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Recent progress in the theoretical understanding of fast 1on conduction in solids is discussed, with emphasis placed on mecha-
nistic behavior and on the characteristic features of particular sorts of solid electrolytes. We consider soft framework materials
such as e-Agl, and hard framework materials such as B ”-alumina. In each case, we discuss which theoretical methods have been
used to investigate mechanisms of conductivity and diffusion, and some of the physical insights which have been gleaned on the
mechanism of ionic conductivity, Comments are also made on glassy conductors such as glassy lithium aluminosilicate, and
polymeric 1onic conductors such as polyethylene oxide/lithium triflate. Since different characteristic timescales, and characteristic
energies, are appropriate for these different classes of materials, varying theoretical methods have been used, and should be used,
to understand the 10nic motion. Particular concepts, such as dynamic percolation in polymer electrolytes, sirong memory effects
in soft framework materials, strongly correlated liquid-like diffusion in hard framework materials and disorder-induced weaken-
ing of correlations in glassy materials are pointed out.'We speculate briefly on the role of very strong interionic correlatians in
causing possible domain-wall conduction, a process that goes well beyond any hopping description. We bricfly discuss some
special behavior observed in certain classes of solid electrolytes, such as fractal behavior, “universal dielectric response”, the
mixed alkali effect in glasses, and the *“Liang effect”, which is the enhancement of ionic conductivity by inclusion of an insuiating
second phase. Remarks are ventured both on theoretical methodology and on the usefulness of models for understanding, pre-

dicting and designing solid electrolyte behavior.

1. Introduction

Although fast ion conductors, or solid electrolytes,
were first discussed by Faraday well over a century
ago [1], modern work in the area really began with
Ketelaar’s investigations of Ag,Hgl, in the 1930s (2],
and with the important work, beginning at the Ford
Laboratories, on the B-alumina structure in the 1960s
[3]. Solid electrolytes are generally defined as solids
that exhibit a characteristic ionic conductivity more
typical of liquids, lying in the range from 10-¢ to
10" Q' cm~' near ambient temperature. Al-
though the original discoveries of solid electrolytes
were certainly fortuitous, within the past decade or
50, theory has played an increasing role in helping to
understand, and to predict, the behavior of charac-
teristic solid electrolyte materials.

The fundamental problems involved in discussing
fast 1on conductors are exceeding complex. One deals
with strongly disordered solid materials, in which
Coulombically charged particles move rapidly either
among sites or within a disordered host medium.
Characteristic concentrations of charged species are
far higher than normally seen in aqueous solutions,
and indeed these strong Coulomb correlations com-
prise one of the most challenging aspects of the the-
oretical interpretation of fast ionic conductivity.
Nevertheless, a great deal of progress has in fact been
made 1in the theoretical understanding of solid elec-
trolytes, and a number of important conceptual and
mechanistic ideas have evolved from these theoret-
ical studies.

Since facile ionic charge transport is the hallmark
of solid electrolytes, the great preponderance of the-

0 167-2738/88/$ 03.50 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)



4 M.A. Rainer, A. Nitzan/Fast ion conduction: some theoretical [ssues

oretical studies concern themselves with conduction
or diffusion. Other properties of solid electrolytes,
such as structural regularities, thermodynamics or
optical properties have not been extensively inves-
tigated theoretically. Given this situation, we will
concentrate in this overview on theoretical treat-
ment of ionic conductivity and of charge transport
mechanisms.

Several excellent reviews have been published out-
lining the theoretical treatment of solid electrolytes
[4-7]. In general, these reviews have been struc-
tured in terms in the techniques employed for un-
derstanding the materials. For example, in the
landmark review of Dieterich et al. [$], the distinc-
tion was made between hopping models, in which
ions are assumed to be localized at a given set of sites
and no inertial motion of the carriers is included, and
dynamical models, in which the ionic motion 1s de-
scribed by Newton's equations with proper interac-
tion potentials, and approximations are utilized to
solve for the conductivity. Dieterich et al. [5] cite a
number of theoretical advances made using both
hopping models and dynamical treatment. The reader
is referred to this review for a still very current dis-
cussion of the methodologies employed and of some
of the results obtained.

We focus in the current overview on the systems
involved in the study of solid electrolytes. These can
be fairly well divided into very highly disordered
materials including glassy and polymeric conduc-
tors, and framework crystalline materials, including
soft ionic crystals such as a-Agl and Ag,Hgl, and hard
covalent crystals such as $-alumina, LiAlSiO, and
the hollandites. Section 2 presents some general the-
oretical notions on polymeric and glassy electrolytes.
It also includes a qualitative discussion, based on re-
cent work of Angell, Torell and co-workers [ 8,9], on
the relationship of ionic motion to lattice motion in
the highly disordered electrolytes. This provides a
unique and valuable conceptual picture upon which
an understanding of the mechanisms of charge trans-
port in these materials can be based. Section 3 dis-
cusses soft framework crystals. This is probably the
class of solid electrolytes that is best understood the-
oretically, and a general picture of a lhquid-like
charge-carrier array moving in a nearly harmonic
bath provided by the immobile counterions seems
essentially correct; correlations both among carriers

and between carrier ion and counterion cage are im-
portant, and are briefly discussed. This 1s also the
only area of solid electrolyte research in which elec-
tronic structure studies have been published, and
some discussion of those results is given. Sections 4
and 5 are devoted to some very recent work on the
hard, covalent framework conductors, section 4 1s
based on recent theoretical analysis by Boughaleb et
al. on the use of effective potentials for discussion of
correlation effects in ion transport in framework ma-
terials. Section 5 discusses the question of strongly
correlated ion motions in covalent frameworks, 1n
the light both of new experimental work on the f-al-
umina materials and hollandites and of simulation
studies of a quite different class of problems, the
structure of rare-gas overlayers on graphite. It con-
tains some speculation on domain structures and
conductivity. Section 6 very briefly mentions some
special topics that have been treated theoretically,
including activation entropy, enhanced transport
along interfaces and retarded transport through in-
terfaces, fractal studies of some dynamical conduc-
tivity effects and the mixed alkali effect. Finally,
section 7 presents some overall comments.
Theoretical work on solid electrolytes is now a rich
and extensive area, and no attempt at completeness
can even be attempted here. The aim of this article
is, rather, to give the flavor of current theoretical work
in the area. We apologize in advance both for the in-
completeness of this article and for the omission of
some very important and illuminating theoretical
work, especially in the area of hopping models.

2. Highly disordered electrolytes: polymers and
glasses

2.1. Generalities

Polymeric and glassy solid electrolytes comprise
the newest, and one of the most challenging, areas of
solid-state ionics research. Even an overview of cur-
rent theoretical research in these materials involves
both more detail, and more speculation, than are
really appropriate here. Two features of these elec-
trolytes distinguish them from the crystalline mate-
rials: Firstly, while all solid electrolytes require
disorder to some degree, or else no simple pathways
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for ion mation are available, the disorder in glasses
and polymers far exceeds that in crystals. There is no
long-range order of any type in glasses and polymers;
by contrast, in a-Agl or B-eucryptite, the mobile ions
ar¢ disordered over the available sites, but the im-
mobile-ion array exhibits crystalline order. A second
distinction in fact follows: glasses and polymer elec-
trolytes are, in a definite sense, not solid electrolytes
at all but rather, at least to some extent, liguid
electrolytes.

Any glass, conductive or not, can be viewed as a
supercooled liquid; thermodynamically, it has
undergone a glass transition in which configura-
tional motions of a certain type are locked, but it has
not undergone the liquid — solid, first-order freezing
transition that produces crystals. The entropy of the
glassy state, like that of the liquid state, is corre-
spondingly high. Solvent-free polymer electrolytes,
which were first described by Wright et al. only fif-
teen years ago [10], conduct well only above their
glass transition temperature 7,. Above this temper-
ature, the local environment of the mobile ions is in
fact liquid-like; the disorder is dynamic as well as
static, with the coordination environment about any
given ion evolving on a timescale (10-°-10-!' 5)
similar to that of ordinary liquids, These materials
appear macroscopically as solids, because their vis-
cosities are very high, orders of magnitude higher
than those of ordinary liquids. In polymers, this high
viscosity is due to entanglement of the long poly-
meric chains, while in glasses it arises from the im-
mobile structure caused by the network-forming
component,

Several excellent recent reviews of polymer elec-
trolytes [11-15] and glassy [8,16] electrolytes are
available, and the reader is referred to them for ex-
tended discussion of theoretical treatments. In fact,
theory has been far less successful in these areas than
it has been in crystalline electrolytes, due largely to
the structural complexity of the materials. We will
present a very brief discussion of some of the salient
features that a theory must contain, and then men-
tion a classification scheme, due to Angeli [8, 9], that
permits qualitative understanding of important fac-
tors in the ion transport in these materials.

2.2. Polymer electrolytes: some features

A typical polymer solid electrolyte, such as
P(EO)¢LiCF;S0,, can exist in several morphologies
(here P refers to poly, EO means ethylene oxide -
CH,-CH,-0-, the 6 indicates six repeat units per
salt, and LiCF;80; 1s the complexed salt). Although
early models suggested otherwise [17,18], a large
number of experimental data have now shown con-
clusively [11-15,19-21] that the region of high con-
ductivity is the homogeneous elastomeric amorphous
phase, and that the presence of partly crystalline
phases inhibits conduction. It has also been dem-
onstrated quite convincingly that the motion of the
mobile ions is strongly linked to those of the polymer
segments [11-15,22,23]; below T,, where these chain
segment motions become frozen, the ionic conduc-
tivity drops to extremely low values. Finally, it ap-
pears quite certain that both antons and cations are
mobile in ordinary polymer/salt electrolytes of the
type P(B), MX [11].

All of these observations can be explained quali-
tatively using free-volume models, and accordingly
the free-volume theory has been very broadly ap-
plied to these materials [11-15,22-25). Free-vol-
ume theories are based [26,27] on the notion that
the mobile species can in fact move only when, lo-
cally, a void opens which is large enough to accom-
modate that species (subsequent work by the authors
of ref. [27] considers kinetic effects). In the case of
polymer electrolytes, the rough independence of mo-
bility on ion size [28~31] and the very strong cor-
relation of ionic conductivity with chain segment
motion imply that it is chain segments, rather than
the 1ons themselves, that must move if conduction
is to occur, Free-volume theory then uses simple sta-
tistical ideas to maximize the number of ways in
which a given amount of free volume can be dis-
tributed, and eventually results in an expression for
the mobility of the form [26,27]

pocv exp( —yV*/Ve) | (1)

where v, 1s a thermal velocity of the chain segments,
y 1s a parameter of order unity accounting for over-
lap of free volumes, V* is a characteristic van der
Waals or hard-sphere volume of the segment and V;
1s the free volume. If the concentration of carriers is
constant, and if the free volume is expanded about



6 M. A. Ratner, A. Nitzan/Fast ion conduction: some theoretical issues

some temperature T, at which the free volume van-
1shes, one obtains for the conductivity

o=0oexp| —B/R(T—-T5)] , (2)

where g, is a prefactor containing charges, carrier
concentrations and constants, B is a constant in-
versely proportional to expansivity and proportional
to V*, and R 1s the gas constant. The form (2) is
identical to that of the empirical Vogel-
Tammann-Fulcher ( VTF) equation [32,33], which
fits the thermal dependence of many polymer elec-
trolytes exceeding well. Cheradame [23] suggested
that the form can be improved by including an ac-
tivation energy term accounting for the production
of free ion carriers from the added salt, resuiting in
the expression

0=0¢exp[ —E£,/RT-B/R(T-T,)] , (3)

which describes the conductivity reasonably well for
a number of polymer electrolytes.

While the free-volume picture is intuitively at-
tractive, and can be used to derive the VTF equa-
tion, there are some significant disadvantages
associated with 1ts use [34,35). Firstly, it is a
quasithermodynamic theory, and therefore not based
on microscopic description of the materials; this is
a major drawback to its use as a vehicle to interpret
and/or predict variations in conductivity with such
experimental variables as concentration, 1on size, ion
charge or coordination environment. Secondly, no
dynamics or kinetics 1s included in the simple free-
volume model; in particular, the free volume is as-
sumed to move instantaneously with no constraints
{27], and no effects of ion-ion correlation or ion-
polymer complexation are included. Finally, there
are some quite straightforward experiments, such as
a maximum in the conductivity as the ion concen-
tration is varied [29,36], that cannot be simply ex-
plained using free-volume theories.

