulated processes in dielectric spherical particles is formulated. The
theory applies to the small-signal regime and to isotropic (but radially nonuniform) pumping. Itera-
tive treatment of the pumped-medium susceptibility by scattering theory demonstrates the basic
features observed experimentally by Chang and co-workers [H. M. Tzeng, K. F. Wall, M. B. Long,
and R. K. Chang, Opt. Lett. 9, 499 (1984); S. X. Qian and R. K. Chang, Phys. Rev. Lett. 56, 926
(1986)], namely, the drastic reduction of the threshold for lasing and multiorder stimulated Raman
processes, and the frequency pulling from Mie resonances of the inactive medium.

A series of pioneering experiments conducted by
Chang and co-workers have demonstrated the occurrence
of lasing"? and stimulated Raman scattering®* (SRS) in
micrometer-sized spherical liquid droplets. Recently, las-
ing has been studied also by Baer’ in millimeter-sized
solid spheres. The salient features revealed in these ex-
periments are the following. (a) Lasing occurs' at a num-
ber of frequencies within the emission band that are red
shifted relative to the Mie resonances of light scattering
by the droplet.>” (b) Strong SRS can occur at multiorder
Stokes lines* when there is a Mie resonance near each of
these lines. (c) The pumping thresholds for both process-
es are lower by several orders of magnitude in such a
droplet than in bulk. Chang and co-workers attributed
this threshold reduction to the high internal reflection by
the spherical dielectric boundary of amplified emission at
Mie resonances and concluded (a conclusion reiterated
recently by Baer®) that the theory of lasing from such sys-
tems must combine laser equations with Mie theory and
that* “the normal plane-wave growth equations for
SRS . . . need be modified into multipass spherical-wave
nonlinear equations . .. .”

Fluorescence and Raman emission in a spherical parti-
cle have been described previously as linear response
(characterized by a constant polarizability) to the pump
field.® The self-consistent field-dipole interaction (which
is essential for stimulated processes) in a sphere has been
treated thus far only in the initiation regime of
superfluorescence,”'® for a homogeneous, fully inverted
emitter distribution. Resonant features of the emission
and their connection with Mie theory have not been ex-
plored in these treatments.

In this paper we modify the conventional semiclassical
theory of stimulated processes in the small-signal regime
so as to allow for the spherical boundary of the active
medium, and for radially nonuniform, isotropic pumping.
Effects of Mie resonances are accounted for and results
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pertaining to the aforementioned experimentally ob-
served features are emphasized.

The starting point of our treatment of lasing are the
two coupled Maxwell-Bloch equations for the field E and
polarization P in the semiclassical small-signal regime of
lasing.!! The Fourier components E,(r) and P,(r) associ-
ated with a positive frequency , are then related (in the
rotating-wave approximation) by the Bloch equation
P, =X\!(r)E,, where

XV =p2NO(r)/H(Q; —0—iy)

is the first-order susceptibility and N'%(r) is the time-
dependent population inversion established by pumping
and relaxation. The frequency, linewidth, and dipole mo-
ment of the fluorescing atomic or molecular transition
are denoted by w, ¥, and p,, respectively. On using this
relation in the Maxwell (Helmholtz) wave equation for
E,(r) driven by the polarization current® one obtains

[—(VXVX)+k2—(Uy+AU)]E,=0. (n

Here  k,=Q,/c, AU(r)=—4nkix{!(r), U,
=k2(1—¢,)0(a —r), €, being the complex dielectric in-
dex of the (optically inactive) medium in the sphere, ac-
counting for light refraction and absorption at the fre-
quency (,, and O(a —r) is the Heaviside step function
for a sphere of radius a.

In general, the susceptibility X}!’(r) is both anisotropic
and radially-nonuniform, reflecting the spatial distribu-
tion of the pumping field. We facilitate the treatment of
this susceptibility in (1) by using an iterative expansion in
AU, i.e., taking |X{"| << |e—1]|, an assumption con-
sistent with the small-signal (near-threshold) lasing re-
gime. Even then the anisotropy of Xi! is a complicating
factor, responsible (to first order in AU) for the coupling
of zeroth-order field modes of different angular symmetry
oscillating at the same (,. Here we limit ourselves to
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single-mode theory, applicable in the small-signal regime
when the pumping (and thus AU) is nearly isotropic but
nonuniform, being confined to a spherical shell. Isotropic
pumping is realizable’ on using an unpolarized pumping
field whose linearly polarized components fill annular
shells that are nearly isotropic in the polar angle (Y,
spherical harmonics with high order /) and have different
azimuthal-angle dependences (different m values). The
angular modes of lasing emission are then uncoupled, and
we may consider one such mode oscillating near a Mie
resonance labeled by A=(l,v). By operating on Eq. (1)
with (L-), L being the angular momentum operator, a
scalar wave equation is obtained®!® for L-E, with
— (VX VxX) replaced by V2. For a particular magnetic-
wave (TE) mode

almglv(r )Ylm(9>¢)

contained in L-E,, the angular variables can then be
eliminated and the resulting radial equation reads

