Traversal time for tunneling: Local aspects
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The relationship between inelastic tunneling processes and the traversal time for tunneling is
studied with emphasis on the local aspects of the tunneling time. Viewed in this framework, the
local tunneling time is shown to be a dominant factor in determining the inelastic tunneling
probability. It is shown that the Buttiker~Landauer semiclassical formalism, when generalized
to the case of local interactions and applied to the calculation of inelastic tunneling
probabilities, gives results identical to other perturbation theory calculations such as the
Bardeen formula. Analytical results derived for square potential barrier are shown to hold also
for strongly biased barriers. Application to inelastic tunneling in typical scanning tunneling

microscope configuration are discussed.

I. INTRODUCTION

There has been a considerable amount of discussion on
the issue of the duration of the tunneling process. The differ-
ent conceptual approaches to this question and some of the
different results obtained have been briefly reviewed by But-
tiker and Landauer (BL)'~® (see in particular Ref. 1 for
references to earlier work). One common approach® invokes
the concept of delay time associated with a scattering process

T¢=7'R=§Re[—iﬁ5'_1:—;}=ﬁ§%, (1)

where E is the incident energy, S is the S matrix, and where
A¢ is the phase shift. Physically this time is related to the
motion of the peak of a wave packet through the tunneling
region. It has been argued'’ that this time, although well
defined for all energies, has some intuitively unphysical im-
plications. Instead, in one dimension and in the WKB limit
for energies well below the barrier peak, Buttiker and Lan-
dauer suggest the time

r=r dx[m/fx(x)] , 2)

where x, and x, are the turning points of the barrier motion
and where

K(x) =—;—{2m[U(x) —ENV (3)

with U being the potential barrier function, as a measure of
the time during which the tunneling particle interacts with
the barrier. Pollak and Miller*® have similarly suggested a
generalization of Eq. (2),

2
7'=fmeIm(—iﬁS_‘£)= _Las 2 dISE
dE 2 dE
)

The motivations behind Eqs. (2) and (4) are similar.
Buttiker and Landauer'~ have shown that if a physical pro-
cess (e.g., energy transfer! or Larmor precession®) of char-
acteristic time scale @ ~! occurs within the barrier the in-
equalities @7>1 or wr<1 determine, respectively, the
adiabatic or sudden limit with respect to this physical pro-
cess in much the same way as the real time does for over
barrier interactions. Similarly Pollak and Miller® show that
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in the deep tunneling region the magnitude of 7 determines
the extent to which degrees of freedom strongly coupled to
the tunneling coordinate have to be quantized.

While the concept of duration of the tunneling process is
intellectually appealing, it may be argued that this quantity,
being unmeasurable, is of no importance. The significance of
the papers discussed above lies in the fact that they point out
important consequences of the tunneling time,” as implied
by the degree of adiabaticity of interactions within the bar-
rier. Two examples of such interactions are: (a) inelastio
tunneling® and (b) image interactions during tunneling in
proximity to metal surfaces.® The model advanced in Ref. 8
for inelastic electron tunneling is essentially identical to that
used in the discussion of Refs. 1 and 3 of tunneling time. In
Ref. 9 the issue of the dynamical image potential felt by an
electron tunneling from a metal through a clasically forbid-
den region is discussed with results similar to those of Refs.
1-3.

In the present work we discuss one aspect of the tunnel-
ing time not raised by earlier work—its local aspects. Ex-
pressions (2) and (4) are associated with the total tunneling
process. However, implications related to the degree of adia-
baticity of interactions within the barrier are expected to
depend also on the range of such interactions and on their
location within the barrier. Can we define a time of tunneling
between any two points x, < x, within the barrier and associ-
ate it with Eq. (2)? We show below that the answer is yes.