One alternative model 1s the configurational en-
tropy model of Gibbs and co-workers {37,38]. This
is another quasithermodynamic picture, this time
based on entropy rather than volume as the impor-
tant parameter. Although it is preferable to free-vol-
ume models for several reasons, and has been broadly
applied to problems in glasses, polymers and molten
salts [34,35,39], 1t has not vet been applied exten-
sively to polymer electrolytes.

More microscopic approaches to problems involv-
ing polymer electrolytes have been presented; these
have generally been based on percolation theories.
Ordinary static percolation theory has been used to
interpret the dependence of conductivity on the ex-
tent of crystallinity in partly crystalline, inhomoge-
neous polymer electrolytes (cf., e.g. ref. [20]). A
more unusual construction, called dynamic perco-
lation theory (DPT), has been presented, developed
and applied by the Northwestern group [11,12,40,
41}; some recent results using this model are pre-
sented in this volume by Granek et al. [42]. The DPT
model takes account of the facts that the disorder in
polymer electrolytes is dynamic, rather than static,
and that the motion of the ions depends strongly on
those of the polymer host, to generalize the usual
percolation picture as follows: in percolation theory
[43], one usually considers hoppers moving about
on a lattice, and writes, for the motions of these
hoppers,

—~f J

dP,

il A —W.
T ;( ;
where P, 15 the probability to find the hopper on site
i and W, is the hopping probability per unit time
from j to i. The percolation aspect enters in the as-
signment of the W, which are normally chosen as

W,.,;=0, probability I ~f,
=w, probability f, (5)

where fis the percentage of open, or available, jump
routes (usually called “bonds”, but not chemical
bonds). Dynamic percolation theory generalizes [40]
the percolation model of (4) and (5) by reassigning
the routes as open or closed, the reassignment oc-
curring on a characteristic timescale 7., corre-
sponding to a “renewal” of the hopping situation for
the ions. The DPT model has been studied formaily
and applied to understanding the frequency-depen-
dent conductivity, the viscosity, the Walden prod-
uct, and the thermal dependence of conductivity in
polymer electrolytes [41,42].

All of these theoretical pictures, at their current
levels of development, are quite inadequate for dis-
cussion of real polymer electrolytes, in that none of
them appropriately consider ion-ion interaction.
Characteristic polymer electrolytes have ion concen-
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trations in the range 1-10 molar, corresponding to
average interionic separations of 5-8 A. Clearly, it
will be necessary to include interionic Coulomb in-
teractions to obtain any real, quantitative under-
standing of the conduction. Although experiments
are now being reported that detail quite well
[11,12,29,36,44] the concentration dependence of
the conductivity, no convincing theoretical ap-
proach has yet dealt with these problems. The chal-
lenge is a severe one, since one deals here with strong
electrolyte solutions in a structured solvent. This is
an outstanding problem for theoretical approaches
to solid electrolytes.

2.3. Glasses

The conceptual understanding of transport in
glassy electrolytes appears to be even less well de-
veloped than that in polymers. This is largely be-
cause some absolutely vital principles remain
unresolved experimentally. Perhaps the most im-
portant of these involves glass structure, and the re-
lation of structure to ion transport. The simplest
model for glass structure, Zachariasen’s continuous
random network model [43,45,46], pictures glasses
as being formed simply by random orientational dis-
order of bond angles, starting with a single crystal.
Such a glass would be homogeneous in all physical
properties, including density, if observed on a dis-
tance scale of several lattice spacings. Several recent
studies of glasses, including ion-conductive glasses,
discuss the structure of the glass in terms of this Za-
chariasen model, and present structural and/or spec-
troscopic evidence for its appropriateness. There are,
however, a series of theoretical and experimental re-
ports indicating that glasses in general, and glassy
electrolytes in particular, are inhomogeneous on dis-
tance scales of order 10-100 A. The causes suggested
for such inhomogeneities include nonuniform den-
sification on quenching from the melt and selective
cluster bonding. Whatever the cause, several recent
reports discuss ionic conduction in glass in terms of
intracluster and intercluster jumps in such an in-
homogeneous structure.

Clearly, the nature of the conduction mechanism
can differ from a hopping-like picture in a disor-
dered random framework potential to a percolative
pathway involving higher mobilities in a particular

region of an inhomogeneous glass, with slower mo-
tions in the intervening structure. Pechenik et al.’s
work on f3-eucryptite glass [47,48], where the struc-
ture 1s taken as a continuous random network but
the glassy structure reduces the ordering effect on the
Li ions and therefore increases the conductivity (re-
duces the activation energy) compared to the com-
parable crystal, and Mundy and Jin's work [49] on
Na™ transport in sodium aluminogermanate glasses,
in which transport is discussed in terms of barriers
to individual jumps determined by strain energies
and correlation factors among mobile ions, both re-
late to transport within a continuous random net-
work. On the other hand, Malugani et al.’s recent
work on Ag,PO./Agl glass [50] interprets the con-
duction using a percolation model, with high mo-
bilities in the a-Agl clusters. Clearly, it is difficult to
suggest a theoretical picture of ion transport if the
results for glass structure are so tenuous. Part of the
difficuity may arise from oversimplification: just as
solid electrolyte crystals should be divided into classes
including hard frameworks, soft frameworks, plastic
crystals and rotator phases, just so different glasses
might well be expected to exhibit different structural
motifs and transport mechanisms. Mundy and Jin
[49] suggest just such a difference between the al-
uminogermanates, which remain homogeneous, and
the aluminosilicates, which exhibit phase separation
[511.

Despite the confusion arising from different struc-
tures, several important generalities do appear useful
in discussing charge transport in glassy electrolytes.
For covalent, hard glasses, one might employ a mod-
ified hopping model, in which the parameters of the
usual hopping model for hard frameworks are rein-
terpreted as averaged values in the glass. The sig-
nificant disorder in the framework structure largely
removes the complications resulting from commen-
surability effects in covalent framework electrolytes
[52-56]. One then writes

o= {(Ng*dkyT)Ba vg exp(~GoikuT) , (6)

where N, q, d, B, vo, a and G,, are, respectively, car-
rier concentration, charge, the dimension of the
problem, the fraction of mobile ions, the effective
attempt frequency, the mean jump distance for the
ion and the free energy barrier to migration [49,56].
The G, term contains an entropy factor, relating to



8 M. A. Ratner, A. Nitzan/Fast ion conduction: some theoretical issues

correlations among the ions and to the geometry of
conduction paths, and an enthalpy term, usually in-
terpreted in terms of hopping enthalpy.

A major debate concerns the f§ factor, the per-
centage of mobile ions. One school of thought, orig-
inally suggested by Ravaine and Souquet [57], is that
most ions are in fact bound, and therefore immobile,
in glassy structures. According to this “weak electro-
lyte model”, only a small fraction of carriers can
contribute to the conduction, a function fixed by the
ratio f=exp( — G4/kgT), where Gy is the free energy
needed to dissociate the alkali 1on from an original
site in which it s Coulombically bound (trapped) by
a charge compensator or by a defect like a non-bridg-
ing oxygen. The other approach is to take =1, and
attribute the activation terms solely to mobility
effects.

Martin [58] has presented a clear description of
the weak electrolyte picture, and has shown that the
B=1 and f=exp( - Gy/ksT) pictures might not be
so diametrically opposed as first appears. Fig. 1 is his
representation of alkali motion in a generic alumi-
nosilicate glass. In the weak-electrolyte-type model,
there is a shallow second local minimum in the ac-
tivation curve, representing an intermediate, bound
alkali, while in the strong-electrolyte picture there is
no such intermediate. Nevertheless the activation
process corresponds to the overall height of the free-
energy barrier, whether or not the secondary, weak-
electrolyte minimum occurs, The weak-electrolyte
picture is very useful for correlation of ionic con-
duction with thermodynamic properties, and will
probably continue as an extremely useful conceptual
tool for explaining glassy conduction. Indeed, when
concentrations of charged species become very high
in any electrolyte, solid or liquid, factors involving
carner trapping by counterions become highly rele-
vant, Armand [59] has recently stressed the utility
of the weak-electrolyte idea in interpretation of poly-
mer electrolytes.

Glassy electrolytes can be usefully thought of as
statically disordered frameworks, so that many of the
ideas important in framework conduction are rele-
vant; examples include the importance of ionic cor-
relations, the hop-like nature of ionic excusions and
the promoting role of immobile-ion vibrations. A
number of simulations have been reporied on glassy
frameworks [60-62]. They show results that are, in

O | el -—r 0

Fig, 1. Schematic representation of the weak-clectrolyte and
strong-electrolyte pictures for conductivity in glasses. The strong-
electrolyte picture above shows no local minimum in the poten-
tial, while the weak-electrolyte theory does postulate an equilib-
rium concentration of unbound species, with Coulomb bonding
energy AEe, and relative concentration exp( —AE/RT), whose
further activation barrier to diffusion, AE,, is relatively small.
BO and NBOQ denote bridging and non-bridging (charged) oxy-

gen. From ref. [ 58]. N
Y

many ways, quite similar to framework crystals. Some
important differences do, however, occur. One is the
reduced role of commensurability {(due to the ran-
dom ion/lattice potential) already discussed. A sec-
ond difference involves the packing density, which
1s a relevant parameter in glasses, but not in crys-
talline frameworks, where the structure determines
the density. Mundy and Jin have shown {49] that
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substantial changes in the activation enthalpy occur
as the packing density increases and the sizes of the
aluminogermanate rings that determine local barrier
heights increase also. Similation studies on glasses
indeed show that larger densities will generally pro-
duce substantially lower conductivities, as the free
volume and the space available for ionic diffusion
are reduced [8]. Clearly, more work correlating
structure and conduction in glassy electrolytes is
badly needed.

2.4. The relationship of relaxation and conduction.
decoupling indices

In dilute liquid electrolyte solutions, the viscosity
of the liquid can be related to the diffusivity of dis-
solved ions either by the empirically based Walden
rule [63]

Dn=constant , (7)

or by the Stokes-Einstein form (obtained for a
spherical particle in a continuum)

D, =kgT/6mnr; . (8)

Here D, n and r, are the diffusion coefficient of the
i species, the viscosity and the radius of the ; species.
In framework crystalline solid electrolytes, neither
(7) nor (8) are really meaningful, since these solids
have enormous (essentially unmeasurable) viscosi-
ties, which do not vary significantly with tempera-
ture (as D does). The glassy and polymer electrolytes
are, as stated above, in some sense liquid, and thus
it becomes an interesting issue whether or not the D,
o 1/n result applies to them.

Angell has generalized this concept considerably
[8,9], and has defined a decoupling index R, as the
ratio of mechanical and electrical relaxation times:

RY=T5/IG H] (9)

where 1, and 1, are the relaxation times for struc-
tural and conductive processes. They may be ob-
tained either from direct measurement, from the
definitions

<T0> =€m€0/0dc 3 (10)
(T =00, . (11)

Here ¢, €, 04, # and G are respectively permit-

tivity of free space, optical dielectric constant, dc
conductivity, shear viscosity and shear modulus. Re-
membering the Nernst-Einstein relationship, we ob-
serve that R, is proportional to the Walden product.

Angell uses the values of R. to discuss several
properties of glassy and polymeric electrolytes [8,9].
Some of the interesting observations include:

(1) For glasses, the ratio changes very rapidly from
the high-temperature melt to the service temperature
(below T,). For example, in CsAg,l.Cls_ , the con-
ductivity decreases by a factor of 10° on going from
139°C to T, at —21°C. The viscosity change over
this same interval exceeds a factor of 10'5. Thus R,
in the lonic glass at its service temperature is of order
10'% the electrical relaxation is far faster than the
mechanical, in this frozen, supercooled material. The
large value tells us that mechanical response 1s en-
tirely decoupled from electrical response,

(2) For polymer electrolytes, one must use for T,
the time appropriate for the relaxation of a single
bead on the polymer chain. This local relaxation time
corresponds to that seen in light scatlering.