2
4 24 1 WUED yavlg=0. ©
r r

This radial equation is the three-dimensional analog of
the equation for single-mode lasing in a one-dimensional
(e.g., Fabry-Perot) cavity with nonuniform pumping and
dielectric (nonzero-transmission) boundaries. Conven-
tional treatments'! single out the field inside the cavity,
reducing the outside field effects to a Q@ value for
transmission losses, then consider the oscillation of
modes of the internal field (normalized in the cavity).
The major departure of the ensuing treatment from such
methods is the use of scattering theory to describe the
field inside and outside the sphere on equal footing. This
allows the natural extension of the Mie theory of light
scattering to the regime of stimulated emission.

The iterative solution of (2) to first order in AU(r) is
given in many works on scattering theory in the form of
the “distorted-wave Born approximation,”'? i.e., as a
small additive correction to the scattering amplitude in-
duced by U,. This solution, however, does not predict a
shift of the resonance position due to AU, and is there-
fore inappropriate near resonance. The iteration pro-
cedure used here is an extension of Eq. (12.3.62) in Ref.
13. It consists in writing the solution of (3) for an in-
cident signal wave of unit amplitude j;(k,r) as

g1=8/" =k, [ AU g/ (r)g r') —g["(r g V()]

xg(rridr (3)

where g/” and g!” are two orthogonal (independent)

solutions to zeroth order in AU. This means that the
Green’s function in (3) is constructed from “distorted
waves.” The form of g% is given by the Mie theory®® or
scattering theory for a spherical-well potential U, on ap-
plying at r =a the boundary conditions appropriate for a
magnetic wave (TE mode) in Maxwell’s equations,

g% =—(i/kyaM,)j (' *k,r)O(a —r)

-5(0)

+[1—6(a —r)]e"
X [c0s8ij,(kyr)+5sind¥n;(k,r)]

i (0)
s (™ sk, rsintkyr —1m/2+8) @)

r—

Here j; and n; are the Bessel and Neumann spherical
functions and M,(€!/%k, a) is the I/th magnetic-wave Mie
denominator'* measuring the amplification of the field in-
side the sphere (reflected wave) relative to the signal (in-
cident) wave. The zeroth-order phase shift 89 deter-
mines e‘s’ sin8{?), which is the scattering amplitude [the
ratio of the amplitude of the scattered outgoing wave
having the form of a spherical Hankel function 4k, r)

to that of the signal wave]. The asymptotic form of g {*,

which is orthogonal to g%, is then
i (0)
g0~ e [sind{%j,(k,r)—cosd{On,(k;r)]
:2(0)
— =" sk rrcostkyr—Im/2480) . (5)

r—

The first iteration of (3) yields
&V =gl (1 —F") 4alg ©r)

i (1)
— (" Jkyr)sintk,r—17 /248" 6)

where
aV=k; [ AU g (r)rdr

1 __ P\ (0 Ny (O) r 22 70 (7)
BV=k, [ AU(r g (r')g{®(r)rdr" .

By comparing the coefficients of sin(k,r —Im7/2) and
cos(k,r—Im/2) in Egs. (4)-(6) we obtain

tand{?(1—B") —a'V
1—B" +aVtans!?

~tan(8{” —a'V)=8§{" ~ 8" —a'!, (8)

tand!) ~

where we have neglected B’ ~O(AU) relative to 1 and

have taken a'~tana''. The scattering amplitude

i ) . .
e ' sind}" attains a maximum at the resonance

Re(S‘,”)g'rr/Z, which is shifted by Re(a'') from the
zeroth-order Mie resonance. Lasing occurs if
Im(8{"’) <0, because then the scattering amplitude near
resonance can exceed unity (in absolute value), i.e., the
scattered wave becomes amplified as compared to the in-
cident (signal) wave.

In order to obtain quantitative estimates from (8), we
rewrite a'!’ [Eq. (7)], using the definitions of X" and AU,
as

a'V=amre 2 VA(NOY) /[paMi(p) ], 9)

where p, =€!/%k;a (complex size parameter) and X'! is
the bulk susceptibility for the expectation value of popu-
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lation inversion
(N PAar(O) iy 32 1727 o 1721, ,1\3
N >=f0 N )jHe 2k r)d (€ P hyr') .

