On the ionization potential of small metal and dielectric particles
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The ionization potential of small metal and dielectric spheres is considered in different
frameworks: classical, semiclassical, and quantum mechanical density functional approach.
Classical calculations give conflicting results, and the generaily accepted result for the
ionization potential of a metal sphere of radius R: W, (R) = bulk work function + (3/8)¢*/R
is shown to be wrong, resulting from the classical image potential too close to the metal
surface. Using appropriate cutoff to the image potential, the result W; (R) = bulk work
function + (1/2)g*/R (previously obtained from solvation energy considerations) is
recovered. Experimental results on relatively large particles are in agreement with the latter
result. For very small clusters, deviations of experimental results from this classical behavior
are shown by a density functional calculation to arise from quantum mechanical effects. These
are first the spilloff of the electronic wave functions beyond the cluster edge and secondly from

exchange and correlation contributions.

I. INTRODUCTION

The ionization potential of small metal particles in vacu-
um has been the subject of experimental study for more than
a decade.'~ It has been pointed out*® that classical electro-
statics may account for the main features of the observed size
behavior though quantum effects are clearly observable for
very small clusters. Classical electrostatics (with quantum
corrections) have also been used recently by Brus® to evalu-
ate the ionization potential of colloidal semiconductor parti-
cles. Smith* and later Wood® have obtained the following
simple result for the ionization potential W(R) of a small
spherical metal droplet of radius R:

3 ¢

W,(Ry=W,_ + s R’ (la)
where W, is the work function of the planar metal and ¢
the electron charge. In contrast, Brus’ calculation® for a di-
electric sphere of dielectric constant € yields in the €— o«
limit

14

Wi (R)=W,_ + >R

In the present note we attempt to resolve the conflict
between these results and to assess the validity of the classi-
cal electrostatic calculation. We show that even though Eq.
(1a) is a mathematically correct electrostatic limit, the re-
sult (1b) is imposed by the requirement that the work asso-
ciated with a charge crossing the boundary between two di-
electric media should approach the difference between the
corresponding solvation energies in the limit of large dis-
tances.” The generalization of Eq. (1b) for a dielectric of
finite € is

(1b)

2
1
W.(R)=W g € ) 2
1(R) 1,w+2R - (2)

For a metal further modification of the classical theory is
needed to take into account screening effects.
Equation (la) has been reported to be in agreement
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with experimental measurements on sodium' and silver®®
particles. We find that while the modified electrostatic cal-
culation yields a slightly better agreement with the reported
experimental results on the (relatively large) silver particles,
the fit to experimental sodium and potassium cluster results
is considerably worse. A density functional calculation
shows that quantum mechanical effects are very important
for small metal particles, in particular for metals of large r,
(low electron density) values. With these effects taken into
account we find that agreement with experimental results is
restored. We conclude however that the good fit provided by
Eq. (1a) was fortuitous.

This paper is constructed as follows: In Sec. II we show
how electrostatic theory should be modified in order to satis-
fy the requirement that the work associated with a charge
crossing a boundary separating two media should corre-
spond to the difference between the solvation energies of
these media. In Sec. ITI, we show how this leads to the results
(1b) [rather than (1a)] and (2) for the ionization potential
of small particles. The effect of finite screening length, ex-
pected to be important for very small particles, is discussed
in Sec. IV. In Sec. V we present the results of a density func-
tional calculation which show that classical theory is inade-
quate for very small particles and that the R dependent terms
in the ionization potential result from a combination of sev-
eral contributions both of classical and of quantum mechani-
cal origin. The deviation of experimental observations on
small metal clusters from predictions based on Eq. (1b) is
shown to arise mainly from quantum mechanical effects.