(3) For typical polymer electrolytes, the decou-
pling ratio R, can be smaller than, though roughly of
order, unity. This means that local mechanical stress
relaxes more quickly than does electrical field. Val-
ues of ~0.02 are found for PPG4000-LiCFSO,
(16 : 1), roughly independent of temperature. An-
gell and Torell draw two inferences from this [9]:
structural rearrangements are not always accom-
panied by charge migration, and ion-ion interac-
tions might slow the ionic motion, thus decreasing
both g, and R,.

The values of R, are suggestive, and quite helpful
in deducing the important mechanistic effects on jon
motion. One trouble, as Torell and Angell note, is
that 7 in fact is very broadly distributed; one very
important issue is then just which parts of the relax-
ation spectrum are in fact relevant 1o ion motion.
The success of WLF relationships [22-24] in cor-
relating thermal dependencies and mechanical and
conduction properties certainly implies strong cor-
relation between the sections of the response spec-
trum responsible for conduction and for mechanical
properties such as viscosity, but since each is given,
in linear response [64], as an integral of a correla-
tion function, it is some distributed average of the
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relaxation processes that in fact is described by the
WLF relationship.

The values of R, provide intriguing hints into the
conduction mechanisms in these highly disordered
electrolytes. More microscopic work, both structural
and theoretical, is needed to provide more specific
insights.

3. Soft framework materials

Relatively soft crystals, often containing heavy
metals such as Ag*, Hg?*, Pb?* or TI1*, constitute
a large class of sohd electrolytes. Historically, these
are the first solid electrolytes to be studied carefully,
and indeed the early observation that the conduc-
tivity of Agl and related materials actually decreases
at the melting point was one of the earliest indica-
tions that ionic motion in fairly weli-defined chan-
nels in the solid was partly responsible for the high
conductivity in the solid. From a theoretical view-
point, these soft framework substances are probably
better understood than any of the other classes of
solid electrolyte.

3.1. Electronic structure considerations

Since solid electrolytes are electronic insulators or
wide-gap semiconductors, since their unit cells are
often quite large, and since good ionic conductivity
requires disorder at least in the site occupancy, the
prospect of performing electronic structure studies
on these materials is a daunting one and, accord-
ingly, very little electronic structure work has been
reported on any solid electrolyte. In the case of heavy-
metal superionics, however, some work on electronic
structure has been reported, and the results are
intriguing.

Kleppmann and Bilz [65] suggested long ago that
quadrupolar polarizability of mobile metal ions
should reduce the energy barrier, associated with the
motion along mobile-ion pathways from the minima
at sites of high symmetry (tetrahedral, in Ag,Hgl,)}
to barrier sites of lower symmetry (trigonal in
Ag,Hgl,).

This would imply that, for isostructural materials,
mobile ions with higher quadrupolar polarizability
should be relatively more mobile than ions with lower

N

Table 1

Activation energies for conduction in M, M1, salts, with com-
parable energy changes from electronic structure studies on
Mi;~ species (from ref, [67]).

Salt Cation AE, AE o™
radius {A)

Ag,Hel, 1.26 36

Ag.Znl, 1.26 42

Cu,Hzl, 0.96 60

In,Znl, 1.32 72

Nal;~ 0.95 80.25
KI3- 1.33 85.08
Agli~ 1.26 54,77
Hgli- [.10 98.18
Inli- 1.32 101.32
Cul3- 0.96 71.66

2} In kJ/mol. Details in original references.

quadrupole polarizability. More generally, if the
charge cloud of the mobile ion i1s deformable (that
is, if the polarizabilities are relatively high), one an-
ticipates that the energy barriers associated with
changes in coordination environment, as the particle
moves along the conduction path, will be smaller.
This criterion 15 complementary to such obvious
considerations as ion size (very large 1ons cannot
move well) and 1on charge (higher charged species
are generally far less mobile). The concept i1s an in-
teresting one: as one proceeds from “hard”, non-po-
larizable [66] metal 10ns such as Li™ or K* to “soft”,
polarizable [66] ions such as Ag™ or Pb?*, the rel-
ative importance of covalency increases, so that a de-
scription in terms of electrostatics becomes less
tenable. Nevertheless, the rationahization of barriers,
and therefore relative mobilities, in terms of 1on
electrostatics is both of heuristic value and concep-
tually attractive.

Table 1 contains some measured activation ener-
gies for 1onic conductivity in a family of heavy metal
iodide conductors. It is, of course, important to re-
member that conductivity activation energy can
contain contributions from carrier number activa-
tion since

o= Y Gl (12)

where o,n,q and 4 are respectively conductivity, car-
rier concentration, 1on charge and mobility, ob-
served activation behavior of ¢ can derive from y« or
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from n or from both. In addition, a number of dy-
namical studies (vide infra} as well as simple con-
siderations of conduction path geometry, indicate
that strong correlation effects can occur in the actual
dc conduction process, so that the activation energy
measured for the mobility ¢ can, and generally will,
include ion correlation effects, and thus the observed
activation energy will not be simply the single-ion
barrier. Nevertheless, table | strongly implies that
the barrier to single-ion motion surmounting the
barrier between minima is lowest for the Ag* ion,
and does not correlate well with the ion size (larger
Ag™ has lower activation energy than smaller Cut or
Na™). This indeed suggests that Bilz’s proposal for
quadrupolar polarizability as an important factor in
reducing the barrier to ion motion might be valid.
Accordingly, McOmber et al. (67] carried out
electronic structure studies on a small cluster of
MIZ~ where nis2 forM = Hg’* and n=3 for Ag™,
Cu™, Na*, TI*. They used basis-set self-consistent-
field methods, with pseudopotentials used to rep-
resent the inner-shell electrons both on iodine and
on the metal atom. They calculated the change both
in fragment total energy and in electronic wave-
function as the metal ion is moved from the cen-
tered, tetrahedral site to the in-face trigonal site.
Structural relaxation effects were not included. These
electronic structure studies predict that Ag should
have the lowest barrier. More interesting than the

Table 2
Mulliken population analysis.

energy changes are the calculated differences in elec-
tronic structure. In going from T, to C, symmetry of
the iodides about the central metal, the change in )i-
gand field corresponds to a Al= + 2, 0 change in an-
gular momentum. Thus only mixing of the type Ses,
d, pep, f, dess, d, g for the angular momentum of
the atomic orbitals on the metal should occur along
the Ty—C, path. Since the basis set on the metal con-
tains only s, p and d functions, contributions from
/=13, 4 symmetries, which would require f or g basis
functions, are not seen. Nevertheless, population
analysis of the fragment indeed suggests that the
electron cloud changes shape in exactly the way sug-
gested by quadrupole polarizability or crystal-field
considerations, to accommodate the ion to the change

' iodine environment. For example, the Ag* ion

moves a considerable amount of charge out of the p,
and p, orbitals, the d. _,» orbital and the d,, orbital
and into the p, and d,, orbitals, upon attaining the
Cs, geometry (table 2). This corresponds to A/ =0,
* 2 for the electrons involved. Qualitatively, crystal-
field considerations suggest that the metal ton should
change its shape to become more ‘“‘wasp-waisted”
upon attaining the Cs, site: that 1s, density should be
squeezed out of the plane containing the (negatively
charged) iodides. This is in accord both with the be-
havior suggested by the quadrupolar polarizability
argument and with the results of the ab initio elec-
tronic structure studies.

Species  Position Metal orbitals * Total
pop-
s x ¥y z Xx »y zz xy Xz vz ulation
Nali- tet. 0.506 0.401 0.401 0.401 1.709
in face 0.502 0.369 0369 0.460 1.700
KI;- tet. 0.416 0.360 0.360 0.360 1.496
in face 0.412 0.327 0.327 0.439 1.505
Cul3- tet. 0.616 0.420 0.420 0420 1.330 [.330 1,330 1.997 1.997 1 997 11.857
in face 0.656 0.390 0.39C 0.452 1.303 1.303 1,368 1.996 2.000 2.000 [1.858
Apl,~ tet. 0.580 0417 0.417 0417 1.330 1.330 1.330 1.997 1.947 1.597 11813
in face 0.615 0.394 0.354 0437 1283 1283 1.406 1.994 2 000 2.000 11.806
Hgii~ tet 1.173 0.134 0.134  0.134 1.333 1.333 1.333 1.997 1.999 [.999 11 566
in face 1.186 (.142 0.142  0.091 1.301 1.301 1.387 2.000 2.000 2.000 11.550
Inl3- tet. 2.0 0.474 0.474 0474  1.333 1.333 1.333 2.0 2.0 2.0 13.421
in face 1.897 0.496 0.496 0.580 |.337 1.337 1.324 20 20 20 13.468

*) Linear combinations of the xx, yy, and zz orbitals form the x?—

y?and z? orbitals.

*! The three-fold axis along which the metal is moved is taken as z. From ref, [67].
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The results of table 1 (lower barrier Ag™ than for
Hg?*, Cu*, Na* or In™) are then understandable in
terms of the atomic energy levels of the separated
ions. Na*, and indeed all the alkalis, have a closed-
shell structure — they are very “hard”, and have very
low polarizability or quadrupole polarizability. T
or In* are “‘softer”, but have no low-lying d-levels
into which electron density can be shifted upon
change in coordination environment. Both Ag* and
Cu* have d!°-"s" levels available (n=0, 1, 2) within
reasonable energy of one another. These terms are
closer in Ag* than in Cu*, thus qualitatively ex-
plaining both why Cu* and Ag* (as well as iso-clec-
tronic Hg?* ) are good mobile ions in these soft iodide
crystals and why Ag* is better than Cu™ (or Heg?*).
If the d orbitals are omitted from the basis set, the
calculated changes are very large, exceeding 40 kJ/
mol, for Ag*, but negligible for K* or In*; the d-type
behavior is needed.

Andreoni and Maschke {68] have used local-den-
sity electronic structure techniques, also involving
pseudopotentials, to study chemical bonding in the
silver halides. They find that the bonding is in fact
more covalent than might have been suspected, and
that a fully jonic picture is not appropriate for de-
scription of these species. These covalency effects
might perhaps explain why the phonon dispersion
curves in the silver halides, as opposed to the alkali
halides, require the introduction of directional forces.
They also point out that the use of pairwise 10nic po-
tentials for simulating ionic conduction in these ma-
terials cannot be justified on the basis of their results.

A great deal more electronic structure work should
be done on superionic conductors. Calculations of
this type should be of value not only for understand-
ing electronic changes upon ion migration, but also
for interpreting structure, and, most importantly for
gaining information on potentials for lonic interac-
tion, potentials that are badly needed for accurate
dynamical studies.

3.2, Studies of ion motion

Framework solid electrolytes consist of ordinary
Bravais-type lattices in which a substantial amount
of disorder is present. In most frameworks, this dis-
order arises from partial occupation of lattice sites.
For example, Ag,Hgl, undergoes an order-disorder

phase transition at 50°C [2,65-68]. In the lower-
temperature) B-phase, which is not a fast-jon con-
ductor, the eight tetrahedral sites in the double unit
cell contain four Ag* ions, two Hg’* 10ns and two
vacancies, but the structure is fully ordered (space
group 1,). Above the phase transition, the color
changes from yellow to orange, the ionic conductiv-
ity increases by four orders of magnitude and these
ecight sites are occupied randomly by the two vacan-
cies and the six ions (space group F43). Similarly,
in Agl, the high-temperature, conducting phase con-
tains Ag* ions and vacancies randomly occupying a
collection of sites in the unit cell. Theoretical work
on 1onic conduction in the soft framework electro-
lytes has concentrated on elucidation of the conduc-
tion mechanism and on the details of the fast-ion
motion,

The most detailed and precise description of these
soft solid electrolytes is gleaned from full molecular
dynamics (MD) simulation of the ion motion. Early
pioneering studies, especially of CaF, and Agl, were
reported by Vashishta and Rahman [69,70]. More
recently, groups at London, Argonne [71], Harwell -
[72] and Keele [73] have presented molecular dy-
namics studies of a number of solid electrolytes, of
both soft-mode and hard-framework type. (The soft-
mode electrolytes are characterized by relatively low
Debye temperatures, sharp order—disorder phase
transitions, largely ionic bonding and, generally,
“soft”, polarizable, heavy mobile ions such as Ag”*
or Cu*.) The MD method consists of solving the
classical (Newton) equations of motion for the 1ons,
subject to given ion-ion potentials:

~V{Via(x)}=mi,, (13)

with m, and x; the mass and the position vector of
the ith ion. Eq. (13) is solved numerically using fully
periodic (Born-von Karman) boundary conditions
and starting from some arbitrarily chosen initial
condition. After an initial annealing period the in-
tegration is continued forward in time, and prop-
erties of the material are obtained from the calculated
ionic trajectories, either from a direct computation
of the desired property or from computation of an
appropriate correlation function. For example, the
(if) component of the static tracer diffusion coeffi-
cient is obtained as



M A. Ratner, A. Nitzan/Fast ion conduction. some theoretical issues 13

Di.-'=é ]imi—om[xi(t)lzft: (14)

or, alternatively, as

oo

D)= [ e CE(0£(0)>dt, (15)

0

where { ) denotes an average over the sampled sys-
tem. The correlation-function result of eq. (15) has
several advantages compared to the simpler form of
(14), including a general form for finding the fre-
quency dependence and straightforward generaliza-
tion to quantum systems. For finding dc¢ ionic
conductivity, however, the limiting form of (14) is
more generally used. This is because the upper time
limit in the integral of eq. (15) is finite for any real
simulation, Indeed, most simulations have been lim-
ited to at most several hundreds of picoseconds. For
relatively small numbers of trajectories for these short
time intervals, convergence of (15) is poor, so that
(14) is in fact preferable. If the sampling statistics
are adequate, the two computed results should agree
[55,70].