Our interest in this problem is motivated by the impor-
tant potential applicability of scanning tunneling micros-
copy (STM) to studying adsorbed molecules by inelastic
electron tunneling.'®-'> STM by its very nature is extremely
sensitive to local aspects of barrier interactions. For the STM
configuration with its extremely narrow barrier, it is not
clear that perturbative approaches like that of Refs. 1-3 and
8, or the widely used Bardeen’s transfer Hamiltonian the-
ory'? are sufficient. In the next section we take up this issue
and compare, for an exactly soluble inelastic tunneling mod-
el, calculations based on the perturbative approximations to
the exact results. We show that perturbation theories have a
wide range of applicability in typical STM configurations,
although their limits are explored by some choice of param-
eters. In Sec. III we discuss, for a rectangular barrier, the
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effect of the location and range of the inelastic interaction on
the efficiency of the inelastic tunneling processes. This dis-
cussion leads to the conclusion that the Buttiker-Landauer
traversal time for tunneling, Eq. (2), may indeed be general-
ized for local interactions. Thus, a transition from the adia-
batic to the sudden limit is observed as the range of interac-
tion decreases, making the funneling time through the
interaction region shorter. Some implications of this observa-
tion are summarized in Sec. IV,

Il. AN EXACTLY SOLVABLE MODEL AND
PERTURBATION THEORIES

Our following discussion focuses on the following mod-
el: A particle tunnels through a one-dimensional rectangular
barrier and interacts during the tunneling process with a two
level system. The wave function for this system is represent-
ed as a vector [¢,(x), ¥,(x)]T and its time evolution is
given by the two coupled equations:

Y, (x,t) i # 3°
WD B hw]h - v,
(3a)

A, (x,t) i # 9?
%at ST  mae 2+h’(x)]¢2_”y(x)¢“
(5b)

with

_ [0, |x|>d7/2,
h’(x)_{U, —d/2<x<d /2, (62)
hy(x) = h(x) + AE, (6b)

0, x<a,x>b,
V&) =) exed, (7
. b<%- (8)

This is a tunneling process involving a particle moving on
two parallel potential surfaces (Fig. 1) with position depen-
dent interaction between them. A particle incident on the
barrier from the left, moving on surface 1 (i.e., with the two
level system in its ground state) may be transmitted or re-
fiected either elastically (on surface 1) or inelastically (on
surface 2). Due to the simple geometry the probabilities for
these processes may be evaluated exactly by standard meth-
ods. The result for the reflection » and transmission ¢ ampli-
tudes for the elastic channel and for the corresponding quan-
tities 7 and 7 of the inelastic are (see the Appendix)

r=aM~'(1,1) + M ~'(1,2),

t=aM ~'(6,1) + M ~'(6,2),

F=aM~Y(7,1) + M ~'(7,2),

t=aM ~'(12,1) + BM ~1(12,2),
|r%, [F% |¢]? and |z |? are the corresponding reflection and
transmission coefficients. In particular 7 = | |? corresponds
to the inelastic transmission probability. In what follows we
shall use a more specific notation, replacing tby f,and zby ¢,
or .. according to whether the transition occurs from the
upper potential surface to the lower one or vice versa. The

parameters a and £ and the matrix M are given in the Ap-
pendix.
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FIG. 1. A two level model for inelastic tunneling through a symmetric
square potential barrier. The two potential surfaces are coupled in the re-
gion a...b. The equivalent semiclassical model of Buttiker and Landauer
involves one potential surface whose height is modulated in the region a...5.

A classical analog of this problem is provided by a sim-
ple generalization of the model used by Buttiker and Lan-
dauer'? (BL). These authors consider tunneling through a
rectangular barrier [4,(x) say] in the presence of a oscilla-
tory perturbation 2V(x)cos(wt) where @ = AE /#.%* BL
take the spatial dependence of ¥(x) to be the same as that of
the barrier [Eq. (6a)] while we use Eq. (7) in order to be
able to discuss the local nature of the tunneling time. The
tunneling probability for this model may be solved for
V £fiw using the same perturbation procedure described in
Refs. 1 and 2. For the present model this procedure leads to
the following expression for the ratio between the inelastic
¢, and the elastic #,

1, 2V SRk
% AE B
xX{B(b) — a(b) — [B(a) —a(a)l}, (10)
where

a(x) = [ y(x) +ik my(x)]smh[ ( +x)]
(11a)
B(x) = [k, kn(x) +ik, x_y(x)]

xeosh|x. (£+)],

y(x) = cosh[x(; —x)] - ii sinh[x(% —x)] , (l1c¢)

K

7(x) =%c0sh[x(§ —x)] — sinh[x(—g— — )] , (11d)

(11b)

B=2(k% —«% )sinh(x,d) +4ik, k, cosh(x,d),
(11e)
p_VZME _ \2m(U—E)
- ﬁ ’ - ﬁ b
K, =%\/2m(U—E,-IFAE), (12)

k, =% 2m(E, + AE) .

