Does reaction path curvature play a role in the diffusion theory of
multidimensional activated rate processes?
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The two-dimensional Kramers’ barrier crossing problem in the overdamped (diffusion) limit is
investigated with particular attention given to possible effects of the geometry of the potential
surface on the rate. Previous work ascribes corrections to the two-dimensional Kramers’
formula to curvature of the reaction path. In contrast, we find that these corrections are due to
the anharmonicity of the potential surface at the saddle and may become appreciable for small
window frequency, i.e., flat potential surface at the saddle in the direction perpendicular to the

reaction path. A general formalism to calculate such corrections is described.

|. INTRODUCTION

Kramers’ theory' of activated rate processes and its gen-
eralizations provides a general framework for the descrip-
tion of classical activated rate processes in condensed
phases, a subject of long standing importance in many
branches of science. Generalizations of the (one-dimension-
al) Kramers’ theory to multidimensional systems, for the
case of intermediate and high friction, have been known for a
long time.>!* In such situations, the rate is determined by
the dynamics near the saddle point where the motion along
the reaction coordinate may be assumed to be essentially
decoupled from the nonreactive modes. Under this assump-
tion, the rate is obtained as a product of the one-dimensional
rate and a ratio of equilibrium partition functions, which
expresses the statistical weight of the transition state config-
uration and the initial reactant configuration:

B
k=k,, L, (L.1)
QW
w? ol Ep/ kpT
kw=2’—m/’—e‘ o ksl (1.2)

Here ! and ? are the frequencies associated with the reac-
tion coordinate on the barrier and in the well, respectively,
Ej is the barrier height, i.e., the height of the saddle point
above the bottom of the well in which the particle is initially
confined, ¥ is the friction coefficient, k5 is Boltzmann’s con-
stant, and T is the temperature. The factors Q ® and @ ¥ are
the partition functions of the subsystems of nonreactive
modes associated with the barrier and the initial well config-
urations,  respectively. In  the classical limit
0%/Q% =1, 0¥/ 0f, where 2. and w? are the fre-
quencies associated with the nonreactive modes on the bar-
rier and in the well, respectively, and where the product is
taken over all such modes. More recently, a multidimen-
sional version of the low friction limit was also derived,
based on a generalized multidimensional energy diffusion
equation.'*+'®
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Equation (1.1) is based on the assumption that near the
saddle point the reactive flux is one-dimensional; the non-
reactive modes are assumed to be in thermal equilibrium.
There have been several investigations in recent years of si-
tuations where this may not be the case.!”"'* Most notably
it has been suggested that for curved reaction paths, the rate
becomes dependent on the curvature of the reaction coordi-
nate. Larson and Kostin'” have calculated correction terms
to the preexponential factor of the Kramers’ rate expression
for a particular model, and attributed these corrections to
the effect of reaction path curvature. More recently, Lar-
son'® has used a variational formula for the optimal reaction
coordinate of Berkowitz et al.,'® to show that the actual reac-
tion path in such a model deviates from the minimum energy
path.

Aspects of reaction path curvature have been thorough-
ly investigated for reactions involving isolated molecules by
Miller and his co-workers.”® These theoretical studies
clearly demonstrate the effect of this curvature on the reac-
tion dynamics in the zero friction limit. In the high friction
limit, where dynamical effects are expected only in the im-
mediate vicinity of the barrier, it is less clear how reaction
path curvature can affect the reaction rate. The high friction
rate derived by Larson and Kostin for their model (de-
scribed below) is!?

k= k14504 ), (13)
2p
where k, is given by Eq. (1.1) and where
_ s 1.4
p= T (1.4)

The factor o is the frequency along the normal to the reac-
tion path at the saddle point (denoted by w, in Ref. 17), r, is
the radius of curvature of the reaction path, and m is the
particle mass. This expression contains correction terms
which are independent of friction, in contrast to the intuitive
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expectation that as the friction increases the dynamics is lim-
ited more and more to the neighborhood of the saddle point.
Larson and Kostin interpret the correction term as the effect
of reaction path curvature on the rate.