The most serious problems encountered in MD
simulations are the expense of the computation and
the selection of an appropriate potential ¥, (x). For
most crystalline materials, the time increment used
in MD studies is fixed by the period of the highest-
frequency vibration: normally the time increment is
about one tenth of the period, so that for a frequency
of 10" s~ (typical of ionic crystals), a sampling time
of 10~'* s should be adequate. Thus a trajectory of
10 ps will require 1000 time integrations. The prob-
lems in selecting the potential are quite serious. Or-
dinarily, the potential is approximated by a pair form
Vix)= 3 Y Vy(x,x), (16)

oy

and the pair potentials ¥, are chosen to include such
parts as Coulomb interaction, dispersion forces,
short-range repulsions, polarizability terms, etc. Most
potentials are selected to reproduce such parameters
as harmonic frequencies or geometric and metrical
structure. The limitation to local, pair-wise forces is
insufficient for many systems in which three-body
and/or non-local forces are relevant.

Molecular dynamics studies of ionic conduction
were surveyed by Gillan in 1983 [72] and by

Vashishta [74] and Catlow [75] more recently. A
typical mechanistic insight is illustrated in fig. 2,
taken from an MD study of Li;N by Wolf et al.
[73,76]. It shows a six-ion migration process of the
mobile Li* ions. This is to be distinguished from the
independent hops of interstitials or vacancies gen-
erally invoked for explaining conduction or diffu-
ston in such low-conductivity materials as NaCl or
LiF. Wolf discusses this six-ion slippage in terms of
a “solitary-wave-type propagation of vacancies or in-
terstitials at high velocity by means of slippage of re-
gions of the mobile sublattice over a nearest-neighbor
separation”. The shortest-timescale *“snapshot” of fig.
2c indicates that the motion is indeed nearly simul-
taneous, and thus 1s to be distinguished from inde-
pendent hops or the ‘‘caterpillar” mechanism of
consecutive nearest-neighbor ion hops {77]. The
motion of fig. 2¢ is more like an incommensurate
charge-density wave, or even like a fragment of a one-
dimensional solitary wave, or soliton excitation [ 78].
Such transport schemes had been discussed formally
several times, using non-linear wave equations in one
dimension [78]. The clear demonstration of such a
collective, strongly correlated motion event in the
MD run lends support to the idea of collective trans-
port. Ordinarily, one expects that the relative im-
portance of such highly correlated motions, as
compared to single-ion hops or correlated hops, will
be highest in one-dimensional systems and smallest
in three dimensions, where dissipation 1s more facile. .
The correlation function ¢(¢)=<{x,(7) x,(0)> 1s
itself of interest. It describes how the averaged dy-
namical behavior of a given ion evolves in time. For
immobile ions, such as iodide in Agl, the correlation
function ¢(¢} shows multiply periodic behavier, cor-
responding to damped osciliations in position. For
example, notice 1n fig. 3a [70] that the forward cor-
relations (positive ¢(¢)} is effectively canceiled by
the backward correlations (negative correlations),
resulting in a series of Lorentzian-like curves for
D(w) of eq. (15), with a value of nearly zero at the
origin (no dc conduction). Conversely, fig. 3b shows
the correlation function for the mobile ion [70]. Here
the dominant positive hump at short times results in
an average value of the integrand that exceeds zero,
so that the dc conductivity, given as the ¢ -0 limit
of eq. (15), 1s finite. Nevertheless, the large nega-
tively signed region of ¢(¢)} for the mobile ion shows
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Fig. 2. A collective six-ion migration process, obtained from mo-
lecutar dynamics study of Li;N. The three figures show a sche-
matic of the process, the MD results for 7 ps, and the MD results
for 0.5 ps. From ref. [ 73].
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Fig. 3. Results of molecular dynamics study of a-Agl at 450 K
(from refs. [69,70]). Note that the autocorrelation function ¢( I8
contains far more order for the immobile 1~ than for the (disor-
dered, mobile, conducting, hquid-like) Ag*. The asymptotic value
of the lower curve gives the diffusion coefficient, which is finite
for Ag*, vanishing for I-.

the importance of “bounceback”-type behavior, in
which the mobile ion returns to the site whence it
originated with higher-than-random probability, even
for good solid electrolytes.

A recent diffraction study by Tsuchiya et al. [79],
both underscores the accuracy of the MD study of
Agl and indicates some important differences be-
tween soft and hard framework solid electrolytes. Fig.
4 shows the effective partial pair correlation func-
tions deduced from the neutron study. Note the ex-
cellent agreement between the observed correlation
function and the MD result. Note also that the mo-
bile ion (Ag*..Ag"™) correlation function decays
quite quickly, showing only first-neighbor and sec-
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Fig. 4. The pair correlation functions of a-Agl, as deduced from
neutron scattering (79] and from molecular dynamics simula-
tion [69,70]. Note the good agreement, for Ag..Ag (a), I.Ag
(b) and L...1 (c). Note aiso, as in fig. 3 the far more pronounced
structure in the immobnle I~ array than in the mobile Ag*.

ond-neighbor well-defined peaks. This is indicative
of short-range correlations, resulting from Coulom-
bic and short-range potentials in the Ag* subsystem
as well as interactions between Ag* and [-. Com-
parison with pair distribution functions for hard-
framework, covalent crystals [52-55], such as that
shown in fig. 7, or with autocorrelation functions (1)
[79], shows that the correlations are considerably
stronger in the latter system, especially at commen-
surate stoichiometries, We suggest two reasons for
this stronger structure: the first is that the covalent
bonds between the framework species in hard crys-
tals (such as AL..O bonds in 8-alumina or Al...O and
51..0 bonds in B-eucryptite) prevent large-ampli-
tude motion of the immobile sublattice in covalent
materials, as opposed to the larger excursions found
for the immobile ions in soft, ionic crystals in which
the restoring forces are far weaker. Large-amplitude
motions of the immobile framework in species such

as Agl both promote ionic motion and lead to
breakup of longer-range correlations (other effects
also arise from the relatively weak interparticle forces
1n 1onic crystals - see section 4.3). The second factor
reinforcing structure in the covalent, hard frame-
work is reduced effective dimensionality — in the
hollandites and eucryptites and NASICON, the ions
are restricted to move in channels, while in the B-al-
uminas and gallates conduction occurs on a slab.
Correlation effects are always stronger in lower di-
mensionality (fewer opportunities for disorder), so
that the structural correlations extend farther in the
more covalent electrolytes.

Overall, the picture discussed extensively by the
Brown-Bover1 group a decade ago [80] for soft
frameworks like Agl seems essentially correct: above
the Faraday transition, which can be thought of as
a sublattice melting process and like other melting
transitions is of first order and associated with a sub-
stantial increase in disorder (entropy), transport oc-
curs in an effectively melted sublattice moving in a
potential established by the immobile counterion
lattice. Given this picture, it is very tempting to treat
the immobile species (I~ in Agl, S~ in Ag,S) as a
harmonic heat bath, and to characterize the mobility
process by reduced dynamics of the mobile ions
alone.

Such a description is offered by a kind of gener-
alized Langevin dynamics, in which the equation of
motion for the ions is just

m!'fl(z) = —mi}'ir’
—m,-cu?JdGM(t—G)t(9)+R(t). (17)
a

Here the suffix i numbers the mobile ions, of mass
m, at position vector x;. The first term on the RHS
is just a damping. The first and last terms both arise
from the motion of the immobile counterion lattice:
the last term is a random force acting on the mobile
10ms, the first term 1s a generalized viscous drag force.
If an effective timescale, or frequency, separation ex-
ists between the vibrations of the immobile ions and
the motions of the mobile ions, then one can take

M(t—0)=5(t—8), (18)

and (17) becomes the Langevin equations exten-
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sively used in the study of many processes [81], in-
cluding ion motion in covalent framework
electrolytes (section 4). As written, eq. (17) de-
scribes a harmonic oscillator with a time-dependent
restoring force: if M(:—8@) 1s taken as an exponen-
tial, then the restoring force is harmonic at short
times, but vanishes at long times. Generalized Lan-
gevin equations were first used by the Brown-Boveri
group, to study Ag* ionic conductors [80]. This fol-
lowed earlier suggestions by Huberman and Sen [82]
that Ag* ion motion in a-Agl could be considered in
two time regimes: at short times, the Ag™ vibrate in
place, while over longer timescales they diffuse. The
form (17) was used by the Brown-Boveri group to
discuss the frequency-dependent conductivity of Agl,
and by the Northwestern group [83] to understand
the changes in Raman linewidth accompanying the
Faraday transition in Ag,Hgl, and related materials.

Olson and Adelman [84] have recently used a
generalized Langevin description to discuss ionic
motion in Agl. The actual equation set they use re-
sembles (17), but is slightly more elaborate in that
a molecular-timescale generalized Langevin proce-
dure {85] is employed. The essential idea of the
technique, developed by Adelman, is that the system
of interest {in this case the Ag™ 1ons) is coupled to
the harmonic bath not directly, but rather indirectly
through one or more intermediate species, each of
which can be treated approximately as a coupled os-
cillator. In the present case, this approximation is
justified physically: locally, any given Ag™ ion in-
teracts with a “cage” of neighboring I~ ions. The dy-
namics of this interaction should not, in general, be
replaced by stochastic average, since strong instan-
taneous correlations exist between the motions of
neighbor Ag* and 1. (This is a very different sit-
uation from that in the covalent structures such as
the f-aluminas. There the local vibrations of the Al-
O host occur so rapidly, due to the strong covalent
bonding and resulting high frequency, that over the
characteristic timescale of the alkali ion many Al-O
vibrations have occurred, and thus the Al..O mo-
tions can be treated as a stochastic variable.} In
Adelman’s scheme, one writes a series of coupled
Langevin-type equations, one for the Ag™ ions, one
or more for the motions of the local cages, and a final
one for the last cage species coupled to the stochastic
lattice.
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Fig. 5. The “whipback” effect observed in generalized Langevin
dynamics study of n-Agl [84,85]. The dashed line shows the re-
sult (at T=0K) from Brownian dynamics, the solid line that of
generalized Langevin behavior. The lower curve shows the tra-
jectory, The reversal of the Ag* 1on motion, to go back uphill, is
caused by slow cage relaxation.

The solution to this set of coupled Langevin equa-
tions reproduces quite well the results of the full MD
calculation, Mechanistically, the local correlations
produce an interesting dynamical behavior. Since the
Ag™ ion is coupled to the overall lattice only through
the local ion cage, memory effects are observed that
would not be seen in simple stochastic {Langevin or
Brownian) dynamics. The most interesting of these
is the “whipback” effect, illustrated in fig. 5. A given
Ag™ ion, if it 15 instantaneously in a region of high
potential, will, according to simple Brownian dy-
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namics, drop to a lower potential position in a
straightforward damped motion. In fact, correlation
with the local cage of I~ ions can cause the Ag™ to
whip back to the high-potential region, due to local
repulsion effects caused by the (correlated) iodide.
This is clearly indicated in the lower part of fig. 5,
which shows the actual trajectories of the Ag* ion
according to Brownian and generalized Langevin
dynamics.

