Solid State lonics 28-30 (1988) 120-128
North-Holland, Amsterdam

DYNAMICS OF I0NIC MOTION IN POLYMERIC TONIC CONDUCTORS

R. GRANEK, A. NITZAN
Department of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel

S.D. DRUGER and M.A. RATNER
Department of Chemisiry. Northwestern University, Evansion, IL 60208, USA4

Received 7 September 1987

Carner transport 1n disordered systems is often treated theoretically using random hopping models. When the host medium is
a polymer above 1s glass transition temperature such theories have to be modified to account for microscopic structural changes
1n the polymer on the experimental timescale. This paper describes the resulis obtained 1o date for models that take into account
this dynamic nature of the disorder, and their applications to 1onic motion in polymeric ionic conductors.

1. Intreduction

There 1s substantial evidence that transport of charge carriers in highly viscous liquids as polymeric ionic
conductors above their glass transition temperature is dominated by microscopic segmental motions of the host
medium [1]. Therefore, while hopping models have been very useful in studies of diffusion and conduction
in a variety of solid-state disordered systems [ 2], such models cannot be used without modification to describe
carrier transport 1n polymer electrolytes. Instead most workers have used theories based on free volume [3]
or configuration entropy [4] concepts. While such theories incorporate the thermodynamics of the host poly-
mer in an explicit way, they are not well suited for treating dynamical phenomena. Recently, several attempts
were made to generalize hopping models so as to take into account the dynamics of the host.

Two relatively simple models which take into account the host dynamics in addition to the carrier hopping
have been investigated in the past few years. In the first model, due to Druger, Nitzan, and Ratner (DNR)
[5-8], the host dynamics 1s described by a series of instantaneous “‘renewal” events. These events occur at
random times governed by a renewal ume distribution f(¢), whose first moment 7., = | § ¢/{({) dtis the average
renewal time, In the renewal process the network bonds and/or sites are reassigned according to the (static)
distribution which determines the random nature of the system. Thus, for a random bond model with a fraction
p of available bonds, the positions of these available bonds are reassigned at each renewal event, whereupon
the carrier motion proceeds on the newly defined lattice.

In the second model, due to Harrison and Zwanzig (HZ) [9], individual bonds rather than the whole lattice
are changed randomly in time. In both modeis the host dynamics is assumed (o be spatially uncorrelated (1.e.
changes in one location occur independently of those in another location) and also uncorrelated with the po-
sition and state of the hopping carrier.

While the HZ model seems to be more realistic than the DNR model (both are oversimplified due to the
assumptions stated above), the latter has yielded some exact solutions of quite general nature while the HZ
model has been solved only within an effective medium approximation (EMA). Remarkably, the EMA result
for the HZ model i1s very similar to the corresponding exact resuit of the DNR model.

In addition, recent studies of the so-called stirred percolation problem [ 10-13] (where charge carriers move
only within one component of a microemulsion formed from two immiscible liquids) and of diffusion of a
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tracer particle in a system of other particles characterized by a different jump rate [14] are closely related to
the work described below. Refs. [10-14] focus on scaling relations near the underlying lattice percolation
threshold.

2. Diffusion and conductivity in dynamically disordered systems

The following discussion focuses on the diffusion coefficient D associated with a single moving particle in
a dynamically disordered network. The corresponding conductivity ¢ is obtained from D using the Nernst-
Einstein relation

o={(nq*kgT)D, (1)

where » is the density, g is the charge of the {(assumed non-interacting) carriers, and T is the temperature. We

begin with the DNR model.
Consider first dc diffusion. For the dc diffusion coefficient DNR derive the remarkably simple result [5]

D= ngr*> en! Tren - ' (2)

where ny=2d (d is the dimensionality), .., is the average renewal time, and (r?)., is thc mean-square dis-
placement during a renewal period (1n the presence of drift r should be replaced by r— (r>); ¢ > denotes
the usual ensemble average while the bar denotes an average over the renewal time distribution. Thus, if {r?>,(¢)
1s known as a function of time ¢ for any system with static disorder {r?> ., is obtained from