From the mathematical point of view, the high friction
rate, given by Egs. (1.1) and (1.2), is the first term in an
expansion of the rate, in the small parameter
€= (Eg/kyT)~"'. Equations (1.1) and (1.2) are expected
to be exact in the limits € -~ 0 and > w¥,w?, unless there are
other dimensionless parameters in the problem which vanish
as €-0. For example, the parameter p of Eq. (1.3) is poten-
tially such a parameter. In addition, the frequencies o, of
nonreactive modes at the barrier, nondimensionalized as
(hw?® /ky T) ™ '=e,,, are potentially such parameters. Their
magnitudes measure the extent of the dynamical region
about the saddle point, in directions perpendicular to the
reaction coordinate. Thus, if some or all of the ¢, remain
finite as € -0, deviations from Egs. (1.1) and (1.2) are ex-
pected. In the discussion that follows we consider the two
dimensional problem, with one parameter ¢,,,.

In the present paper we discuss corrections to Kramers’
rate expression resulting from the smallness of €, i.e., of
B . We show that (a) such terms may lead to O(1) correc-
tions in the preexponential term of the Kramers’ rate; (b)
corrections in the model discussed by Larson and Kostin
[Eqgs. (3.1) and (3.2) ] are due to the smallness of €,,; (c)
such corrections are not associated with reaction path curva-
ture; and (d) the reaction path, defined as the path of mini-
mum energy, always goes through the saddle point on the
potential energy surface. However, the distribution of exit
points along the separatrix between the reactant and product
domains of attraction, may peak at a slightly shifted posi-
tion. This shift is again unrelated (in the high friction limit)
to the reaction path curvature.

In addition to the effects discussed here, we note that in
multidimensional situations, another dimensionless param-
eter may affect the reaction rate, namely the ratio between
the friction coefficients (or diffusion constants) in different
directions. Such effects were recently discussed by Agmon
and Hopfield.?! The application of the present formalism to
such situations of nonisotropic diffusion will be described in
a subsequent paper.

Il. FORMALISM

We consider the Smoluchowski equation corresponding
to overdamped motion in the plane (where tildes denote di-
mensional variables)

s 1 v /2mk T .
%=L 8~V 4 B W,
my 0%, ¥
. 1 av ’2mk T .
x2= —— = + d Wz,
my Jdx, ¥

where the friction coefficient ¥ is assumed large relative to all
characteristic frequencies, and m denotes the particle mass.
Here W, and W, are independent standard Gaussian white
noises. The potential ¥(%,,%,) is assumed to have two mini-
ma located at 117 = (X,,,%,,) and M,, (X155%55 ), whose
domains of attraction in the plane are denoted by &, and

2.1)

9,, respectively. The common boundary of D,and @ b 18
the separatrix which we denote by " (see Fig. 1). We assume
that there is a single saddle point S = (%10:%20) Of V(%1,%,)
on I'. The height of “the potential barrier in D (i=ab)is
defined as AV, = V(%,p¥a0) — V(F11%;). The Smolu-
chowski equation for the transition probability density
p(X,,%,,7) of the process [%,(7),%,, (¥) ] defined by Eq. (2.1)
is

9

- V2 = f N 2.2
a  my P==<e (2:2)
whose stationary solution is
p=exp{ — V/k,T}. (2.3)

A trajectory [X,(%),%,(¥)] that starts at a point (%,,%,) in
9, say, hits T for the first time at a random time 7*, at a
point X,(7*) = £,%,(7) =&, The probability density
P(§ ,,§ 21X1.%,) for this exit point, given the initial point
(X,,X,), is Green’s function for the boundary value problem

T . o~
pry=keT Vou— L §7-Fu= 0in2,,
u=f onl. (2.4)

Here the backward operator .Z* is adjoint to .#’, and fis an
arbitrary function, prescribed on I'.® We nondimensionalize
Eq. (2.4) by setting

x, ==k X2 = (2.5a)
k,T
V= €=—2_, (2.5b)
Z AV,
2
©? = ’Zﬁ, &° (2.5¢)

where L is a characteristic length and where @ in Eq. (2.5¢)
represents any frequency in the problem. Depending on the
shape of the well, we consider two choices for the character-
istic length scale L.

Xg

s

Xy
Oy

FIG. 1. Contour plot of a two-dimensional potential surface showing the
reactant (a) and product (b) wells, the saddle point S, and the separatrix .
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A. Casel

As AV, increases, the width 7, of the well (the distance

between M, and S) increases as VAV, [Fig. 2(a)]. In this
case we choose

AV,
my*

which implies that r, = 7,/L = O(1), and that the scaled
frequency @ = @/y does not change as AV, increases.