Il. THE MODIFIED ELECTROSTATIC CALCULATION

For completeness we repeat the classical electrostatic
calculation**: The difference between the work needed to
remove a point charge ¢ from a point  outside a conducting
sphere to infinity and the same work associated with a plane
surface is (> R)

© 1988 American Institute of Physics

Downloaded 09 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Makov, Nitzan, and Brus: lonization potential of small particles

2p 3
L SO <__ 4 , (3)
27(P—R?* R 4(r—R)

where R is the sphere radius. In Eq. (3) the first term is the
work against the image force on the sphere,® the second is the
Coulomb work due to the interaction with the opposite
charge remaining on the sphere, and the last term is the im-
age work on the plane. For r = R + h, h—0 the sum of terms
(3) goes to the limit

2p3 2
R T_ T h-0_ 3 ' (4)

2(R+h)(2KR+h%* R 4k 8 R
which leads to Eq. (1).

While Eq. (4) is the correct mathematical limit of the
energy difference obtained from classical electrodynamics, it
is known that the # —!(h—0) divergence of the image poten-
tial is unphysical, and that at distances < 1-2 4 classical
image theory breaks down. This unphysical divergence can-
cels in the difference taken in Eq. (4), but it is not obvious
that it does not leave incorrect finite terms. Also, as shown
below,. a logarithmic divergence remains in a calculation
equivalent to Eq. (4) for a dielectric solid of dielectric con-
stant € rather than a conducting solid.

A quick approximate way to estimate the short distance
behavior of the image potential results from considering a
planar interface separating two dielectrics with dielectric
constants €, and €, [Fig. 1(a)]. The solvation energy differ-
ence between these two dielectrics (the energy needed to
transfer a charge ¢ from the bulk of medium 1 to the bulk of
medium 2) is, according to the Born theory of solvation,

AH:&(L_L), (5)

8, a quantity of dimension length, is interpreted in the Born
theory as the radius of the ion under consideration. Consider
now the process in which the charge g is carried slowly (adi-
abatically) first from the bulk of medium 1 to the point Z, in
medium 1 a distance 4 from the interface. The work needed
to carry out this process is

2

—2—a 4 (6)
€.(e;+€) 4h

Similarly, to move the charge ¢ from the point Z, to — o
requires -

1= —

(a)

(b)

FIG. 1. Configurations discussed in the text.

5077

W,=—2"6_ i )]
€,(e;, +€) 4h

Equations (6) and (7) should correctly give the correspond-
ing work provided that 4 is not too small. The simplest
choice of saturated behavior in the image potential near the
surface is to assume that no work is needed in order to move
the charge from Z, to Z,. Then the total work needed in
order to move g from the bulk medium 1 to that of medium 2
is

1 1
W, + W. =i(___). 8
! T 23] ®)
This work has to be equal to AH of Eq. (5) where
h=16. &)]

Requirement of consistency between the solvation energy
and the interface image potential thus imposes a cutoff on
the image potential. In the present work a precise description
of the cutoff is not needed and we use the simplest form,
constant potential between the points Z=Z, = + h and
Z = Z, = — h at the interface (Fig. 2).

It should be noted that the emergence of a cutoff in the
image potential is directly associated with the finite size 5 of
the charge and arises from purely classical considerations. A
somewhat different route needs to be taken for a conducting
phase (i.e., a metal or an ionic conductor). Here in addition
the the charge size § there is another characteristic length—
to screening length @. Assuming that for 7> § the potential
associated with the charge g is given by

—r/a
p=A4"—;
r
we can determine 4 from the requirement that the magni-
tude of total surrounding charge is equal to the central
charge g. This yields

r>6, (10)

—(r—&8)/a
qge
¢=

(1+68/ayr’

With this potential, the Born theory of solvation leads to the
following expression for the solvation energy (relative to
vacuum):

(11)

AH = i

—_—t 12
26+ a) (2

Potential
€1 €

FIG. 2. Potential at the position x of a test charge, near an interface
(x = 0) between two dielectrics. The cutoff at |x| = A is the ansatz made in

the paper.
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The argument that leads to Eq. (9) above, now yields for an
electron at the metal-vacuum interface

h=306+a). (13)

A plausible choice for & in this case is k ' (k- is the Fermi
wave vector). If we also use for a the Thomas—Fermi result

for a free electron gas at T<€T;, a= J7Tay/ky (a, is the
Bohr radius), we get

_ 1 . \/; a, 1/2]
h 2[kF 42 (k) . (14)
This result is practically identical to that obtained in semi-
classical jellium calculations.® To obtain Eq. (14) we have
used the simplest screening theory and somewhat arbitrary
choice for 8, and indeed later jellium calculations'® have
shown this result to be of only qualitative value. Still the
agreement between Eq. (14) and the result of more rigorous
calculations serve to show the merit in our present consider-
ations.