(Y en= Jdtﬂr) {ryolt) . (3)
O

The subscript “0” in {r?>, denotes that this quantity corresponds to the statically disordered system. If t,.,
1s very short (relative to the hopping rate w) this just yields the mean-square displacement in the averaged
network (for a bond percolation network having transition rates w with probability p and 0 with probability
1 —p, the averaged network rates are all given by wp). If 1., > {3 w™' (L, 15 the observation time) this
1s the static hopping limit where the dynamics is controlled by w and p. If ¢, > 1., w ' the dynamics is
affected by 7..,.. In particular, for a percolation network below the percolation limit, the dynamics 1s controlled
by .. and p.

As an explicit example consider a one-dimensional random chain with bonds available and unavailable with
probabilities p and 1 —p, respectively. This system is below the percolation threshold for p<p =1, and

(x*)(1)—»a’p/(1-p)* (4)
for t—o0, where a 1s the lattice constant. Provided that 1, is much larger than the time it takes to fill the
average cluster, the diffusion coefficient D is given by
D=pa*2(1 —p)1,e. . (%)
For d> 1, below the percolation limit we get similarly
D~ p—pel =T en (6)

(x=v(2-p/v)~2.5ford=2, 1.35 for d=3) as long as 1., is long relative to the time it takes to fill the average
finite cluster. As p—p, from below, t,., becomes short relative to this time and we have a cross-over to the
behavior described by eqs. (2) and (3), where ¢(r?> (¢) should be calculated on the percolating cluster [11,13].
No further transitions are expected when p increases beyond p..

Turning now to ac diffusion our starting point is the following expression due to Scher and Lax [15]



122 R. Granek et al. /Polymeric ionic conductors

D(w)=ng lim (iw)? [ drexp( —iwi—et) {r* (1) . (7
-0+

The original DNR evaluation of the frequency-dependent diffusion [6] was carried out for a particular (Pois-
son) distribution of renewal times. The probability that the system undergoes N renewal events during time

¢ is taken to be

P(N,t) = [(At)M/N] exp( —Af) (8)
so that the waiting-time distribution for the time between renewals is exponential

fit) =Aexp(—A) (9)
and

Tren=A"". (10)

For this system DNR found the useful relation [6]
D(w) =na(A+iw)’ J dtexp[ — (A+iw)t] {r¥doli), (11)
o

where again (r?), is evaluated in the static disorder limit. Eq. (11) implies that
D{w)=Dy(w —14) (12)

so that if D, is known explicitly as a function of w in the static disorder limit, D{w) in the renewing system
(with the renewal time distribution (9)) becomes immediately available. Another interesting result is obtained
by comparing eqgs. {7) and (11) 10 yield the following relation between the mean-square displacements in the
renewing and in the equivalent static-disorder system

!

Cry (1) = (ryelt) exp(—At) +A J (2+At—A1) exp(—A1) (ridve(t)dr . (13)

[

Finally note that for w =0, eq. {11) yields eq. (2) with t,.,=A"! and {r*).., given by eqgs. (3) and (9).

The simplicity of the relations (egs. (2} and (12)) between the transport properties of the dynamically dis-
ordered system and the same properties of the static system results from the great simplification associated
with the model assumptions that describe the medium evolution as a random series of uncorrelated global re-
newal events. Any property whose total magnitude is given by additive contributions from the processes oc-
curring in different renewal periods may be calculated from the same property for the static system by averaging
over the times in which the renewal events occur. Such a procedure was recently carried out in great generality
by Druger [8]. He considered a general observable G(¢) whose time evolution may be written as a sum of
contributions from different renewal periods

N
G(H)=go(to)+ T 8(1) (14)
with ty=¢ while ,, n=0, ..,N—1 are the times hetween renewal events where g,(0) =g(0) =0. In principle
the function go{ x) may be different from g(x), because g, describes the evolution of G starting from a random
instant of time while g corresponds to a process which starts immediately following a renewal. In a similar way
the two time distributions: ¢(7) dt, the probability for a renewal to occur in the time interval (7, T +d71) mea-
sured from some random time, and y(7) dt, a similar probability distribution for t measured from the previous
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renewal, may in principle be different. Assuming that these distributions as well as the properties g,(t) and
g(7) of the static system are known, Druger [8] obtained the following expression for the Laptace transform