L=

B. Case ll

As AV, increases, 7, remains constant, i.e., the well be-
comes effectively sharper [see Fig. 2b]. In this case we take
L =7, so that r, = 1 by definition. The scaled frequencies
are then given by Eq. (2.5¢):

,_ mr
W' =—0@
AV,
so that for o = O(1),& = O(,/AV,), expressing the in-
crease in the sharpness of the well as AV, increases. This
holds for all frequencies but one. In the discussion below we
are interested in the case where one of the barrier frequencies
@, remains constant as AV, increases, so that the corre-
sponding dimensionless frequency @, is small

[0 (1/AV,)].7

In the present work we will be mainly interested in case
11, but for the time being we continue with the general scal-
ings (2.5). Equation (2.4), rewritten in terms of the scaled
variables, becomes

eVu —VV'Vu=0in 7,
u=f onT, (2.6)

where &, and T are the scaled domain and separatrix, re-
spectively. A method for treating the singularly perturbed

2
’

(i) (i)

(ii) (ii)

(a) (b)

FIG. 2. Effect of scaling the well depth: in (a) AV, increases together with
the width of the attractive region, so that the well frequency remains un-
changed, while in (b) AV, increases, while the width of the attractive re-
gion (a) remains constant, thus effectively decreasing the well frequency.
(i) is a sketch of the unscaled well, and (ii) is a sketch of the scaled well.

boundary value problem (2.6) was introduced by Mat-
kowsky and Schuss’'*?*-2¢ (see also Ref. 27). Employing
their method (briefly described in the Appendix), we find
that the resulting function P(£,,£,;x,,x,) is independent of
the initial coordinates (x,,x,) except for those points (x,,x,)
in an O(y/€) neighborhood (boundary layer) of . If T is
parametrized by the arc length s measured from the saddle
point S, then the solution # of Eq. (2.6) is given by
u = fp(5)f(s)ds, where the density p(s) of hitting points is
given by

exp { — V[£(s).6:(s)1/€lg(s)
$r exp{ — V[£(5),6:2(5)1/elg(s)ds

Here g(s) is the solution to the Bernoulli equation
(g =g(s).g' = dg/ds]

p(s)~ 2.7)

£ + b + ZE 5 ()]g =0 (2.8)
with the initial condition
g(s=0) =+ —by(s=0). (2.9)

In Egs. (2.8) and (2.9), the function b,(s) is defined by the
local expansion of V¥ near I'. For a point (x,,x,) in D, near
the separatrix, and the corresponding nearest point s on T,
this expansion is given by

VV(x, %) ~ — by(s) I + i;K(s)? 4o (2.10)
A

Here 7t and ? are the unit outer normal and tangent to T,
respectively, and / is the distance between (x,,x,) and s.
More specifically,

9
=0 On?
The most likely point of exit is the one at which p(s) is maxi-
mal, i.e., the point s* at which the numerator of Eq. (2.7) is
maximal. Because of the s dependence of g(s) on s, this point

is not necessarily at the saddle point S(s = 0). For e<1 itis
given asymptotically by

€O
g(0)V"(0)

where g'(0) and ¥ " (0) are derivatives of g and V along T,
evaluated at the saddle point. Equation (2.12) shows that
for small €, the most likely exit point s* is close to the saddle
point s = 0, though shifted by O(e€). For problems in which
the saddle is very flat, the asymptotic evaluation of Eq.
(2.7), which leads to Eq. (2.12), is not valid. The maximum
of p(s) in Eq. (2.7) will be determined essentially by g(s)
alone, and s* may be shifted from the saddle point s = O by a
distance that is determined by the flatness of the window.?’