For an electrolyte solution Eq. (11) should be replaced
by

¢p="2L (15)

e(1 +8/ayr’
where € is the dielectric constant of the solvent while a is the
Debye screening length associated with the ion density. The
corresponding solvation energy relative to vacuum is

ap=L [t 4] (16)
26 le(1+68/a)

To end this section it should be noted that even though
we have used the term “solvation energy” for AH in Eqgs.
(5), (12), and (16), it may be only part of the measured
solvation energy—that which arises from polarization and
charge redistribution effects. However, it is the charge redis-
tribution which gives rise to the image force, so the proce-
dure which leads to Egs. (9) and (13) is valid (or would be if
a better theory for screening would be employed). In addi-
tion it should be stressed that our simple ansatz concerning
the image potential near the interface as displayed in Fig. 2 is
too simplistic. The important point is, however, that what-
ever the correct form is it must obey the requirement of con-
sistency with bulk solvation energies as discussed above.

lll. DIELECTRIC SPHERE

We now repeat this calculation for the case of a dielec-
tric sphere [Fig. 1(b)] of radius R. The solvation energy of a
charge ¢ in the sphere may be calculated from the following
expression for the potential at point r due to the charge g at
point r;, where both r and r, are in the sphere

(6,—€)(n+1)
borry)=—2L —+ 4
a(rIr &r—r| €4S (+€)n+¢€

rir
XWP,,(COS d); r,r<R, a7
where @ 1is the angle between 7 and r,. This leads to an expres-
sion,*® analogous to Eq. (5), for the solvation energy dif-
ference for the charge ¢ between point r in the sphere and
between the bulk of the surrounding medium 1:

AH(r)=%(———-)+P(r>, (18)

R (52—51)(n+1)(7')2”' (19)

P(r) = —
26,R /=0 (e,+€)n+ €

R
For the center of the sphere, where |AH | is largest,

AHO) = — L &=6 & -6, (20)
26 e 2R €,
The second term in Eqs. (18) or (20) which vanishes for
R — « represents the loss in solvation energy due to the finite
size of the sphere.

This solvation energy difference has to be equal to the
work W needed to move the charge ¢ from infinity (i.e., the
bulk of medium 1) to the center of the sphere. W may be
written as the sum

W=W_,,+W,+Wy, (21

where W, is the work to bring ¢ from infinity to the point
Z,(r=R+ h), W, is the work to take g across the inter-
facefrom Z,to Z, (r = R — h),and W, , is the work needed
to move g from Z, to the center of the sphere. To calculate
W, ., we use an expression analogous to Eq. (17) for
r,r;>R:

& (e,—6&)n
] (rr)=_.2___+i — 1 2
1 (el €l —r| € 40 (6, +€)n+¢
R2n+l

When we use this expression to calculate the work needed to
assemble the charge ¢ at point 7, the first term contributes to
the self-energy of ¢ in medium 1 which is independent of
position. The work to bring ¢ from infinity to r=R + A is
therefore obtained from the second term of Eq. (22),

W, , = ______‘12___
’ 2¢,(R+ h)
% _ 2n+1
n(e, —€,) ( R ) (23
neo n(€;, + €,) + €, R+h
For a conducting sphere (€,— ) the sum in Eq. (23) is
easily evaluated and we get

q2 R 3
Wer = —5— 2 2 2 (24)
26, (R+A)[(R+h)°—R7]
which is the energy associated with the image potential of a
charge near a conducting sphere.” For finite €, we can use the

identity

n(e, — €,) =€2--61[1_
n(e;+€)+e€ €+¢€

€,/(€;,+€;)
n+e€/(e+ €

)
(25)
to rewrite Eq. (23) in the form

/74 =_i62_61[L R?
! 2R e, +€, Le, 2RR+h?