The transmission probabilities T, and T', are the absolute
squares ||? and |z |2 respectively.

An alternative perturbation procedure is provided by
the Bardeen’s transfer Hamiltonian theory'® which leads to
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a golden rule type expression for the transmission rate
27
W= 7‘| (¢ |HT|¢f> |2P(Ef) ’

where ¢, and ¢ , are eigenstates of Hamiltonians with semi-
infinite barriers. Thus for the problem described by Egs.
(5)~(8) for a particle tunneling from left to right #; is an
eigenfunction of a Hamiltonian with a barrier similar to Eq.
(6a) only extended to + oo [i.e., A;(x) =0forx< —d /2
and h,(x) =U for x> —d /2]. Similarly, for inelastic
transmission, ¢ . corresponds to the barrier 4,(x) = AE for
x>d /2 and h,(x) = U+ AE for x <d /2. The tunneling
Hamiltonian H is, for the inelastic process, identical to
V(x) of Eq. (7) while for elastic tunneling it has been shown
by Bardeen'® to be given essentially by the flux density oper-
ator. The relation between the transmission rate equation
(13) and the transmission probability T is for the present
model

(13)

uﬁ =—=T,
Y Lm
where L is the normalization length. This leads, for the in-
elastic transmission probability in the Bardeen’s formalism,
to

(14)

k 2
T, =L(Ei )L2|(¢,(Ei AE) V() |4, (E)) 2.
+
(15)

In order to get Eq. (15) we have set E, = E + AE with
k . the corresponding free particle wave number and have
taken

p(E,)=L /27[(%) B ‘]E = (L/2mM /#k .

(16)
The subscript ( — ) corresponds to a particle starting from

the lower potential surface 1 ending after transmission on

1.0

o 30 60
V/AE

FIG. 2. The ratio T®L/T<*** between the BL result and the exact two level
system calculation for 7_. U= 10 eV, d = 14 A, AE=#w =05 eV,
E, = 6 eV. Electron mass is here and in the other figures.
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FIG. 3. The ratio T2 /T *** between the result based on the Bardeen ap-
proximation and the exact result for a two level system, plotted against the
location X of the excitation region within the barrier. (X is the center of the
excitation region.) U=10eV,d =10 A, AX =2 A&, AE =0.5eV; full line
(left axis) E; = 1 ¢V; dashed line (right axis) E; =9 ¢V.

surface 2. The ( 4 ) subscript corresponds to the opposite
process. Note that in Eq. (15) the normalization length L
cancels out and the result is, of course, L independent.
Calculations based on Eq. (15) are easier to perform
than those based on Egs. (9) or (10), especially when exten-
sions to nonrectangular situations are carried out. This re-
sult is however more restricted than the others because in
addition to the requirement ¥ € AE the choice of initial and
final wave functions assume that the barrier is thick enough.
In Figs. 2—4 we compare the results for T from the But-
tiker-Landauer (BL) model and of the Bardeen (B) formal-
ism to the exact resuits obtained from the two level model of
Fig. 1. We focus on 7T_; the behavior of T being essentially
the same. It should be stressed that in the regime where per-
turbation theory works the results from the Bardeen formal-
ism and those based on the semiclassical BL model are prac-
tically identical except when the local interaction is too close
to one of the barrier edges. The results in Figs. 2-4 show that
the approximate results fail as expected for strong coupling

.04~
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B TAR, T

TBAR/T

| J
o'86l.0 85 160

E(eV)

FIG. 4. Full line: T® /T**; dashed line: T® /T plotted against the
incident energy E;.d = 154, Ax =8 A, U=20eV,AE=0.5¢V, V=0.5
eV.
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(a limit which may be reached when V /%iw X 1, when the
interaction region Ax = b — a becomes large, or when the

incident energy E is close to the barrier energy). The result -

of the Bardeen formalism breaks down also for small Ax
when the interaction region approaches one of the edges
(a— —d /2 or b—d /2). This behavior is also understanda-
ble because near a barrier edge the Bardeen approximation
for the wave function describing the particle coming from
the other edge fails. This observation is significant for our
purpose: The situation where the interaction regime is near
the edge of the tunneling barrier is the common one in the
STM configuration (molecules adsorbed at an interface).