The mean time 7(X%,,%,) for a trajectory that starts at
(%,,%,) in D, to first hit T, is the solution of the boundary
value problem®

F*=—-1in2,,

. (2.11)

r

J n
by(s) = EV V-h

(2.12)

7=0 onT. (2.13a)
In scaled variables this becomes

eVir—VV-Vr= —1in 9%,

r=0 onT, (2.13b)
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where all scalings are given by Eq. (2.5), and in addition

'r—'r(myL ) (2.14)
AV,
For € <1, the time 7 is given by'*"?
2 §f, dx,dx,exp [ — V(x,,x,)/€]
-~m7/L @,8X%, X, €Xp 1X2 . (2.15)

V2e/m §r dsexp [ — V(s)/€]g(s)
Equation (2.15) is the standard result used in all calcula-
tions pertaining to this problem. Under the assumptions de-
scribed above, the numerator can be evaluated by the La-
place method?® to give

21

————exp ( — V(M,)/€), 2.16
H700) p ( (M,)/¢€) ( )
where the Hessian H is defined by
Viex, (M) V., (M)
HM)=|_"" i =0} 0. (2.17)

x,)c2 (M ) XX (Ma )
Here w?, and w2, are the eigenvalues of the Hessian matrix
atM,,sothatw,, and w,, are the principal frequencies at the
bottom of the potential well in&Z .

The integral in the denominator of Eq. (2.15) can be
expanded®® as

2m7e
exp [ — V(0)/e] | [—rE_ e g;)
€ V (0))2

1 P,
X[ + V@) [24 (V‘”(O)

yO©)  g(0) Y90 g"(o>} ]
_ _ o)),

24700)  2g(0) 0y 2g0)] T %

(2.18)

where ¥V () (s) is the nth derivative of V" with respect to s [in
Eq. (2.18) all functions of s are evaluated at the saddle

point].
The transition rate &, across I', is given by
k=1, (2.19)
27

where the factor 1/2 is due to the fact that trajectories reach-
ing I’ from &, are equally likely to cross I'" or to return to
2 ,. Combining Egs. (2.15)-(2.19) we obtain

k=k [1+£+0(e)] (2.20a)
kg = etz On 1/e), (2.20b)
2y o,

where w, = — by(0) and w, =+ VP(0) are the principal

frequencies at the saddle point s = 0, and where

_ —5_( V(3)(0) ) _ V(4)(0)
24 \ V'2(0) 24V2(0)
’ {2)
_ 20 720 | g0 2.21)
2¢(0) V2(0) = 2g(0)

The squared frequencies w? and ? are proportional to the
principal curvatures of the potential surface at the saddle
point. They do not represent the curvature of the reaction
path in the (x,,x,) plane. We note that the correction term

Ae/o? in Eq. (2.20) is small, unless @, is sufficiently small,
i.e., > = O(€). In this case we have an O(1) correction to
the preexponential term, and Eq. (2.20a) must be modified
(see discussion below). Mathematically, the orgin of this
correction is the anharmonicity of the saddle.

Note that the rate k,, given by Eq. (2.20b), is a general-
ization of the rate k, given by Egs. (1.1) and (1.2). The
difference lies in the fact that the form (2.20) does not re-
quire that the reactive mode (associated with the barrier
frequency w, ) and the nonreactive mode (associated with
the frequency w, at the barrier) retain their identities in the
well. In addition, the correction term 1 + A (€/w?) is similar
to the correction term 1 + 1/2p in Eq. (1.3). Indeed, trans-
forming back to dimensional variables, the factor €/w? is
seen to be identical to 1/2p, with p given by Eq. (1.4), pro-
vided we identify the characteristic length L [cf. Eq. (2.5¢)]
with the Larson-Kostin length parameter r; (see Sec. III).

Thus, in the notation of Ref. 17, the correction term is
A /2p. Below we will show that for the model of Ref. 17,
A=1.

It should be noted that other corrections to the expres-
sjon (2.20), due to higher order terms in the boundary layer
expansion, may also appear. In fact, they are of order
O(€'?) and may dominate the O(¢) correction terms in Eq.
(2.20). Such corrections, however, are independent of @, to
leading order, and therefore do not become appreciable for
very small @,.

Finally we note that as @, —0 the expansion (2.20) must
be modified (e.g., Ref. 7). For w? = O(¢), the contour inte-
gral in the denominator of Eq. (2.15) is no longer of Laplace
type and cannot be expanded by approximating the expo-
nent by a quadratic form. It may therefore have to be evalu-
ated numerically. For w? €¢, the dominant term in the ex-
pansion of the contour integral is associated with higher
derivatives of the potential at the saddle point, which leads to
corrections of a different order in € in Eq. (2.20).