G of G

L T diw) dgo | . dg
(Gliw))"= ry= [a"’(iw} L(W dr) +“"L(¢ dr)J ‘ (13)
where
()= Jcb(r) dTz, Y()= fw(r)dr (16a)

and (for a function A(¢))
Lk()] =h(iw) = jdrexp(—-iwr) h(t) . (16b)
0 .

The result (15) is the most general consequence of the DNR model and may be shown to yield the results (2),
(11}, (12) and (13) in the appropriate limits. In particular it should be noticed that even though the earlier
results {2) and (11)-(13) were obtained for a random bond model, the result (15) 1s based only on the un-
correlated nature of the renewal events, which serves to show that also our former results are valid for any type
of randomness.

We now turn to the HZ model [9]. The mathematical statement of this model is given by eqgs. (17), (18):

dP

TP AACAAS (17a)
P=3Y P|iYy, (17b)
V=015 — 1)) U= 4D, (17¢)

where u=(if) is a bond index. If ¢, the transition rate associated with bond 4, were time independent, this
would have been the regular master equation for a random walk in a random bond system. However, the prob-
ability f,(o,r) that the bond x4 will be in state o is itself governed by a master equation

d
"Eg’—q= GZM"(G’ a)file', 1) (18)
with
M{o,0)=— ¥ MJo',0).
o #g

HZ considered only the two-bond-state system, i.e. when the bond can be either available (g=1) or broken
(0=0). For this case evaluation of the diffusion coefficient in the effective medium approximation yields [ 9]

D(w)=Dy(w -1/7), (19)
where
Plt=M(1,0), ¢/t=M(0,1), p+q=1. (20

Eq. (19) is identical to the DNR result (12). This suggests that this result is valid in more general circumstances
than those implied by the DNR or the HZ model assumptions. Indeed, a similar result is obtained in the scaling
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Fig. 1. The correlated bond rearrangement model.

treatment of the stirred percolation model of Grest et al. [11]. It may also be shown that the HZ effective
medium approach, when applied to a fluctuating random site (rather than a random bond) model also leads
to the same result. Egs. {(12) or {19}, however, are no longer vahd in more general circumstances. For example,
in the case where each bond can be in several states (“‘grey” transport, where ¢ can attain several values be-
tween zero and one} effective medium theory leads to a diffusion rate which depends on n—1 relaxation times
(where n is the number of the bond states).

In the systems considered above, the underlying polymer motion was modeled 1n the simplest possible way:
in the DNR model the random bond network is rearranged completely at each renewal event. In the HZ model
each bond fluctuates between its open and closed states independently from the other bonds. It 1s of interest
to ask to what extent bond-bond correlations in the renewal processes affect the diffusion through the network.
Harris et al. [16] considered this problem for a one-dimensional DNR-type mode!, and showed, by simple
simulations, that if the bond renewals are restricted to occur between nearest neighbor sites, the dc conductivity
is reduced relative to that for random renewal, since the carrier must occasionally wait for the (slower) renewal
chain of events before it can proceed along the chain. More recently, this question was taken up by Granek
and Nitzan [17], who have considered an extension of the HZ model in two dimensions. In this generalized
model there are two kinetic processes: each bond can fluctuate between its open and closed position with rate
i/ as in the HZ case. In addition, pairs of adjacent bonds can interchange status (see fig. 1) so that if one
of them is closed and the other is open a rate process with rate o can transform them to the opposite (open-
closed) configuration. In the extreme case where 1/1 =0 the a process corresponds to a gate-hke segmental
motion, which may alternately close one of two available pathways. This scheme is somewhat reminiscent of
the Grotthus mode! for proton transport in 1ce which is facilitated by rotation of the water molecules.