ve)
&+ \R+h

= [R/(R+m]*" ]
X ) 26
nzo n+ (€,/€,+ €) (26)
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The work W,, may be obtained from Eq. (19),
Wyo =P(r=0)—P(r=R—h)

_L 66
2R ¢,

x[t1-3
[ n;O (€2+61)n+€1

€(n+1) (R—h)z"]
2 .
(27)

Using the identity
€(n+1)
(e, +€)n+¢€
__ &
T 6+

+ 6261 1
(624 €)° n+(e/6;+ €)
we can rewrite Eq. (27) in the form

2
_ 9 &6—€
Wz,o =2 2 1

2R €, + €
€ + € R?
X - 2
€,€, €(2Rh —h?)

, (28)

R 1 (R—h)z"]
€+ € /=0 n+ (€,/€, + €) R

(29)
From Egs. (26) and (29) we get
2 2
g € —€ (6 + € 1 R
W+ W, =L ( _1
=t T W20 2R €, + €, \ €6 € 2Rh+ h?

1 R? )

—_—— 1+ S, (30)
€ 2Rh —h?

S=q_2ﬂ lim
2R (€, + €)% k-0

(&) & reara (&)
R+h n=0n+(61/€2+61) R+h

(31)

X

S (7]
n=0 n+(€|/€2+€l) R
Each of the series in Eq. (31) diverges logarithmically for
h—0, however their difference vanishes in this limit (see the
Appendix). Neglecting S in Eq. (30) and using

R? R 1
——=—TF—+ 0(h) (32)
2Rh T h? 2h¥4
yields
g 6&—€ g & —¢€
W Wy = — -2 14 L
w1+ W20 4h €€, 2R €€
x(1+iﬂ), (33)
4 €+ €

If, as in the calculation for a planar interface, we assume
that for some cutoff distance 4, W, , in Eq. (21) vanishes,
we get from AH(0) = W_ , + W,, [using Egs. (20) and
(33)],

-1
h=%§(1+£2—_€li)

(34)
€+ €, 4R

For R— « we recover Eq. (9).

For a metal sphere embedded in the dielectric medium
1, provided that the screening length a is much smaller than
R, Eq. (20) is replaced by (in the Thomas—Fermi approxi-
mation)

q (1 1 ) q n
AH(0)= — 21| —— + y 35)
© 26 \e, 1+46/a 2¢,R (
while Eq. (33) leads to (taking €,— o0 )"
' 5¢°
W+ W, = — —t 36
! 20 46,h+ 8¢,R (36)
where
1 € S\ ! :
PRI .
2 146/ + 4R (37
For €, = 1 this leads to
-1
h=%(a+5)(l+a+5) (38)

which for R o yields Eq. (13). For finite R the cutoff
length 4 is seen to be R dependent. Again, this particular
form for the behavior of the image potential near the inter-
face results from our ansatz. More important is the fact that
this behavior should be consistent with the solvation ener-
gies in the two media and that the latter should be used to
calculate the ionization potential if the exact behavior of the
image potential is not known.
The ionization potential of a metal sphere is given by
2
WI(R)= —"(Ww,l + Wz,o)+q_Rp (39

€

where, to the work — (W _ ; + W,,) needed to move the
electron charge g to infinity, we have added the work ¢°/¢,R
against the Coulomb attraction by the charge — g remaining
on the sphere. If we use Eq. (36) to calculate
W;(R) — W;( ) taking h to be R independent we get

2

3q
W,(R)— W =
1(R) = Wy () 8¢,R

which is identical (for €, = 1) to Eq. (1). However we have
argued that 4 is R dependent and using this fact, or alterna-
tively using Eq. (35) we get

Wy(R) = Wy() — [AH(GR) — AH(G;0) ] +£
1

7
=W,
(o) + 2€.R

(40)
for the ionization potential of a metal sphere of radius R
surrounded by a medium with a dielectric constant ¢,.