To end this section we summarize our notation. In what
follows we shall use r, and T, = |z, |? for the overall
transmission amplitudes and probabilities (respectively) as-
sociated with the inelastic components through the barrier.
t, and T, = |t,|* are the corresponding elastic quantities.
t, (d;a,b) and the corresponding T, (d;a,b) will denote
the inelastic transmission amplitudes and probabilities asso-
ciated with a barrier of thickness d [Eq. (6a)] where the
inelastic interaction satisfies Eq. (7). In addition we shall
denote by g, (d) and g,(d) the elastic transmission ampli-
tude through a square barrier of thickness d, associated with
waves of energy E+ AE and E, respectively. Again
G, (d) =g, (d)|* and G,(d) = |go(d)|* are the corre-
sponding probabilities. Note that within the perturbative ap-
proximation used in the Bardeen’s approach, or that used to
derive Eq. (10), go(d) = ¢,.

lil. LOCAL ASPECTS

In Sec. I we have pointed out, following Buttiker and
Landauer,'~ the intimate relation between the probability of
inelastic tunneling and the adiabaticity of the interaction
within the barrier as measured by the tunneling time defined
by Eq. (2). When the range of the inelastic interaction is
smaller than the barrier width we expect the relevant time to
be related to the motion through the interaction regime. In
this case however another factor plays an essential role in
determining the inelastic current: Consider, for example, the

-460 -5.80
5 -485 -605 =
~ $
e X
Z =
% -510 —-6.30
> —
~ >
P L
g
g 3
=535 1655 =,
= <
_ 1 J J -6.80
>80 20 0 20 40

X (A)

FIG. 5T /T, as a function of position of the interaction region. Full line
(left axis): 7, /T, Dashed line (rightaxis): 7_/T,. U= 10eV,E;, =5eV,
d=10A, AE=05¢V, AV=0.1¢eV, AX=2 A, X is the center of the
interaction region, X = (a + b)/2.

E — #iw inelastic component of the wave function. This com-
ponent is populated in the interaction regime, than has to
tunnel through the rest of the barrier (b < x <d /2) with the
reduced energy. On emerging from the tunneling regime this
inelastic component will therefore be smaller (relative to the
elastic component) for larger distance d /2 — b. The oppo-
site is true for the E + #iw component. This effect is demon-
strated in Fig. 5. It has two important consequences:

(a) In normal inelastic tunneling processes involving
the E — fiw component associated with vibrational frequen-
cies of adsorbed molecules, the inelastic signal is stronger
when the electron current flows towards the interface con-
taining the molecules. On reversal of the current direction
this inelastic signal will strongly decrease or entirely disap-
pear.

(b) The opposite holds in cases involving initially excit-
ed molecules if the E + #iw inelastic component is observed.
The following experiment suggests itself: monitoring the
tunneling current for fixed junction parameters as a function
of exciting light frequency. Resonance behavior is expected
and the signal will be stronger when the electron current in
the barrier flows away from the edge containing the mole-
cules.

Figures 6-8 demonstrate that the concept of local tun-
neling time is indeed a valid one. In Fig. 6 the data of Fig. 5 is
normalized by dividing each component of the tunneling
probability T, by the product of the corresponding elastic
tunneling probabilities G(d /2 + a)G | (d /2 — b) for the
barrier regions before and after the interaction region. Be-
fore the interaction region, in —d /2-:-a, the tunneling
probability G(d /2 + a) corresponding to E = E; is used.
Afterit,intheregiond---d /2,G , (d /2 — b) corresponding
to E = E; + AFE is the relevant factor. It is seen that after
this normalization the relative tunneling probabilities be-
come insensitive to the location of the interaction regime
within the barrier, provided that this regime is not too nar-
row or not too close to the barrier edge.