The role of these local correlations, which will be
strong in soft frameworks like the heavy-metal con-
ductors, means that both hopping models and simple
Browntan dynamics models should be used only with
great care for these systems, since they may well ig-
nore some important dynamical features. For ex-
ample, Jacucci’s group has recently shown, using full
molecular dynamics, that the Ag* motions in Agl can
be accurately described by a hopping model only at
times longer than that for strong Ag..] dynamical
correlations {86].

The MD and generalized Langevin calculations, as
well as hopping model studies, are actually simula-
tions, rather than theoretical constructs, in the sense
that equations of motion are integrated numerically.
More conceptual theories for ionic motion have also
been advanced, and some of them have been of great
value. Very recently, Dieterich and co-workers have
used density functional theory both to calculate the
density distribution of the mobile ions and to study
the ionic conduction in Ag,S.

In thetr study of the density distribution, Roman
and Dieterich [87} assume that the S*~ ions are rigid,
providing only a static potential for the liquid like
Ag" array. Gillan has reported a similar study for
CaF, (88]. Essentially, the idea is to expand the in-
teraction among fluid particles to second order in the
density. One then obtains the integral equation

p(x) =Nexp( - BV{x)

+ _[dx’ Co(x—x’;P)[P(x’)*ﬁ]), (19)

where p(x) is the ion density at position x, P 1s the
average density, N a normalizing constant, V(x) the
static potential from the S?~ array acting on the Ag™
ions, B~ '=kgT, and Cj is the Ornstein-Zernike di-
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Fig. 6. The calculated Ag* ion density in Ag,S, from ref. [89].

‘The results using only the potential set up by the bare §2- poten-

tial are very largely corrected using an approximate interionic re-
pulsion obtained from density functional theory

rect correlation function. The equation is solved by
iteration, starting with the guess po(x)=
exp[ —BV(x)] that is the solution for noninteracting
Ag” ions. The form chosen for C, is that of a one-
component plasma.

The results of this study are fascinating. As fig. 6
shows, the ion density calculated for Ag,S at 46 K
agrees quite well with the MD result as well as with
the experimental result of Cava et al. Moreover,
comparison of the result for Ag,S with that for a-Agl
suggests that Coulombic correlations among Ag™* ions
are far more important for Ag,S (this is reasonable,
as we argued above, based on the more open and dis-
ordered structure of Agl).

A very sophisticated calculation of conductivity in
Ag,S has been reported by Dieterich’s group [90],
based on the use of Langevin dynamics, dynamic
mean-field theory and density functional methods.
Discussion of the details of that calculation goes well
beyond the scope of our overview, but several ob-
servations can be made. The first is that, in agree-
ment with resuits discussed in section 4 for covalent
frameworks, ion motion at high frequency is largely
determined by bare interaction between ion and lat-
tice species, but the dc conduction is strongly influ-
enced by interionic interactions. The essential
features of commensurability behavior, rise in o(w)
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at small w and well-defined vibrational structure are
obtained satisfactorily. While some details of the be-
havior are not correctly given for arbitrary damping
strength (or friction), this work represents the best
approximation yet made to the construction of an
effective potential for ionic conduction. As will be
detailed 1n section 4, the general multi-ion diffusive
behavior cannot be described well (quantitatively)
with any effective potential (unless it is frequency
dependent). For qualitative purposes, however, the
use of effective potentials is of great value.

The heavy-metal, or soft ionic, solid electrolytes
can thus be thought of as exhibiting liquid-like mo-
tion of the mobile ion array in the vibrating potential
set up by the immobile counterions. This motion is
in fact quite similar to that occurring in the molten
phases of the same materials. Indeed, upon melting,
the ionic conductivity first drops, since in the melt
the counterions are no longer immobile and there-
fore do not decouple so effectively from the mobile
ions, at long times, as they do in the solid phase. Cor-
relation effects, both among the mobile ions and with
the cage motions, are quite important in determin-
ing the conductivity. In this sense, the mobile array
1s a correlated Coulomb fluid, similar in some senses
to the ions in polymeric electrolytes. The latter sit-
uation is more complicated for several reasons (both
cations and anions are mobile, there are three spe-
cies {cation, anion, polymer) rather than two, and
the polymer host has its own dynamical behavior),
but the idea of a correlated Coulomb fluid describes,
qualitatively, soft-mode electrolytes, concentrated
polymer ¢lectrolytes, molten salts and solvated mol-
ten salts. It is not such a good description of hard,
covalent crystalline solid electrolytes, to which we
now turn.

4. Covalent framework materials

4.1. Generalities. Hopping models and effective
potentials

The covalent framework crystalline electrolytes,
usually oxides, differ from the soft frameworks that
we have just discussed in several ways. They have
much higher frequencies and Debye temperatures,
and generally do not exhibit the § —a Faraday phase

transition, corresponding to sublattice melting and
accompanied by large increases in conductivity, en-
thalpy and Raman linewidth, seen in the soft iontc
framework such as Cul or Agl. These materials are
of great technological interest as battery electrolytes,
are stable to quite high temperatures, and can often
be grown as large single crystals. Accordingly, they
have been subjected to very extensive study. We con-
centrate here on two issues of major theoretical im-
portance: what 1s the role of interionic correlation in
determining the mobility mechanism in these ma-
terials, and what relationships can be established be-
tween the structure of the materials, including the
distributions of the mobile ions, and the conductiv-
ity. In this section, we discuss studies of the effects
of correlation on structure and conductivity; in the
next section we offer some speculations on possible
strongly correlated behavior in B-aluminas.

Many workers have used site hopping models to
discuss ionic motion in these ceramic electrolytes. A
good overview 1s provided in Murch’s book [91].
Hopping models are based on the idea that ions spend
most of their time executing relatively low-ampli-
tude vibrations about equilibrium lattice positions,
and much less time in jumps among these allowed
sites. Hopping models completely ignore any inertial
effects, and solve master equations of the type
Pi(t)y= ; [-PW. _AP)+P W, (P)], (20)

FE 2

where the probability P,() of occupying lattice site
! at time ¢ 1s fixed by the probabilities W, .(P) for
Jjumping from site J to site J; the correlations among
the 10ns enter in the dependence of the hopping rates
W on the ionic occupations P. For simple materials
such as (nonconductive) alkali halides and metals,
hopping models are well justified, and provide a very
accurate picture of diffusive motions.

4.2. Langevin dynamics

While simple site-hopping models of ionic con-
ductivity [91-94] have proved very useful for ex-
plaining conductivity and some dynamical properties
in framework systems, these experimental observa-
tions, as well as related features in the ionic distri-
bution in K-hollandite [95] and results of Brownian
dynamics simulations {53-55,96] and full molecu-
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lar dynamics [97] argue that the hopping picture
cannot be fully valid in these materials, because the
hopping and residence times can become compara-
ble. This is particularly clear in older Langevin sim-
ulation (fig. 7) of the one-dimensional case with
Coulomb repulsions, where simply doubling the ef-
fective ionic charge in a situation where the frame-
work and the pair potential compete [98] changes
the motion from correlated hopping (ions on sites)
to liquid-like diffusion (ions moving continuously).
Although the hopping picture is not generally valid
for covalent frameworks, one can use Langevin
(Brownian) dynamics to study the ionic dynamics,
because, as discussed in section 3, the substantial
timescale separation between vibrational periods of
the framework and the far slower diffusive and vi-
brational times of the mobile ions permit the former
to be treated as stochastic variables affecting the mo-
tion of the latter.

We will focus here on the one-particle density p(r)
of N interacting Brownian particles subject to an ex-
ternal periodic potential, and explore the limits of
the validity of the one-particle dynamic description
embedded in an effective potential (deduced from
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p(r)) which includes the effect both of the external
potential and of the interaction between mobile par-
ticles. Such effective potentials have been deduced
experimentally for a number of materials [89,95,99]
and previous theoretical studies have discussed their
role in controlling the conductivity [55]. We study
the forms of these effective potentials, their varia-
tion with the microscopic parameters of the system
such as ton density and interaction potential, and
their usefulness as a suggestive or even accurate pre-
dictor of dynamical properties.

4.3. Model: interacting Brownian particles

Numerical studies which treat the many-body dy-
namics include both molecular and Langevin dy-
namics. To pinpoint the effects of ionic correlation,
we discuss the case of one-dimensional (tunnel)
electrolytes such as eucryptites or hollandites, em-
ploy stochastic Langevin dynamics, and treat ex-
plicitly only the mobile sublattice. In real systems,
the ions of the rigid sublattice oscillate around their
equilibrium positions, giving rise to two phenome-
nological forces acting on the mobile ions: the dis-
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.Fig‘ 7 L_angevin simulation of the motion and mechanism for a one-dimensional covalent framework electrolyte such as hollandite. The
Interionic potential is Coulombic, the density is incommensurate, C=0.75. (a) The case of correlated hopping; (b) the case of liquid-
like, very strongly correlated diffusion. The only difference is that the charge of the mobile 1on array is doubled in (b). From ref. [98].
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sipative force —myv and the random force R(¢).
The model consists then in solving N coupled Lan-
gevin equations:

mjf,-:—m,yvr-—V,-Ko.({X})-f-R,({) H (21)

where m, x;, v, represent respectively the mass, the
position and the velocity of the mobile ion . Since
both the friction coefficient y and the random force
R.(t), assumed to have a white noise spectrum, have
the same physical origin, they are related via the sec-
ond fluctuation-dissipation theorem as follows:

(R(t)Y>=0 foralli,
(R(1) Ri(0) > =2mykaT6,,6(1) (22)

Potential energy along the conduction path due to
all ions other than the conducting ones is repre-
sented by the periodic static framework potential

Vi(x)=1Vs{l=cos(2rx;/a)] , (23)

where ¥V, is the activation energy in the absence of
interaction between mobile particles. The coupling
of the diffusing species with the framework 1s char-
acterized by the dimensionless quantity: I '=2ny/w,
where wy=(2n2V,/ma?}'? is the vibration fre-
quency of the single particle at the bottom of the well.
This Brownian motion model in a periodic potential
has been used extensively for solid electrolytes [ 52-
55,98,100,101].

Assuming pair interaction, the total potential en-
ergy may be written as

N

Ved X}= 3 Vilx)+ 3 Valxi=x)) , (24)
i=1 =)

where { X} denotes the configuration of the system in

the real space

{X}={x;, x3, .., X0}

and V, represents the pair potential, and contains
several parts, Since the mobile particles carry charges,
Coulomb interaction seems most appropriate. We
discuss two different pair interaction potentials and
determine for each of them the static and dynamic
properties. We consider both the Coulomb potential

Vi(xi=x;) = Q% (1x,— x| )

(Q 1s an effective charge expected to be less than a
formal ionic charge because of screening effects) and

the Frenkel-Kontorova potential. Due to 1ts sim-
plicity, the Frenkel-Kontorova {FK) potential has
been employed extensively in different physical con-
texts. The interaction between the conducting par-
ticles, when strong enough, tends to keep them
separated by a distance h=a/C, where g is the lattice
spacing and C is the concentration {1ons/site}. The
expansion of the pair potential up to harmonic terms
around the average interparticle distance leads to the
FK potential [22]

N
Vo=da ¥ (x4 -x—b)?. (25)
i=1
The FK potential model consists then of a harmonic
chain subject to the periodic potential V. The force
constant « 1s given by

o= 2m’Kk kg T/b?, (26)

where « ~! represents the correlation length (in units
of b) and o measures the interaction strength.

The model system consists of N coupled Brownian
particles confined to a one-dimensional channel. Pe-
riodic boundary conditions are applied to eliminate
the boundary eftects. The forces acting on an 1on
then include the sum of the forces exerted on it by
all the other mobile ions including those of the image
boxes, the one-particle periodic potential due to the
static framework and the viscous drag and random
forces of eq. (21), anising from fast-timescale vibra-
tions of the framework. Numerical solutions to the
coupled Langevin equations have been applied suc-
cessfully to solid electrolytes [52-55,98,102], they
enable us to probe the evolution of the diffusion pro-
cess at the microscopic scale.