llil. TWO EXAMPLES

We first apply the analysis of Sec. II to the model of
Larson and Kostin.'” In polar coordinates (%8), their po-
tential is given by
V(50) = L}: [(rd)2 = 1 + L md?(F—r)%. (B.1)
This potential is characterized by two wells, centered at
F=r,0= + (a/r,),and asaddlepoint at ¥ = ro,0 = 0. The
relevant part of the separatrix is the positive x axis (6=0),
and the barrier height is V. Finally, & in Eq. (3.1) is the
barrier “window” frequency (&, of Sec. II). Measuring the
curvature of the potential surface at the saddle, in the direc-
tion perpendicular to the reaction path, determines the de-
gree to which the reactive trajectories are confined to the
vicinity of the saddle point. The reaction (minimum energy)
path from the reactant to the product well, is a circular arc of
radius 7y, connecting the centers of the two wells.

In dimensionless (scaled) variables, Eq. (3.1) takes the
form

ron=[(2) ] +4

—*(r—1)3 (3.2)
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where
r=—£—; a=—a—, V=——V—-; 0=26, (3.3)
Yo ¥o Vo
and
2
wr =T (3.4)
Vo

Note that the scaling employed in Eqs. (3.3) and (3.4) is of
type II (see Sec. II). In Cartesian coordinates
x, = rcos 6,x, = rsin  we have

2 2
Vix,x,) = [(—1— arctan ﬁ) — 1]

a X,
+%w2(‘/xf +x3 —1)2

In order to evaluate the constant 4 in Eq. (2.21), we must
compute the derivatives ¥ ¥ (0),(j = 2,3,4) with respect to
s (i.e., to x,) at the saddle point s = 0 (i.e.,, x, = 1, x, = 0).
It is easily verified that

(33V/ax? Yay=1xim0 = (8“V/8x‘1‘ )xy= 1m0 =0,
so that Eq. (2.21) becomes

” (0)

2g(0)

where again differentiation is with respect to the coordinate

x, and the functions are evaluated at the saddle point. The
Bernoulli equation for g(x,) is

3.5)

(3.6)

& + by(x,)g + b(x,)g = 0. (3.7)
In the present case
d? 1 4
by(x)) = V) = 2(1——)— , 3.8
o\t (dx% im0 @ x, azx¥ (3.8)
and
b(x,) = (dV) = (x, —1). (3.9)
dxl x,=0

Using Eqgs. (3.8) and (3.9) in Eq. (3.7) at x, = 1, yields
8(0) =— (3.10)

To obtain g” (0), we twice differentiate Eq. (3.7), and evalu-
ate the results at the saddle point, to obtain

gy =2 goy=24 3.11)
a a
so that [cf. Eq. (3.6)]
A=1. 3.12)

This is exactly the Larson and Kostin result for their simple
model. However, the interpretation of the origin of the cor-
rection term is different. We also note that for more general
situations, Eq. (2.21) provides the full first order correction
term.

To demonstrate that the correction term Ae/w? is unre-
lated to reaction path curvation, we consider an example
with a straight line reaction path, which nevertheless has
such a correction term. Thus as a second example, we con-
sider the potential

f/(:‘c,ja)=—gf—(j:2—a2)2+ ;m*z (1 + b5P) + 0. V° %
(3 13)

This potential is again characterized by two minima, at
x = 0;y = + a. Here, however, the saddle point is at the ori-
gin X = 0,y = 0 and the minimum energy paths is a straight
line connecting the centers of the two wells along the y axis.
The frequency & here, as in Eq. (3.1), plays the role of a
window frequency.

In dimensionless coordinates [V = (V/ Vo)x = X/a,
y=j,b=bal, and 0® = w*ma*/V,], we have
Vixy) = (P — 1)’ + 1’x*(1 + b7%) + x*. (3.14)
Repeating the analysis above, we find that V> (0) =0, but
V*(0)#0. Thus A is given by

“@ 2)
4= — V*(0) +g (0), (3.15)
24V 3(0) 2¢(0)
where g is a solution of Eq. (3.7), with
bo(x) = — 4+ 0*h*x?
b(x) = w*x. (3.16)
At the saddle point,
212
g= 2; g: — 0; gu - _ 22‘) b : | - wZ; V@ = 24,
o +4
(3.17)
so that
»’b? 1
1= e o G

Clearly the correction term A¢/w* becomes appreciable for
very small w, even though the reaction path in this example
is not curved.