It is sensitive however to the local tunneling time. To see
this we plot in Fig. 7 the quantities y, and #, defined by

T, —T_

= , 17a
e (172)

YL

-140

ln(Tt/G+G)
1
s
[

- I | !
Is'2-5.0 -25 0 2.5 5.0

X (A)
FIG.6.T, /|G(d /2 + a)G . (d /2 — b)}? as a function of position of the
excitation region. Line notations and parameters used are as in Fig. 5.
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1 |
0.0 05 1.O

tgh(wTt, )
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FIG. 7. Fullline: y = (T, — T_)/(T, + T_) as afunction of tanh(w7);
r=md /#ix, k =" [2m(U — E)]'/? for the case where the interaction
region exactly overlaps the barrier region. U= 10eV, E;, = 5¢V,d = 30A,
V=0.1 eV, and o is varied. Dashed line: ¥ as a function of tanh(wr, ),
7, = mAx/(fix) for Ax =10 A with other parameters, the same for the
case where the interaction region is at the end of the barrier (b = d /2; the
incident particle arrives from the other end). Dotted line: 7,
=(T,/G, —T_/G_)/(T,/G, + T_/G_)asafunctionoftanh(w, )
for the case where the interaction regime (Ax = 10 A) is in the middie of
the barrier (d = 30 A). G, and G_ are the elastic transmission probabili-
ties for particles of energy E; + fiw and E; — #iw, respectively, incident on a
barrier of thickness 10 A. Dotted dashed line: ¥ as a function of tanh(w7, )
for the last case.

5 T./G (d/2—b)—T_/G_(d/2—b)
LT /G, (d/2—b)+ T_/G_(d/2—b)
as functions of tanh(wr; ) where 7, is defined by

(17b)

In[(T+/G)/(T-/G_]

L } ! L J
0 10 2.0

wT

FIG.8.n{[T, /G, (d /2 — b)1/[T_/|G_(d /2 — b) ]} plotted against T
where the parameter w7 is controlled in different ways. Full line: o is
changed. Dashed line: E, is changed, Ax = 25 A, U = 20 eV. Dotted line:
Ax is changed (E; = 7.0 ¢V). Unless stated otherwise the parameters used
ared =50A,Ax =104, U=10eV,AE=0.3¢eV, ¥=0.1eV,E, = 5¢V.

mAx
T =—,

1
7 (18)

Ax=b—a; K=%[2m(U—E)]V2. (19)
For Ax =d(a= —d /2; b=d /2), namely the interaction
region overlaps exactly the barrier region, the quantities y,
and 7, are identical to the parameter ¥ and the tunneling
time 7 defined by Buttiker and Landauer, who have shown
that for opaque barriers (kd>» 1) ¥ = tanh(wr). . and 7,
are thus the generalizations of  and 7 to the local interaction
case, and ¥; is the analog of ¢ in which the differences in the
elastic tunneling probabilities in the barrier after the interac-
tion region is normalized out. Figure 7 shows that the
expression ¥, = tanh(w7, ) is the correct generalization of
the BL result.

Figure 8 shows the dependence of the ratio T, /T_ on
the parameter w7 where the latter is varied by changing @ or
by varying 7, (7, may be controlled by its dependence on E;
or on the size of the interaction region x). It is seen that the
transition from the adiabatic (wr>1) to the sudden
(wT <€ 1) regime may be achieved by controlling either one of
these parameters. In spite of small differences between the
three lines it is evident that the local tunneling time is a most
important parameter controlling the adiabaticity of the pro-
cess. It should be kept in mind however that the simple rela-
tion between the inelastic tunneling probabilities and 7,
breaks down when the barrier is not opaque or even when the
interaction range is too narrow (see below).

The results presented in Figs. 5-8 represent either one of
the different methods of calculation outlined above. The fol-
lowing analysis is based on the generalized BL expression
(10). In the opaque limit where

kx, k. x>1. (20)
for all length parameters
x=d, b—a, d/2—-b, d/2+a 21

we replace sinh(x + x) and cosh(«x + x) in Eq. (10) by
Le+” to get

1, (dab) V ik_k,an pK K2

€

t, 2AE
X [1 - e("_"t)(b_“)] Z

(22)
with
_ M+, /)| (kk, —Kic ) +ilke, +k, k)]

z
(k. —ik,)?
(23)
In the opaque barrier limit
4ik i
to=go(d) = — ———(K—lil;c)Z e~ +ibd (24)
g, (@)= — 4ik , K — g +ikyd (25)

k., —ik,)?