The basic network entity of this model is a two-bond unit (e.g. the pair in fig. 1) which can be in one of
four states (11}, (10), (01}, or (00). These units evolve according to the stochastic rate equation

afor=0-f, (21)

where f(t) is the four-siate probability vector whose components f{Au,t) are the probability to find the pair of
bonds in state Ay (Ap=00,10,01,1 1), and where the rate matrix 2 is

—2pit G g/t 0
plt —(t7'+a) o g/t
Q=
plt o —(t7'+a) g/t (22)
0 pit plt —2q/t

with p/t and ¢/t (with g=1—p) the rates at which bonds are created and destroyed independently and with
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i e 4 1 Fig. 2. Effective medium rate as a function of the bond filling
0.1 u 7] factor p for the adjacent bond interchange model /7 =0, Curves
0.0 | _,,I-'° L | (A)-(E) correspond 1o different values of av as follows (in units

: 0.40 0,50 0.0 0.70 0.8 0.9 of the single bond hopping rate): (A) a=150, (B) =30, {(C)
P a=0.25 (D) x=0.025, (E} a=0.004. v =0 n all cases.

the rate « as described above, 1.e. the rate for interbond exchange. The rate matrix (22) describes a situation
in which the equilibrium fraction of unbroken bonds is p.

From the percolation theory point of view the limit T =oo constitutes a new percolation problem where on
top of the usual statically disordered bond network we have introduced a dynamical interchange between the
state of adjacent bonds. Effective medium solution of this problem may be obtained [ 17] by generalizing the
approach of Harrison and Zwanzig [9]. For the two-dimensional square lattice we find that the effective me-
dium percolation threshold (which is p=1{ in the static, &« =0 limit) is downshifted to p=0.341. This threshold
does not depend on the magnitude of a. Some results for the p dependence of the effective medium hopping
rate are shown in fig. 2 for 1/7 =w =0 and for different values of «. Note that all rates, «, t/7, and the resulting
effective medium rate, are ¢xpressed in units of the single-bond hopping rate. When 1/t and/or w are different
from 0 the threshold moves to p=0 (fig. 3); however, the general form of the curves does not change.

These results clearly show the role of bond motions in particle diffusion on a disordered matrix. For typical
cases where & and 1/1 are =Q(1) or larger the matrix motions quantitatively change the diffusion rate above
the percolation threshold. Below the percolation threshold diffusion is practically dominated by these matrix
motions. Correlations in matrix motion, expressed by the magnitude of a relative to 1/1, affect the rate quan-
titatively but do not change the qualitative behavior obtained in earlier work for the case of uncorrelated re-
newal events.

3. Relation to the physical world

The relattons given above allow the results of extensive work on static disorder hopping and percolation
modeis 1o be applied in studying dynamic disorder transport. The main problem incurred in the application
of these results to actual systems is our ignorance concerning the parameters which determine the dynamics
of the host network. Even with this limitation, the results of the previous section provide a convenient frame-
work for analyzing experimental systems [18].

Another approach attempted by us some time ago {7] is to try to identify the correspondence between the
parameters of the dynamic disorder hopping (DDH) theories and more-traditional approaches such as free
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Fig. 3. Same as fig. 2. Curves (A)-(D} correspond 10 different valaes of e and 1/7 as follows: {A) 1/t=0.1,a=3.0;(B) /1 =0, =30
{C) 11 =01, a=0025 (D) /r=0, a=0.025. & =01n all cases. Curves (B) and (I} are the same as the corresponding curves in fig. 2.

volume theory { 3] (FVT), which has been extensively used to fit experimental data for transport and relax-
ation in polymers. A somewhat modified version of the procedure of ref. [7] is the following: if we adopt FVT

for the motion of the polymer segments, T, Can be estimated from

Tren™ ( Buea/Useg) EXP (Y Vieg/ Vo) (23)

where V%, is the smallest volume needed for segment motion, of order equal to the characteristic volume of
a segment, V; is the free volume [3], dueq 15 the linear dimension associated with a typical segment, and U,
is the thermal velocity related to the segment mass and 1o the temperature. 7 is a constant of order <1. Eq.
(23) is obtained by equating the FVT expression for the diffusion coefficient associated with local segmental
motion with the expression Dsegzaﬁcghm. This local segmental motion becomes mostly frozen below the glass
transition temperature of the polymer.