In the commonly occurring case of near-surface popu-
lation inversion"*’N ()~ N8(r —a), the lasing oscilla-
tion condition Im8{"’ <0 following from (8) becomes

Im8{ < 4me~'2[j,(p)) /M, (p, ) PImXS(N) ,  (10)

where Im8\? is of the order of the bulk absorption con-
stant’ times the radius a, or Im(p,). For p, 2 100 as in
Ref. 1, estimating'* M,(p,)~10~* and j(p;) 2 1072 for
its peak value at / ~p,, we then find from (10) that the
lasing threshold is more than 10* times lower than in bulk
with the same inverted population density N. Thus the
origin of the drastic lowering of the lasing threshold ob-
served for spherical microparticles’? is seen to be the
smallness of the resonant denominator M, expressing the
highly effective field confinement in the sphere (high Q
value).

The resonance shift pi!’—pi¥=€'"2(ki! —k{?)a is

determined from (8) by the equality Rea'' ~cotans”,
which can be rewritten as [Eq. (9)]
—4me="Re{X'V((N{P))/[pM,(p;)T*}

~ (i —pi?") /20T,

=(p—p) /T, . (11)

Here we have used the form'? of tan8\”’ near the unper-
turbed resonance p{’ whose width is I, (the imaginary
part of the roots of M, for real €).'* On using the general
relationship between the real and imaginary parts of the
susceptibility above threshold,!! the lasing condition (10)
combined with (11) yield the following ‘“frequency-
pulling” condition in the small-signal regime:

P —p /T s~ [(0—Q)/y DImd)® . (12)

The angular brackets on the right-hand side of (12)
denote averaging over the  distribution in the sphere,
which is determined either by inhomogeneous broadening
(in doped crystals) or by the Franck-Condon bandwidth
in molecular solutions. Assuming that under conditions
similar to those of Ref. 1, {(0—Q{))/¥ 230 and
Im8{”’ $1072 (bulk absorption constant below 1cm™)),
we conclude from (12) that frequency pulling can exceed
the width I'; only for peaks well above threshold, for
which the right-hand side of (12) is much smaller (in ab-
solute value) than the left-hand side. Experiment' sup-

ports this conclusion.

In order to adapt the above theory to the treatment of
stimulated Raman scattering, converting the incident Q,,
radiation into Stokes-shifted radiation at Q,,~Q,,—wy,
the only modification required is the replacement of X}
by the effective susceptibility for third-order Stokes polar-
ization” X\ |E;o |4+ Here X «(Q;0—0,—Q,
+iy,)” ! is maximal for Q,; within the Raman transition
linewidth v, centered about Q,,—w,, and (E;g), is the
reflected pump wave inside the sphere, related to the in-
cident pump wave (E,);,c as in (4).

For pumping nearly confined to the surface we then
have, instead of (9),

a)=4me™ XN | Epg | fuclkyya) ™
X Litpao/Mi(pao) PLir (o) /My (p3)), (13)

where N ) is the Raman-transition inverted-population
density.!’

If the oscillation condition Ima!® > Im8{” is satisfied
(as for the experimental conditions of Ref. 4), then
(E; 1 )er grows exponentially at each boundary reflection,
building up sufficient intensity to serve as a pump for the
second Stokes-order frequency Q,,~Q,,—20,. The a!®
factor for the latter process can be strongly enhanced
compared to the corresponding bulk value if both Q,,;
and Q,, are removed from Mie resonances by less than
y,- Using the same parameters as in the estimate follow-
ing (10), including M,(p,,) ~M,(p;;)~10~*, we find that

aV~10'X(N)) | E;, | 2

inc

i.e., the enhancement is even more spectacular than in
lasing. The availability of closely spaced resonances up
to Q;,4,~0)— 14w, in the experiment of Ref. 4 yields
small resonant denominators M,(p,, ) for orders n in the
range 1 <n <14. Thereby a multiorder SRS process, in
which the ,, mode pumps the consecutive (2, , , ; mode,
can occur with much lower threshold values than in bulk.

Although the theory outlined above explains the basic
observable features of stimulated processes in dielectric
spheres, namely, threshold reduction in lasing and mul-
tiorder SRS and frequency pulling, it cannot provide ac-
curate quantitative interpretation of the cited experimen-
tal results, pertaining to a multimode situation. In future
works we intend to dwell on the angular and spectral
features of the emission caused by intermode coupling
due to pumping anisotropy and the E? (saturation) term
in the population-inversion factor of the lasing suscepti-
bility.
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