The ionization potential of a dielectric sphere. In order to
obtain the equivalent of Eq. (40) for a dielectric sphere (fin-
ite €,) we have to calculate the solvation energy of a charge ¢
in the sphere of Fig. 1(b), given that a charge — g already
occupies a small sphere of radius § at its center. To this end
we use the following expression for the potential at point 7in
the sphere given that a charge ¢, is at the center and another
charge ¢, is at point 7, (7,r, <R):
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#y(r|ry) = do + —4h
&r &lr—ry|

9 < (e, —€)
ezR n=0 el(n + 1) +€2n

’.ﬂ
P (coso) + 225 4
R eze,
From Eq. (41), the work required to bring a charge ¢ from
the bulk of medium 1 to a distance & from the center (§ € R),
given that a charge — ¢ is at the center, is

— ‘I q 1 i)ez — 6

W 626 Ty (6 + R/ &€, “42)
[Equation (42) is obtained by integrating ¢, with respect to
g, from O to g, replacing g, by — g, replacing » and |r — r,|
by 8 and neglecting terms with (8/R)?" for n>0.] The cor-

responding ionization potential is W; (R) = — W, so final-
ly
Wi(R) = Wy () + L 2=61 (43)
2R eze,

This is a finite €, generalization of Eq. (40).

Note that the similar quantity calculated without the
opposite charge at the center is the electron affinity of the
same dielectric sphere. From Eq. (20),

Wea (R) — Wga (0) = — [AH(O;R) — AH(0;0) ]

= — i 26 (44)
2R g€
The ionization potential of a dielectric sphere is larger and its
electron affinity is smaller from the corresponding bulk
quantities by the same amount, (¢°/2R) (€, — €,)/(€;6;).

IV. EFFECT OF FINITE SCREENING LENGTH

As stated above, Eq. (35), which leads to Eq. (40), is
valid only provided that the particle size is much larger than
the screening length. When this is not so we get an additional
size dependence term in W;(R) due to the incomplete
screening of the charge ¢ in the metal particle. The resulting
correction is sensitive to the screening theory used. Here we
limit ourself again to an electrostatic calculation using the
Thomas—Fermi theory, keeping in mind that it may be in-
adequate for these very small sizes.

In the following calculation we consider a classical me-
dium model. The uniform positive charge density is given by
qp . where

Po; r<R
- . 45
P+ {0; r>R (45)

The electrons are assumed to be confined to the spherical
volume by an infinite potential barrier at » = R. Define

fip) =3 {exp[BE, — )] + 1371, (46)

where E; is the energy of the jth electronic energy level in this
sphere and the sum is over all levels (including spin). p , is
equal to the electron density for the neutral sphere. In this
case we denote the electron chemical potential by u,. Thus
for r<R,

P+ (r) =po=fl1o) . (47)
When the particle has lost or gained electrons, we may write
the electron density as

=Au+qlo(r) —41}. (48)

#(r) is the spatial average of the local potential #(r), so that

dr[é(r) — 4] =0. (49)

r<R
Note that when ¢(r) = ¢, the equality z = 1, holds for any
value of ¢. The electron chemical potential u for the charged
sphere is determined from

drflu +qlé(r)

r<R
where ¥ = (47/3)R 3 is the particle volume and where 7 is
the number of electrons lost (7 > 0) or gained (7 <0) by the
particle. Expanding the integrand in Eq. (50) according to

p_(r)

— 81} =po¥V -1, (50)

p—(r) =flp +qlp(r) — 81}
=) + (L) w— o+ a8 -1+ -,
/0
(51)
and using Eqs. (47) and (49) leads to
af) __n
( T) o) =~ (52)

In Egs. (51) and (52) (3f/du)o is [df(n)/ul,. -, - The
local charge density inside the particle is go where

—p=L-g(ZL f) -9 (53)

The second equality is obtained by using Eq. (51). This leads
to the following Poisson equation for the potential ¢:

P=P+

Vg = —4frqp=k2(¢—$>—4”—lf”, (54)
where
k2= da( L) (55)
du/o

is the square of the Thomas—Fermi inverse screening length.
Equation (54) is the starting point of the following electro-
static calculation.