We also require the BL result for¢ , (b — a;a,b). In the opa-
que barrier limit this is [cf. Eq. (3.5) of Ref. 2; note that V,
there corresponds to 2V here]
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t, (b—aa,b)

to(b—a)
= L vyexp( 7 '"“’bz ) (26)
b —
- =ﬂhx_a), 27

The factors involving @ in Eq. (26) arise from the expan-
sions (valid in the opaque barrier limit'?)

ko =k, (28)
K, =x$”—’;§. (29)
Therefore Eq. (26) can also be written as
t, (b—aab)
to(b —a)
__7r (e®—F =D _ [) ik =kl —a21 30y

)

Equations (22), (24), (25), and (30) may now be combined
to give

to(d)
t, (b
8(b—a)

2| g, (d/2—b)

2
Z*, (@31
g(d/2—b) 121 Gh

1, ke(e, —ik,)?
2 Tk ok, (k—iK)?
Ifk, =kandx, =x,Eqgs. (23)and (32)leadto|Z |* = 1.
From Eqgs. (28) and (29) corrections to this result will be of
order mw/hk? or mw/#x?. Indeed using Eqs. (23), (28),
(29),and (32) we get

(32)

— (k/K)* + 2(x/k)?
ﬁk" (k/k + k /Kk)?

Thus, up to corrections of order maw/#k 2, the product rule
anticipated from Figs. 6-9 indeed holds. In particular, the
inelastic transition probability is controlled in this limit by
the local tunneling time 7, _ ,, Eq. (27), associated with the
interaction region. Another interesting observation can be
made by using Eqgs. (24) to rewrite Eq. (31) in the form

(33)

ZP=1F2

|t4 (dab)|* = (‘;—}—a) |7, (b—aab)|?
d 2P+ k2 s
x|g, (& - b) KR D ZPP (34
gi(z LR
which shows that within the approximations discussed
above the combination |t (dab)|*/|g(d /2

+a)g, (d/2 — b)|? is independent of the location of the
interaction region within the barrier (see Fig. 6). More im-
portant is the practical computational implication of Eq.
(34):Itshowsthat, (d;a,b) may becalculated as the prod-
uct of two elastic tunneling probabilities associated with the
regions preceding and following the interaction region and

1.0

0.8

x 06

0.4}

0.2 | | | | J

04

0.2 ] | | | J
AX

FIG. 9. The ratio R [Eq. (35) ] as a function of b — a = Ax. The excitation
region is in the center of the barrier. E; = 3.0eV, ¥ =0.1eV,AE=0.3 ¢V,
U=9.0¢V.In(a)d = 10 Aand (b) d = 20 A. Full line: ¥, = 0.0; dashed
line: ¥, = 4.0 eV; dotted line: ¥, = 6.0eV.

the inelastic tunneling probability associated with the inter-
action region, times a function of k,w, the incident energy
and the barrier height, which does not depend on character-
istics of the interaction.

This separation approximation is expected to break
down when condition (20) does not hold. This is seen in Fig.
9 where the ratio

t (dab)/[t (b—aab)g_(d/2—b)
go(d) 8o(b—a)gy(d/2 —b)

is plotted as a function of Ax = b — a. This ratio should be a
constant close to unity when Eq. (31) holds, and the devi-
ation is seen when Ax becomes too small.

In Fig. 9 we have also presented results of calculations of
the same ratio defined above for a biased barrier model [see
inset to Fig. 9(a) ]. The magnitude of the bias is expressed in
terms of the energy V¥, defined in the inset. These calcula-
tions are based on a numerical study of inelastic tunneling in
a two state (Fig. 1) biased barrier model to be described

(35)
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elsewhere.!” It is seen that the separation approximation re-
mains valid under the same conditions as discussed above,
also in the biased barrier case.

IV. CONCLUSIONS

We have shown, for the square barrier and square inter-
action region model that the provided interaction region is
not too narrow and not too close to the barrier edge, the local
tunneling time (18) dominates the inelastic tunneling prob-
ability. More generally, Egs. (31) and (34) show that under
these conditions the inelastic tunneling probability for the
local interaction model can be evaluated in terms of the in-
elastic tunneling probability for the square barrier associated
with the interaction regimes, and elastic tunneling compo-
nents associated with the other barrier regions. Our calcula-
tions for a biased barrier indicate that this result is of more
general validity (the concept of local tunneling time was
recently considered for a general barrier by Leavens and
Aers'®). Generalizations to higher dimensional potentials
may be possible using the formalism of Auerbach and Kivel-
son."?