4.4. Static properties and decoupling
approximations

The static properties of the system are drastically
affected by interactions among the diffusing ions.
Experiments performed on the one-dimensional 1onic
conductors B-eucryptite [100] and potassium hol-
landite [95] showed pronounced structures in the
static structure factor S{gq) due to strong short-range
interaction between the conducting ions. If the pair
interaction is strong, as the experimental results for
K-hollandite seem to suggest, it creates an almost
regular arrangement of the 1ons by forcing some of



M.A. Ratner, A. Nitzan/Fast ion conduction: some theoretical issues 21

them to move away from the minima of the periodic
potential. Such situations may result in an effective
potential with complicated structure [103,106].

The static quantities of greatest interest are the one-
particle density p(x) and the two-particle density
2P (x, x') defined as follows:

p(x)= 2 <dx=x)>, (27)
PR, x )= ) (O(x—x)d(x —x)), (28)

where (> means the average over the canonical
ensemble. We also define the pair correlation func-
tion g(x, x'), related to p'?’(x, x') by

p(x, x ) =p(x) glx, x') p(x') . (29)

The pair correlation function g(x, x') reflects the
static correlation between the mobile ions arising
from the interaction potential V. In inhomogeneous
systems such as ours, the explicit dependence of g(x,
x') on both x and x’ has to be considered: this makes
it a very difficult quantity to derive analytically
[101,104]. The knowledge of p(x) and g(x, x') is
essential for the computation of the transport prop-
erties and the structural features such as the static
structure factor S(g), which can be measured ex-
perimentally by X-ray diffraction. The mutual re-
pulsions of the diffusing ions induce an effective
single-particle potential which can have a completely
different shape from the bare framework potential V.

A common procedure consists in approximating
the pair correlation function g(x, x') for the inhom-
ogeneous system by the homogeneous pair correla-
tion go(x--x’) obtained by putting ¥, =0: this
represents the homogeneous approximation. It has
been used by many authors, especially in the context
of surface effects in liquids. Recently, Radons et al.
[105] have employed a normalized homogeneous
pair correlation function gy(x—x’)/constant, to cal-
culate the dynamical structure factor. Here the con-
stant has been chosen such that the static structure
factor S(q) is positive for all g. The results obtained
using this homogeneous approximation are quite 1n-
accurate for the one-particle density which appears
in all correlation functions. Recent work of
Boughaleb et al. [103,106] has been devoted to the

calculation of structure functions using Langevin
dynamics.

4.5. The effective potential

In analogy to the case of non-interacting particles,
the one-particle density can be written in the form
f107]

p{x)=constant X exp[ — S V.{x)] , {30)

where V(x) represents the single-particie effective
potential. Since p(x) can be obtained from experi-
ment [89,95,99,107] so can V.«{x). Moreover, the
barrier height of ¥V (x) can be very useful in inter-
preting the transport properties of the system. In
particular, in the high-damping limit, it can be in-
terpreted as an activation energy. The effective po-
tential V.(x) is the best single-variable description
of the system dynamics; it is independent of the fric-
tion constant, being fixed only by the Newtonian
terms in eq. (21) and by the temperature. Note that
eq. (19) defines an approximate V.(x) 1n terms of
Cy, the direct correlation function. The Langevin dy-
namics simulation provides trajectories to calculate
p{x) and thus obtain V_5(x) directly.

4.6. Static properties and V_ ,{(x)

By varying the density of the diffusing ions, we can
go from a configuration where both V, and V, as-
sume their mintmum for the same given ion spacing
to a competing situation. One then distinguishes the
former situation as a commensurate density, with
C~'=integer, and the latter as an incommensurate
density, with C~'sinteger (here C is the concen-
tration measured in 10ns per site). For a given den-
sity the distribution of the ions over the periodic
potential can best be seen by looking at the pair cor-
relation function g(x, x'}. Let us call the ion at the
position x the test ton. For a homogeneous system,
g(x, x")=go(x—x"). For an inhomogencous system
we will consider only two patir correlation functions,
one where the test ion 1s at the bottom of the poten-
tial well (g(0, x"}), another where the test 1on is be-
tween wells at barrier top. These two functions
compared to the homogeneous pair correlation func-
tion will indicate the importance of the sinusoidal
potential ¥, (x).

In fig. 8 we show the pair correlation function g{x,
x"} for the Coulomb potential ai incommensurate
density C=0.75. Note that the liquid {(homogeneous
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Fig. 8 Pair correlation function g(x, x') for the Coulomb sys-
tem, a1 incommensurate density C=0.75, at T=400 K. Potential
parameters Vp=0.1 eV, a=4 A, 0=0.6. The curves are the cor-
relation function at well bottom ( — ), at well top {- - -) and the
homogeneous approximation {...). From ref. [103].

approximation) and the inhomogeneous pair cor-
relation functions are very similar; this indicates a
very weak modulation of the mobile-ion density due
to the penodic lattice potential; the ions act nearly
like a homogeneous liquid. Since g{x, x') = go(x, x')
in this case, we expect the homogeneous approxi-
mation to be quite good. Of the six peaks repre-
senting the six nearest neighbor ions, four have an
equilibrium position offset from the minimum of the
periodic potential. The energy required for the shifted
ions to diffuse to the next equilibrium position 1s
therefore smaller than the bare barrier height V. This
barrier height reduction can be reflected 1n an in-
crease of the dc conductivity, computed in section.
4.7,

We present now some results concerning the ef-
fective potential derived via eq. (30), for a series of
physical situations (differing frictions, densities, po-
tentials and temperatures). Fig. 9 shows the effective
potential for the FK potential and for different den-
sities (C=0.5 and C=0.75). As expected the barrier
height of V4 increases compared to the bare sinu-
sotdal potential for the commensurate density
C=0.5: the interionic interactions reinforce the pe-
riodic potential in localizing the 1ons at the bottom
of the well. On the other hand, for C=0.75, the two

GOX,X™)
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Fig. 9. Effective potential of eq. (30) for the Frenkel-Kontorova
potential with x ~'=3, T=400 K. The curves are for the bare
framework ( ¥, only, solid line), for incommensurate density (...,
lower barrier and higher conductivity) and for commensurate
density (- - —, higher barrier and lower conductivity). From ref.
[103].

potentials compete for their own preferred spacing,
giving rise to a ground state configuration where some
ions are moved away from the minima of ¥,. Con-
sequently the barrier height of the resulting effective
potential 1s lowered compared to V,,.

x/a

Fig. 10. Temperature effect on the barrier height of the effective
potential, for the Coulomb case (@ =0.6). Note different behav-
ior of commensurate and incommensurate densities (from ref.
[103]).
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Fig. 10 shows the change in the shape of Vy(x)
caused by temperature effects for the concentration
C=0.75. Clearly, as temperature increases, larger
thermal oscillation of the mobile ions lead to smear-
ing out the structure in p{x) and therefore in V.
Similar structure in ¥ 4(x) has been observed re-
cently by the means of X-ray diffraction in the one-
dimensional conductor potassium hollandite [107].
As the temperature increases the thermal fluctua-
tions of the 10ns become important allowing the bare
periodic potential to reinforce its domination over
the interionic interaction. This results in an increase
(decrease) of the barrier height of the effective po-
tential for incommensurate {commensurate) density.

4.7. Dynam'z'c properties: conductivity a(w)

Detailed analytical studies of the conductivity have
been completed in some limiting cases such as high
temperature and strong damping on the basis of the
Smoluchowski equation [52,108]. Also, the dynam-
ical properties of the many-body system have been
derived using continued fraction methods truncated
at a certain order [ 52]; the accuracy of this approx-
imation drops with decreasing friction. In the low-
friction limit, higher-order continued fractions are
necessary and no analytical solutions are then avail-
able in the presence of V..

In the high-friction limit, the dc conductivity can
be expressed in terms of the effective potential [ 105]

0o=Q Do, (ﬁ [ exp18veat0) cbc)
[H

1 B
X(EJCXP[—ﬁVcrr(x)] dx) : (31)

where Py is the number of particles per unit of space,
and Dy =kyT/my the bare diffusion coefficient. This
formula is exact for noninteracting particles. We ex-
plore the extent to which the many-particle dynam-
Ics can be represented by the single-particle dynamics
in the effective potential, for differing density, tem-
perature, frictions and interionic interaction.

The frequency-dependent conductivity has been
obtained both for the many particle system and for
a_ single particle subject to the corresponding effec-
tive potential [55,103,106]. The calculations have

been performed for both the pair interaction poten-
tials and a wide range of friction. Even though the
effective potential is a time-averaged, equilibrium
property, we find, in general, that it gives a good,
qualitative indication of the many-particle behavior,
In effect, as one can see from the results concerming
o(w), the diffusive motion of the ions 1s enhanced
or reduced compared to noninteracting particle sys-
tem for iIncommensurate or commensurate densities
respectively. The behaviors of the effective potential
for both situations has been discussed 1n section 4.6.
The barrier height of V.4 acts in a sens¢ as an acti-
vation energy for the diffusion process. These qual-
itative behaviors of the dc conductivity with the ef-
fective potential hold in all friction regimes.

In the high-friction limit the conductivities are
generally very close to their Smoluchowski values.
For this case, the fluctuations of the interionic in-
teractions responsible in part for the correlation be-
tween the 1ons, which are not included in the effective
potential, are strongly damped and do not contribute
significantly to the long-time diffusive behavior of
the many-particle system. On the other hand, in the
low-friction limit corresponding to weak dynamical
coupling between the mobile 1ons and the rigid
framework, these fluctuations persist in the system
for a long time, resulting in a deviation of the low-
frequency response of the many-particle system from
that of the single particle in the effective potential.
But even for low friction the effective potential de-
scription of the diffusive behavior seems to be quite
fair if the thermal energy 1s larger than the barner
height of the effective potential: in effect, as the tem-
perature increases, it reduces the correlation be-
tween the local and long-distance motion and leads
to a domination of the diffusive mode over the other
local modes. In all cases the Smoluchowski result of
eq. (31) forms an upper limit to the conductivity
found from the full Langevin simulation [ 103].

Most analytical studies have been performed in the
high-friction (Smoluchowski) limit. But most ionic
conductors exhibit a strong oscillatory peak, indi-
cating that the intermediate or low-friction regime is
more appropriate to describe the dynamics of the
mobile sublattice. In the other (underdamped) limit,
1t 1s known both for continuous dynamics [109] and
for lattice gas models [110] that the diffusion of a
single particle subject to a periodic potential is faster
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than that predicted by classical rate theory. Due to
the weak dissipation process, the mean free path can
be larger than the lattice spacing a if the relation
(nyVolweksT) < 1 1s satisfied. In this limit, the
thermalization of the particle requires a time far ex-
ceeding one oscillation period, so diffusive jumps ex-
ceeding a in length can be observed, and mobile 1ons
can exhibit both oscillatory and quasifree behavior
[80,82,96,111].

Several studies have been presented in which a
short-ranged potential V,(x)=B(b/x)", n=7, has
been employed. Again, 1t 1s observed that commen-
surate stoichiometries are better ordered, and less
conductive, than either noninteracting particles or
incommensurate stoichiometries, which are the most
conductive. The effective potential description, in
this case, fails in several respects: the effective po-
tential, defined using the computed pg(x) from sim-
ulations as Vs= — kg Tln p(x), predicts that the main
oscillatory peak in the mobile ion spectrum will blue-
shift in the commensurate case; this is not observed
in the simulation, which shows no shift in the po-
sition of this peak. The low-frequency behavior 1s also
given incorrectly, at small friction, by the effective
potential. Thomas and Dieterich {90] have shown
that, in this regime, it is inappropriate to use effec-
tive potentials, since the ion-ion interactions are ef-
fectively unimportant and the relevant potential is
given well by the bare potential. Their analysis dis-
cussed in section 3.2 leads to the conclusion that the
dc conductivity of the many-particle system is close
to the one obtained from the effective potential for
al! friction regimes, but Langevin simulation shows
that this is not true for a commensurate system char-
acterized by a weak dissipation process.