For an ion moving in this polymer network we are interested not in local motion but in long-range motion
by hopping. The polymer host plays the role of a random network for this motion and we identify [7] the

filling factor p of this network with

p=exp(—y Vi/V5), (24)

where y, is another constant and where ¥ is the minimum volume needed for the ion hopping. p vanishes
for V0 and becomes unity as Vy—cc. Assuming that p<p. and that the individual ion hopping rates are fast
relative 10 the T,., scale, eq. (6) is relevant for the dc diffusion of the ion. This leads to

(pc—exp(—nVi/V)] ™ (25)
(ascg/uscg) CXD(}’ V:cg/Vf) ‘

The temperature-dependent terms 1n (25) are s, ~ ﬁ and V=V, +a(T—T,), where Ty is the glass tran-
sition temperature, ¢ is the thermal expansion coefficient of the polymer above the glass transition temperature

DlO]’\:
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(the constant V;, may be further expanded with respect to pressure}. Eq. {25) thus provides the expected tem-
perature dependence of the ion diftfusion coefficient and (by eq. (1)) of the conductivity. It should be kept in
mind though that this oversimplified treatment has neglected important temperature-dependent processes such
as 1on-10n interaction and ion pairing.

The main qualitative prediction of eq. (25) is that the temperature (and pressure) dependence of D, should
follow the temperature and pressure dependence of intrinsic polymer properties (e.g. viscosity) since they are
controlled according to (25) by the polymer motion. This prediction is often confirmed by ¢xperiments {1].
We recall (see section 2) that other regimes exist where the 1on motion 1s affected also by the (temperature-
dependent) ion hopping rate.

4. Conclusions

In this paper we have summarized the results obtained thus far on the DDH problem. We have seen that
under some model assumptions general relations exist between the transport properties in such systems and
the same properties of the corresponding static systems. While the relevance to experimental systems is obvious
and can be demonstrated even at this stage, it 1s also evident that further elaborations of the theory are needed
in crder to make it a quantitative tool. In particular the following questions still remain open.

(a) How do interactions between mobile 10ns affect the diffusion and conductivity? In framework 10nic con-
ductors mobility was found to depend strongly on such (screened coulombic) interactions [ 19]. In polymeric
electrolytes where mobility 1s dominated by host motion such interactions may still be extremely important
and can modify the transport behavior in an essential way. [t should be remembered that in addition to the-
oretical difficulties in treating such many-body problems, the experimental situation is also complicated by the
fact that varying the 1on concentrations in the polymer host in an effort to understand the role of interionic
interactions often strongly affects the motion of the host polymer, since increased concentrations of charged
1ons produce a weak crosstinking effect on the chains [20]. Nevertheless, in most polymer electrolyte systems
of current experimental interest the overall 1onic concentration lies in the range 1-10 molar. At these very high
concentrations, nearly those of solvated molten salts, interactions among ions are clearly very important.

(b} What are the implications of DDH models for properties of the polymer network other than ionic mo-
tions? The arguments in section 3 suggest that the polymer segmental motion and the motion of an 10n nside
the polymer may be described within the same theoretical framework. The ability to describe polymer me-
chanical properties using parameters of the DDH theory will be an important step towards establishing a firm
theoretical connection between mechanical and charge-transport properties of the host polymer. Efforts to con-
struct such theories are currently underway.

(c) How can the results of experimental studies of such properties as microwave conductivity [21], dielectric
relaxation, Brillouin scattering [22] hinewidths, inelastic neutron scattering [23], or NMR relaxation times
[24] be amalgamated into the dynamic disorder models? Properties such as the bond switch rate «, or the
renewal time 7., are clearly and closely related to these relaxation properties, but a more detaited under-
standing of the nature of the ionic conduction process is needed before any facile assignment of a relaxation
time to a renewal process can be ventured [1,3].
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