The general solution of Eq. (54) inside the spherical
particle is

$(r)=¢— ﬂ (Ae*” + Be

4m74
R. (56
vz TS (36)

The parameters &, A, and B are determined by the conditions

$(R) =%, (57a)
A+B=0, (57b)

together. with Eq. (49). Equation (57a) results from the
requirement that outside the sphere ¢(r) = 5q/r, where 7q
is the total net charge on the sphere. Equation (57b) insures
that ¢(r) is nonsingular for » = 0. These conditions lead to
the following results for the potential:

#(r) =1ldo+ :(N], (58a)
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do=LI1+ A4 ~e=], (58b)
bi(r) = =L (o (58¢)
r
for its average over the sphere
“_M9 _4mg A sr_ 59
¢ R Vk? R( e "), (59)
and for the net charge density
gp(r) =1p;(r), (60a)
2
pr(r) =X A e ey (60b)
4T r

The work needed to add an infinitesimal charge distribution
p1(r)87 to a spherical particle which already carries a total
charge 7¢ distributed according to Eq. (60) is

R
SW= [J d3r[¢0+¢,(r)]p1(r)]17677. (61)
0

The ionization potential, i.e., total work needed to remove an
electron from the neutral sphere is therefore
=1

W,(R) =f W

7=0

R
== [ @ldo+ 4,110
2 Jb

1 1 (% 3
=—¢0q+— d r¢](r)p1(r)'
2 2 Jb

Using Eqgs. (58c) and (60b) finally leads to

(62)

q2 R _ g~ kR
w,(R)=2_11
1(R) ZR[ +(kR—1)e"R+(kR+l)e“"R

__2(kR)% + JkR(eR — e 2Ky ]
[(kR—l)ekR+(kR+1)e—2kR]2 :

(63)
For kR > 1 this becomes
(14 52)
W, (R)y="—(14——], 64
1(R) 2R +2kR (64)

and for kR — o the limiting result (40) is approached. Note
that the result (64) vanishes for R — « s0 it is just the finite
size correction to the bulk work function. The latter origin-
ates from a combination of the work against the surface di-
pole (associated with the electrons spilloff outside the sur-
face) and from quantum mechanical (exchange and
correlation energies) contributions; both were omitted from
the present calculation. In doing so we have tacitly assumed
that the finish size (R) dependence of these terms is absent
or weak. The calculation reported next shows that this as-
sumption does not hold in the present situation and that for
small particles the size dependence of the ionization poten-
tial is affected by these contributions.

V. DENSITY FUNCTIONAL CALCULATION

In this section we repeat the calculation for the work
function of a jellium sphere using a simplified density func-
tional framework first explored by Smith'? for studying the
work function associated with planar metal surfaces. The
same approach has been recently applied to ground state

properties of small metal particles by Das and Gersten,'?
Snider and Sorbello,' and Eckart.'®

In the density functional theory'® the ground state ener-
gy is expressed as a functional of the electron density and a
variational procedure is used to obtain the minimum energy
configuration. As in Refs. 12-14 we use the functional

E=Ekin +Ex +Ec +ECou1 ’ (65)
where the kinetic (E,;, ), exchange (E, ), correlation (E,),
and Coulomb (E_,,, ) energy functionals are given by

2
E,, = 2.8712fd p*(r) + 7—12 J’d 3rlM,

p_(r)
E = — 0.7386fd3rp413(r) , (67)
0.056 41p%3
E = _f 3 - (68)
0.079 53 + p/3(r)
Ecou =—1—qu d3rd3r’£(—r)m—r), (69a)
2 [r —r'|
pr)=p, (x) —p_(r). (69b)

Equations (66)—-(69) are expressed in atomic units so we
will set ¢ = 1. Asin Refs. 12 and 14 (but unlike Ref. 13), we
have not included density gradient corrections to the ex-
change and correlation energies as the magnitude of these
corrections is uncertain for the relatively low metallic elec-
tron densities of interest.