IV. CONCLUSION

For transitions across a potential barrier in the over-
damped (diffusion) limit, we have shown that the reaction
rate does not depend on the reaction path curvature. Pre-
viously obtained corrections to the one-dimensional result
that were attributed to the reaction path curvature, have
been shown to be associated with anharmonicity of the po-
tential, and to a small window frequency, namely a flat po-
tential surface at the barrier, in the direction perpendicular
to the reaction path.

Our result could have been anticipated on intuitive
grounds. In the overdamped limit, the system is in thermal
equilibrium everywhere but in a vanishingly small region at
the saddle point, and the reaction path curvature, which by
definition depends on the shape of the reaction path away
from the barrier, is not expected to affect the dynamics of the
reaction. The situation may be qualitatively different in the
underdamped limit, when the reaction is affected and possi-
bly even dominated by the dynamics away from the barrier.
Such cases are currently under study.
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APPENDIX

In this Appendix we derive Eq. (2.7) from Eq. (2.6),
and Eqgs. (2.19) and (2.20) from Eq. (2.13b). First we con-
sider Eq. (2.6):

€U, +u ) —Vou, —V, u =0, (Al)
u=f onT. (A2)

The function p(x,,x,,£,,£,), which is Green’s function for
Eqgs. (A1) and (A2), is the probability density function of
exit points (£,,£,) on I', given the initial state (x,,x,) in
2 ,.* To find p(x,,x,,,,£,) We construct an asymptotic so-
lution to Eqgs. (A1) and (A2) for e<1, by the method of
Matkowsky and Schuss.”!*23-26

The expansion of the solution in &, for x,,x, away
from T, is given by '

u~u® 4+ eut 4 - (A3)
with 4° satisfying
0
%5 — VUl —V, Wl = (A4)

Here the total derivative in Eq. (A4) is taken along the tra-
jectories

X = —V

x,?

(A3)

Since all trajectories in &, converge to (x,,,x,, ), we have
U, = const. Thus,

X, = =V,

lim u =u,=const in & . (A6)

-0
To satisfy Eq.(A2), we correct the approximation (A3) by
constructing a boundary layer function. The boundary layer
equation is obtained by introducing the local variables (p,s),
where p is the distance to I and s is arc length on I" measured
from the saddle point S. Stretching the distance p by setting

1 =p/e,

and expanding the coefficients of Eq. (A1) in powers of Ve
(after the change of variables) we obtain to leading order,
the equation

Uy bg(s)"qu,, + b(s)u, =0. (A7)
Here by(s) is givenin Eq. (2.11) and b(s) == — dV /dsisthe
speed of the motion (A5) on I'. The boundary conditions for
Eq. (A7) are obtained from Egs. (A2) and (A6) as

lim u(7n,s) =f(s), (A8B)
7—0

and

lim u(7,5) = u, (A9)

K/ andt- -
An approximate solution of Eqgs. (A7)-(A9) is given
by25
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2 2($)p/V €

u~f(s) + [ug— A1, [=

T Jo
where g(s) is given by Egs. (2.8) and (2.9). To determine
the constant u, we multiply Eq. (A1) by e~ ¥/“and integrate
over 4 ,. Using Green’s theorem we obtain

e~ 2 ds, (A10)

fexp (—v/e) % gs—o, (A11)
on

where du/dn is the normal derivative of u on I'. Using Eq.
(A10) in Eq. (A1), we obtain

L Sr exp(— V/€)g(s)f(s)ds
O i exp( — V/e)g(s)ds

hence Eq. (2.7).
We now consider Eq. (2.13b). To obtain Egs. (2.19)
and (2.20), we note that 7— oo as €—0. Therefore, we set

(A12)

7=C(€)gq(x,x;) (A13)
in Eq. (2.13b), where
max gq(x,,x,) =1, (Al4)

and C(€) — o as €~0. Now, for <1, g(x,,x,) satisfies Eq.
(A1) with the boundary conditions

g=0 on T [see Eq.(2.13b)], (A1l5)
and Eq. (A14). Proceeding as above we obtain
) g(s)p/e X
g~ [—= e " ds, (A16)
m Jo
and employing Green’s theorem we obtain
§5§. exp( — V/€)dx, dx,
C(e) ~ - (A17)

S J(2e/mg(s) exp( — V/e)ds
Finally, Eqs. (2.19) and (2.20) are derived by asymptotical-
ly evaluating the integrals in Eq. (A17).
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