In addition, we have shown that for standard STM con-
figurations the assumptions inherent in perturbative ap-
proaches such as the Bardeen and the Buttiker-Landauer
treatments may break down. In particular, the narrow gaps
involved in the scanning tunneling spectroscopy configura-
tion requires that the use of the Bardeen formalism should be
carried out with caution. When it fails the two level system
within a square or biased square potential barrier model can
be handled exactly. Otherwise, different methods, possibly
direct numerical solution of the Schrodinger equation will
have to be used.
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APPENDIX

The transmission and reflection coefficients for tunnel-
ing in the two level system of Fig. 1 are obtained following
the derivation of Puri and Schaich'?: The wave function in
each channel and in any regime I is written as a linear combi-
nation ¥, (x) = Ejafleik’g ™ where the ( generally complex)
k ;s are eigenvalues of the coupled problem in regime I. The
coefficients 4" are obtained from the continuity equations
which are satisfied separately for the wave function of each
channel and from the coupled channel equations obtained
from the Schrodinger equation. This leads to a set of linear
equations of the form
J

M(1,1) = (iky — Ko)e(“o+1ku)d/2+xoa,
M(1,2) = (ko + I?o)ei"“,
M(1,3) = (KO + T(l)e'—‘la’

3877

r a
=\ [2
a, 0
a, 0
a, 0
t 0
Myl 7151 ol (A1)

a, 0
a, 0
a, 0
0
0

nlE'

—
et
e ——————

where
a = (ko + iky)eto— k1472 gt (A2)
B = (ko — iky)e ™ o+ ikad/2 gioa (A3)

with
ko =\2mE /#,
KO = m/h ’

and @ and d defined by Fig. 1. 7 and ¢ are the reflection and
transmission amplitudes in the elastic channel (so that, e.g.,
|t |2 is the transmission coefficient) and 7 and 7 are the corre-
sponding amplitudes in the inelastic channel (the transmiti-
vity being |7 |%k,/k, and reflectivity [F|?k,/k,). The coeffi-
cients g; and @; (j = 1,...,4) define the wave functions in
channels 1 and 2 in the interaction zone (a...b) according to

¥, = 0,6 + 4, + aze " 4 ae 5%, (A4)
¥, =G + B,d + Bye " G ™, (AS)
where
172
;0=(2%2’2[UC_E+$2E-[1-\/1+(2V/AE)’]]) :
 (A6)
172
R = (%”[U —E+%[l +TF (2V/AE)"’]]) :
(A7)
x, =\2Zm(U, —E + AE) /4, (A8)
k, =\2m(E — AE) /% . (A9)

InEqgs. (A6) and (A7), U, represents the barrier height
in the interaction region which may be different from the
height U, of the rest of the barrier. This difference may arise
from the fact that the presence of a molecule in the barrier
may give rise to diagonal elements in the interaction Hamil-
tonian, raising or lowering the potential barrier height. In
the latter case, inelastic resonance tunneling may occur for
incoming energies E larger than U, . Note, that in Fig. 1 and
in the calculations presented we have taken U, = U,,.

The matrix elements of M are given by (only nonzero
values are denoted)

M(2,1) = (ikO —_ Ko)e_ (Ko — iko)d /2 — xoa ,
M(2,3) = (KO — ,_(])eila ,
M(2,4) = (ko + Ky)e ™™,
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M(1,5) = (Ko_’?l)e—'?'a,

M(3,2) = (Ko + Ko)e™”,

M(3,3) = (Ko + K1)e”,

M(3,5) = (ko —Kp)e ™ ™°,

M(3,6) = — (iky + kp)eltho —xd/2+ kb

The above list establishes the matrix elements of rows
14, associated with the elastic channel. The elements of
rows 5-8, related to the inelastic channel, can be derived
from the above list by using a simple transformation rule that
reads

M(i+4,j+ 6) = M(iy) (A1l)

and by interchanging k, with k,, «, with «,, and &, with k;.
The last four rows (9-12) contain eight nonzero elements,
expressing relations between the elastic and inelastic wave
functions [see Egs. (A4) and (AS5)]:

M(9,9) = M(10,8) = M(11,11) = M(12,10) =1,

M(9,2) = M(11,8) = p(Ky), (A12)
M(10,3) = M(12,5) = y(k,),

where
(o) = ——gij(l _JT¥ QV/AE?), (A13)

y(K,) = ——25(1 +J1 + QV/AE)?).
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