The short-range system is peculiar in the sense that
the particles do not “feel” each other for moderate
densities unless they diffuse over large distances. To
analyze further the effect of ion correlation on the
high-frequency response of the system, one has to
consider a strong pair interaction potential, as
Beveler et al. [95] suggested from the analysis of X-
ray data on the quasi one-dimensional conductor K-
hollandite.

An attempt to study the dynamics of such systems
has been undertaken in an important paper by
Geisel [52]. He calculated the conductivity for har-
monically coupled particles (FK) for arbitrary par-

ticle concentration C=bd/a directly from the
Fokker-Planck equation, using a continued fraction
method up to third order. The many-body averages
were performed in the high-temperature limit with
the help of the transfer-integral technique. The re-
sulting static conductivity clearly shows the com-
mensurability effects: it is reduced or enhanced
compared to noninteracting-particles case depend-
ing on the commensurability of the mobile sublattice
with the periodic potential. But the results concern-
ing the ac conductivity misrepresent the effects of
the friction coefficient and the strength of the inter-
tonic interactions: the oscillatory peak shifts to fre-
quency larger than w, as the friction or the
interaction ¥, increases for both commensurate and
incommensurate states. Langevin simulation results
conflict with these results {103]. While the dc con-
ductivity decreases as we increase the strength of the
interaction, the oscillatory peak becomes sharper but
stays around w,. Also, the position of the resonance
structure does not depend on I, contrary to the re-
sults obtained by Geisel. The value of the friction af-
fects the magnitude of the diffusion and the width of
the oscillatory peak but not the position of the peak.
The effective potential describes quite well the low-
frequency dynamics of the many-particle system in
the high-damping limit {55,103,106]. The interest-
ing results are for the low-friction regime. Even
though the V_4(x) contains no memory effects which
are important for an underdamped system, and fails
to reproduce the resonance structure of the system,
it still can duplicate the low-frequency behavior of
the system, in all ranges of friction, in the case where
the diffusion mode dominates the spectrum of o(w)
such that the correlations between the oscillatory and
the diffusive motion are minimal. This situation can
be found at high temperatures in an incommensur-
ate state which is relevant to most highly conductive
materials, with strong interionic interaction.

4.8. Implications: correlation effects in covalent
frameworks

Extensive theoretical efforts, using hopping models,
Brownian (Langevin) dynamics, and decoupling ap-
proximations make it quite clear that interionic in-
teractions strongly effect both the dc conductivity and
the oscillatory behavior (frequency-dependent con-
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ductivity) of covalent framework electrolytes. These
correlation effects are strongest in reduced dimen-
sionality structures. In the high-frequency regime, we
found that, for commensurate states, the resonance
frequency of o(w} is determined by the external pe-
riodic potential (w~w,) and for incommensurate
densities the ac conductivity presents a very struc-
tured high frequency spectrum, with the main oscil-
latory peak shifts towards smaller frequency than w,
as the interionic interaction increases.

The very interesting theoretical question of just
how to define V (x) without the simulation (or dif-
fraction data) has been considered several times
[5,87,90,102,105,108,112). The theoretical results
make it clear that these effective potentials are of real
value and that their derivation using some generally
valid and accurate decoupling approximation re-
mains an objective of real interest.

5. Correlated conductivity in covalent frameworks —
some experimental aspects

Several hopping-model studies [91,92,94] of B-al-
umina structures have suggested that strong corre-
lations exist among the hoppers, and indeed that
extended defect-type structures augment the essen-
tial site transport mechanism (interstitialcy in p, va-
cancy in B”). Three recent studies have shown
extremely tantalizing results, that imply structures,
and perhaps motion mechanisms, in covalent frame-
work that are even more correlation-dependent than
has been believed heretofore. Long ago van Gool
[113] suggested that domain boundary migration
might be responsible for the high conductivity of
these electrolytes. While this idea is not currently
popular, it perhaps is worth reexamining in the light
of these new results.

Weber and Schulz {89] have studied the structure
of potassium hollandites over a very broad temper-
ature range. They obtain probability density func-
tions for the mobile K* ion, based on painstaking
anharmonic refinement of the scattering data. For
our purposes here, the important result of their work
1s that, as the temperature increases, the occupations
of various sites in the hollandite structure change
markedly. Below ~430 K, the ions preferentially oc-
cupy sites that are shifted off the center of the cavity
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Fig. I 1. The effective potential of eq. (30), deduced from densi-
ties observed in X-ray refinement of K-hellandite. Note the
smoothing of the potenuial, and loss of smaller minima as the
temperature, and thus the ion kinetic energy, increases. From ref.
[89].

(formal “site”) in the direction of the bottleneck.
Above this temperature, the preferred location is at
the cavity center. From their refined densities,
Weber and Schulz determine an effective potential,
using the form of eq. (30). They remark on two im-
portant features of this potential: firstly, it has a bar-
rier much lower than the characteristic value { > 0.3
eV) for a bare lattice. Second, this lowering of the
effective barrier 1s in good agreement with theoret-
ical suggestions that in incommensurate species with
strong interionic interaction, the correlation effects
will act to lower the effective barrier and to intro-
duce collective effects into the conductivity.

Fig. 11 shows the potential along the tunnel axis
deduced by Weber and Schulz [89]. Notice that sub-
stantial secondary structure is found at lower tem-
peratures, and that, as the temperature 1s raised, the
structure simplifies, but the barrier height increases.
Precisely such structure for the effective potential was
seen in the Langevin simulations [ 103] on covalent
framework tunnet conductors discussed in section 4.

These results indicate the strong role of correla-
tions in reducing effective potential barriers and in
moving the center of the ion displacement off of the
formal lattice site. Just such effects were indicated in
the earlier structural work by Beyeler [95], and quite
extensively in the theoretical studies based on Lan-
gevin type models [52-55,96]. Since, however, both
theory and experiment here involve hollandites
[98,102,103,105,106]), which are very poor sohd
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electrolytes, it might be objected that these strong
correlation effects are an artifact of one-dimensional
conductors, and might be restricted to such cases.

That this is probably not true 1s indicated by very
recent work on the B “-alumina and B-alumina struc-
tures. Wolf et al. {97] have carried out an ambitious
and extensive full molecular dynamic study of Na-
B-alumina. They find, again, that high conductivity
occurs only for incommensurate densities.-More 1n-
terestingly, they suggest a change in mechanism of
transport, from correlated hops of low temperatures
to very strongly correlated, liquid-like motion at high
temperatures. Moreover, just as found experimen-
tally for the hollandites, secondary structures in this
ion distribution, observed at low temperatures, are
wiped out at high temperature, when the motion 1s
more continuous and liquid-like.

Very strong correlation effects in both B- and p”-
aluminas are indicated by the extensive recent struc-
tural correlation studies reported by Collin et al.
[114], who used both conventional structure deter-
mination and diffuse scattering. They deduce that
the structures can be defined in terms of domains,
with all domains equivalent, and each having the
same composition as the average. At high tempera-
tures, they observe for p”-alumina a high-tempera-
ture pattern that looks like a liquid distribution,
quasiuniform along the whole honeycomb lattice. Fi-
nally, they observe, for p“-alumina, a room-temper-
ature coherence length of roughly 70 A at room
temperature. At higher temperatures, the correction
range drops due to thermal motion. Due to corre-
lation effects, the formally equivalent BR and aBR
sites in the B structure are in fact different in en-
ergy, and therefore, within one domain, either BR or
aBR sites, but not both, serve as the center of ionic
occupancy. Domain walls exist where the preferen-
tial occupancy changes from BR<aBR (fig. 12). At
higher temperatures, the energetic distinction be-
tween BR and aBR is reduced, as a consequence of
the increased disorder and drop of the correlation
length. All of this behavior is qualitatively similar to
that observed for hollandites both in theory [52-
55,98,102,103,106] and experiment [89]; the do-
main structures are not observed per se in one di-
mension, but the role of interionic correlation in
redefining the site occupancy compared to the bare
potential, and the smoothing out of the structure in

Fig. 12. Domain wall structure for Na-f§ “-alumina. The domain
on the right shows primanty occupation of the anti-Beevers -Ross
(aBR) sites, on the left the BR sites are occupied. Strong corre-
lation effects keep the domain regions homogeneous, with a dis-
ordered, mobile wall between, From ref. [114].

the effective potential as the temperature rises, are
common features of one- and two-dimensiconal
framework electrolytes.

The strongly correlated, domain-type structures
deduced for f”-alumina suggest that ion motions
might occur most simply along the domain walls be-
tween the tightly ordered domains; as temperature
rises, the domain walls become more extended as the
domains shrink, and thus the overall average 1onic
mobility increases substantially. An indication of just
how the interplay among lattice one-body potential,
commensurability effects, domain walls and tem-
perature works can be gained from the very elabo-
rate and intriguing molecular dynamics stmulations
performed by Abraham and co-workers on the sys-
tem of rare gas adlayers on graphite [115]. Here, as
in B-aluminas, one deals with interacting particles
moving on a {nearly) planar surface with hexagenal
structure. While there are substantial differences in
the two systems, notably the far weaker forces be-
tween mobile particles and surface and among mo-
bile particles in the graphite adlayer, still the general
features are expected to be similar.

Fig. 13 shows some of the fascinating results re-
ported by Abraham and co-workers [ 115]. The white
areas are locally commensurate, the black areas in-
commensurate. Note that for all coverages studied
there exist commensurate domains, separated by in-
commensurate domain wall regions, reminiscent of
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Constant Temperature T* = 0.05

Jisssyesey

T* =005 T*=03 T*=05

Fig. 13. Structures obtained from simulation of Kr overlayer on graphite. The simulation is for 103041 Kr atoms. Nate the hexagonal
domains (white) and domain walls {black) of nearly constant thickness. Upper curve shows partial homogenization as density (hence
interparticle correlation} increases, lower curve shows melting. From ref. [115].

the domain walls suggested for the B-aluminas by
Collin et al. [114]. The domain wall thickness, for
the Kr/graphite system, is roughly constant (with
varying coverage at fixed temperature), lying near a
value of 18 A. The striking hexagonal structure of
the domains mirrors that of the hexagonal graphite
net, but at far larger scale (for comparison, remem-
ber that the thickness of the domain walls, or black
line, is ~18 A). As the coverage increases, the do-
mains shrink in size, but the structure does not con-
vert into a fully homogeneous array, so long as the
temperature remains low.

As temperature (T*=kpT/e, where ¢ is the
Lennard-Jones energy of interaction between two Kr
atoms) increases, the domains do start to break up,
as the thermal energy overcomes the ordering im-
posed by the periodic framework and interaction po-
tentials. Eventually, a homogeneous liquid is
obtained for T2 1.0.

Abraham et al. [ 115] did not calculate mobility or
diffusion. But the ordering and domain structure seen
in their simulations for incommensurate densities,
combined with the suggestion of similar structures in
the B-aluminas, constitute an intriguing possibility
for structure/mability correlations in B-aluminas.
Hopping-type theories appear simply inappropriate
for dealing with the domain wall structure, and more
continuum work, along the lines of Langevin or MD

theories, will be needed to sort out the real impor-
tance of domain behavior in covalent framework
conductivity.

6. Some special theoretical issues

Although most theoretical effort has been devoted
to understanding the dc conductivity, theoretical
progress has also been made in understanding other
areas of the solid electrolyte field. We will simply
point out a few recent research reports in these re-
lated areas, as indicative of the directions in which
theory is proceeding.

6.1. Transport with dispersed second phase, "Liang

effect”

In many soft framework electrolytes, notably Lil
[116,117] and in some glasses [118], it has been
demonstrated that the presence of a dispersed in-
sulating second phase of a hard crystal, such as a-
Al,O, or silica, can lead to quite large (up to a factor
of 10°) enhancements in the observed ionic con-
ductivity. Several mechanisms have been discussed
for this behavior, including transport along dislo-
cation Joops or grain boundaries and high strain fields
at the interface. Jow and Wagner [119] suggested
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that the enhancements might arise from formation
of a space-charge layer along the interface between
the two phases, thus giving rise to increased charge
density and conductivity along the interface.

Roman et al. [120} have used a three-component
percolation-type model to discuss the increased con-
ductivity. They include three regions: a conductive
phase corresponding to the bulk electrolyte, a highly
conductive phase describing the interface and the 1n-
sulating phase itself. They find two different thresh-
olds, and can fit the observed behavior for Lil/Al,O4
nearly quantitatively with the percolation model.

Wang and Dudney [121] have presented a cal-
culation based on a representation of the composite
materials as an arrangement of cubic particles, with
the center of each cube constituting insulating phase,
and with concentric cubic layers about this 1nsulat-
ing cube representing areas of enhanced conductiv-
ity. Outside of these layers, the conductivity 1s
uniform, fixed at the value of the pure electrolyte. To
fit the experimental concentration dependence, they
required a conductivity in the cubical sheath region
that exhibits a relatively sharp maximum at a dis-
tance of roughly 600 A from cube center. They sug-
gest that this behavior 1s 2 combined result of carrier
concentration and mobility.

Dudney [122] has considered the possible mech-
anism underlying the enhancement. She suggests that
there is a noticeable space-charge effect in interfacial
systems, and that it is adequate 10 explain small en-
hancements in systems like AgCl. But larger en-
hancements in systems like Lil/Al,O, cannot be
explained by simple space charge effects.

6.2. Mixed-alkali effect

One of the most startling observations in the ionic
conductivity of glasses is the so-called mixed-alkal
effect: in, say, sodium silicate/potassium silicate glass,
the conductivity exhibits a very sharp minimum as
a function of mole fraction, with local maxima at each
pure phase [123]. There have been several theoret-
ical treatments presented for tms phenomenon, which
can also be observed, though less spectacularly, in
hard frameworks like p”-alumina [124]. The most
common explanation involves the ad hoc assump-
tion that unlike alkali ions exert a weak binding force

on one another; that is, that the equilibrium constant
for such a reaction in the glass as

Na*..Nat+K*.K"-2K*.Na* (32)

is considerably larger than the expected statistical
value of 4. If this assumption is made, then several
levels of treatment of the mixed-alkali effect are
possible.

Ingram [125] suggested that the mixed alkali ef-
fect could be easily explained in terms of weak elec-
trolyte theory: since only a few of the ions are free
in a weak electrolyte, even a relatively small further
trapping according to a scheme like (32) would lead
to a substantial dropoff in the conductivity, just as
is observed. Since weak electrolyte effects are usually
considered to be larger in glasses than in crystals, it
is not surprising that the mixed alkali effect 1s
stronger in the glasses.

More recently, Harder et al. [126] * have used a
percolation-type model to discuss the mixed-alkal
effect. They assume that the 1ons move on a lattice,
and that the formation of pairs according to (32)
simply blocks two neighbor lattice sites. Within this
model, a very sharp mixed-alkali effect 1s calculated;
indeed, there are two percolation thresholds, be-
tween which the percolation paths are blocked by the
resultant two-atom structures, and the conduction
goes to zero.

The unsatisfying feature behind these “explana-
tions” of the mixed-alkali effect is the lack of any
convincing argument in favor of an unstatistically-
high equilibrium constant for (32). Until one un-
derstands how such binding is to occur, one is left
with good combinatoric or analytical arguments rest-
ing on somewhat shaky ground: prediction of such
atom-atom binding in a glass seems to constitute an-
other challenge for electronic structure theory.

6.3. Dielectric response: fractals and Debye-Hiickel
models

Many experimental measurements on solid elec-
trolytes involve behavior at a highly irregular inter-
face. The most obvious examples are ordinary
complex impedance measurement of the conductiv-
ity, in which the conductive sample is contacted by

¥ Cf.ref. [127].
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electrodes, normally either spring-loaded or sput-
tered onto the surface. The actual interface across
which the charge then passes i1s a highly nonplanar,
irregular set of tight and loose contacts. In recent
years a number of investigators have concerned
themselves with the issue of how these dimensional
irregulartties can effect charged particle motion and
response to applied signals. In particular, the con-
cept of fractal dimension has been used both to study
the dielectric response of the material and, more
generally, to examine both independent-particle and
correlated ton motion in disordered media. Pioneer-
ing, extensive investigations of solid electrolytes us-
ing fractal ideas have been completed by Sapoval,
Gouyet and co-workers [ 128-130], who have shown
both some of the conceptual advantages of the idea
of fractal dimension and its relevance to generalized
ion motion problems.

One particular area of interest involves dielectric
response. Jonscher [131] has emphasized that many
solid electrolytes (and other comparable systems)
exhibit so-called constant phase angle (CPA) re-
sponse, in which the usual complex impedance plot
(Y{w) versus X(w)) shows a straight line or spur
behavior, with a “constant phase angle” ¢(w) the
between the line and the X axis. While several other
explanations for this behavior have been advanced,
two of the most convincing involve either
Debye-Hiickel-type correlations [ 132] or fractal be-
havior at the electrode [133] (or both) [134]. Le
Menhaute and Crepy [135] were the first to suggest
the importance of fractal behavior in determining
dielectric response. The Qak Ridge group [136] has
studied the response of fractal networks of cantor bar
geometry. Sapoval [133] has recently examined the
response of fractal electrodes of different fractal types,
including the Koch island and finite Sierpinski car-
pet. He has shown that a high-frequency CPA be-
havior is indeed observed, but that at lower
frequencies a second, differing constant phase angle
can be found; the response can be nicely described
in terms of the fractal geometry of the interface.

Funke [132] has used a peneralized Debye-
Hiickel-type model to explain another feature of the
“universal dielectric response”. This consists of a
high-frequency arc, whose center is depressed below
the axis, and corresponds to a power-law depen-
dence of the conductivity. Funke argues that follow-

ing an tnitial forward jump of a mobile 1on, the most
probable behavior 1s either a “bounceback' reverse
jump (cf. sections 3, 4) or a forward motion of the
surrounding “defect cloud”. This behavior is quite
similar to that discussed for ordinary liquid electro-
lytes by Debye and Hiickel.

Funke uses the linear-response form for the fre-
quency-dependent conductivity (essentially eq. (15)
to calculate the conductivity in the presence of these
events. He is then able to show that this model, un-
der fairly general conditions, can reproduce the
“universal dielectric response”, including the power
law behavior and the temperature dependence.
Physically, the two assumed behaviors seem reason-
able: bounceback effects are omnipresent in hopping
models, and indeed should be a major feature of ionic
conduction in any solid electrolyte, except perhaps
in the very strongly correlated, iquid-like regime. The
second process, corresponding to relaxation of the
“cage” around the new site, will be especially im-
portant in soft, heavy metal frameworks such as those
discussed in section 3. The whipback effect seen by
Olson and Adelman [84] is just that part of the
bounceback caused by the failure of the cage to re-
spond to the new position of the mobile ion. Funke’s
use of these correlation processes to explain the di-
electric properties seems cogent and useful, though
the actual relaxation process might be oversimplified
in his model.

Blender and Dheterich [ 134] have considered the
Debye-Hiickel problem on random fractals. They
have shown that the screened potential decays
asymptotically according to an exponential of a frac-
tional power of distance, as measured in the relevant
fractal geometry.

6.4. Transport across interfaces

The Liang effect (section 6.1) involves transport
along interfaces within a given solid electrolyte. In
actual applications, one encounters transport phe-
nomena across interfaces, both the electrode/electro-
lyte interface and, possibly, internal interfaces within
the electrolyte. Dieterich's group has recently mod-
eled [138] the interface transport problem, using a
site hopping model with a locally differing hopping
rate representing the interface. Interactions among
the mobile 1ons were included using hard-core re-
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pulsions. Both simulations and approximate decou-
pling methods were used to study the diffusion
profile. It was observed that both the density of ions
and the conductivity can be (not surprisingly)
strongly influenced by the impurity-type hopping
feature at the interface. The dc conductivity, 1n par-
ticular, can be substantially reduced, and the profiles
of ion density can vary quite sharply in the neigh-
borhood of the interface. Direct probing of such in-
terfacial  profiles, wusing either Rutherford
backscattering or perturbed angular correlation spec-
troscopy, should prove valuable both in studying the
ionic concentration gradients at interfaces and in
correlating such density features with conductivity
and with overvoltage effects.

6.5. Activation entropy effects

Although, as we have pointed out in sections 2-5,
the hopping model must be used very carefully in
discussion of ionic conduction, nevertheless it is of
real conceptual value in nearly all circumstances, and
can describe low-frequency conduction quantita-
tively in many systems. In addition, 1t provides a
number of qualitative notions, including attempt
frequency, correlation factor and mean hopping dis-
tance, that are of great value in characterizing ionic
motion in electrolytes. Almond and West {139] have
delineated how the concept of activation entropy may
be used to distinguish differing sorts of ionic con-
duction, both in framework electrolytes and in
glasses. They show that the so-called Meyer-Neldel
rule, a frequently observed behavior in which the
prefactor in the Arrhenius expression for 10nic con-
ductivity increases as the activation energy in-
creases, can be rationalized in terms of
thermodynamic relationships between enthalpy and
entropy of activation. Finally, and intriguingly, they
conclude that mobile ion concentrations have far less
influence on the conductivity than had been previ-
ously assumed, and that two ranges of ionic con-
duction can be distinguished, a high-temperature
situation in which a large fraction of the 10ns 1s mo-
bile with low activation energy, and a low-temper-
ature situation, in which the mobility is entropicaily
enhanced. There are similarities between this picture
and the strong versus weak electrolytes viewpoints
discussed in section 2, similarities that could be in-

terestingly itluminated by proper study both of mi-
croscopic models and of dynamical structure.

7. Remarks

Theoretical treatments of solid state ionic mate-
rials have made great strides. The structural disorder
and complexity of these materials, coupled with the
Coulomb nature of interactions both among the 1onic
carriers and between 1on carriers and charge com-
pensating species, combine to make either numerical
or formal description quite complicated. Neverthe-
less, very substantial understandings have been
reached. As one example, our picture of how ions
move in polymer electrolytes has evolved from the
early picture of independent ions hopping on a lat-
tice to the current picture of correlated diffusive mo-
tion of 1ons in a solvated Coulomb fluid.

This article has, very incompletely and selectively,
overviewed the progress that has been made in the-
oretical study of solid electrolytes. It is worthwhile
to point out areas in which progress has not been
made, and which stand as possible areas for fruitful
and useful theoretical work:

(1) Mixed conductors. Both electrode and com-
posite materials can exhibit conductivity of both ions
and electronic carriers. The interactions will then be
quite strong, with intriguing behavior both at dc and
in the optical range. Nearly no theoretical work has
been done here, despite the obvious importance of
the area and an increasing number of high-quality
experiments.

(2) Stability and structural studies are still quite
rare. The geometric and phase behavior of electro-
lytes as a function of composition and of tempera-
ture is, again, important both for applications and
for the intrinsic value of the problem - how does one
describe a phase diagram theoretically.

(3) Electronic structure work, as noted in section
3, has been very limited. An understanding of po-
tentials, of pathways, of energetics and of structure
may be obtained from proper accurate studies of this
type, even relatively simple theoretical studies such
as complexation and ion-pair energetics in polymer
electrolytes remain to be completed.

(4) Though continuous models have been used for
crystalline frameworks, and to a lesser extent in



M A. Ratner, A. Niizan/Fast ton conduction: some theoretical issues 31

glasses, a vast amount remains incomplete. For poly-
mers, NO proper microscopic continuous modeling
has been done at all. Continuous (inertia-including)
models are needed to understand the dynamics of
ion motion [ 5]

(5) Relationships of structure and properties are
still quite incomplete. For example, some of the
questions discussed in section § involving commen-
surablity effects, domains and diffusion require more
detailed consideration, both formal and numerical.

{6) Langevin dynamics, especially in connection
with effective potentials, represents an effective way
to study continucus models without the complica-
tions of full molecular dynamics simulation. Use of
such reduced dynamics for highly disordered elec-
trolytes 1s an unmet challenge.

(7) The most difficult challenge lies in the devel-
opment of new mechanistic, qualitative concepts for
understanding behavior of ionic solids. Such con-
cepts as optical basicity, weak-electrolyte models,
commensurability effects, effective potentials or cat-
erpillar mechanisms are of real conceptual value;
others, as good or better, might be developed to help
in the understanding of these important and unusual
materials.
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