The calculation reported below is similar to that of Ref.
14, the difference lies in our choice of trial density function.
Snider and Sorbello'® have used the function

c
" a+exp[28(r—R)] +exp[ —28(r + R)1
(70)

We use instead a form derived from a potential ¢ which is a
generalization of the expressions used in Sec. IV:

p—(r)

80 =Z (" + e+ By; 1R,
_Cipwy G,
r r
The charge density gp(7) is related to ¢(r) through the Pois-
son equation V2¢ = — 47gp using also Eq. (69b) and

r>R. (71)

P+ (r) =pb(r—R) (72)
[6(x) = 1for x <0 and 8(x) = O for x > 0]. This leads to
2
4k —%—(e"’—e""’) +po; r<R
T
p_(r)= 2q . (73)
A Cl — Ar .
— e ; r>R
4m7q r

The asymptotic form of ¢(r) ( ~ Cy/r for r— « ) implies that
C, is the total charge Q on the particle. The other parameters
By, B,, and C, are determined by the conditions that ¢ and
p— (= the absolute square of the electronic wave function)
should be continuous at » = R and by the total charge equa-
tion
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Q0= [(471'/3)R %00 — 4ﬂfwdr rzp_(r)]q .
0

These lead to
2 __ |2
Bo=(1+i——k)2+4—”‘—’ﬁ(l+m+n),
H R 7
(74)
A%Q + 4mpg(AR + )R
B, = — #(ekR__e—kR) ’ (75)
(ol =ﬂi ( — k*Q + dmpygnR)e*? (76)
with
kR — 1)e*®R 4+ (kR + 1)e—*®
7=n(R) =" ’ekk_i_m e
p=p(R)=k*(AR+1) +A%(R) . (78)

The local charge density go(r) = glp, (r) — p_(7r)] is giv-
en by

2
_.k_ﬂ(ek’_.e_k’);

2 r<R
Tor
gp(r) = 2 (79)
A’ Cl — Ar
—————e r>R
4 r

The Coulomb energy is calculated using an expression
equivalent to Eq. (69a),

Ecou =—;—-qjd3r¢(r)p(r). (80)
Using Eqgs. (71) and (79) this leads to
Ecoy = — 3 BB\ [ (KR — 1)e*® + (kR + 1)e~*¥]
— 4 kB?% (R — e 7R _ 4kR)
—44Ce (3 Ce "+ Q). (81)

We note in passing that taking the asymptotic form of Eq.
(81) for kR, AR> 1, then taking A — « leads to

2
2L, @)
2R 2kR
in agreement with Eq. (64). (There the Coulomb energy
was taken as the only contribution to the ionization poten-
tial.)

With the parameters B; and C; given by Eqgs. (74)-
(76), the trial function (73) is a two parameter (k and 1)
function, like Eq. (70), and we expect the two trial functions
to give comparable results. We find some small differences as
discussed below.

We focus on the r, = 4 case because it is relevant to the
available experimental results on sodium clusters.' In Table
I we show some results for this case. We have followed
Snider and Sorbello'* by fitting calculated differences be-
tween ion and neutral quantities to the function

B C
Eion _Eneutra]EAE(R) =A +_R— }'5 (83)
The results for this fit are shown in Table II. There we give
values for the parameters 4, B, and C for AE,; + AE,,
+ AEq,; = AE, ., = W, as well as for the different contri-
butions AE,,,,AE, , and AE,,. [Here E,. = E, + E, is
the sum of the exchange and correlation energies appearing

E Coul =

TABLE I. Calculated quantities (atomic units, r, = 4). E, is the ground
state energy of the neutral cluster and W, (the ionization potential) is the
difference between E, values of the ionic and neutral species.

Neutral Ion
R k A k A —-E, W,
7 1.369 1.329 1.103 1.899 3.925% 107" 1.578(1.561)
10 1.359 1.314 1.261 1.589 1.193 1.391(1.379)
15 1.350 1.298 1.320 1.422 4.147 1.253
20 1.332 1.294 1.319 1.365 9.967 1.185(1.174)
30 1.325 1.283 1.321 1.316 34.08 1.117
40 1.318 1.279 1.316 1.298 81.31 1.082(1.068)
50 1.317 1.275 1.316 1.287 159.4 1.061
70 1.312 1.272 1.312 1.278 439.2 1.037
100 1.313 1.268 1.312 1.271 1284 1.108

2In parenthesis are the results of Snider and Sorbello (Ref. 14).

in Eq. (65).] For AE_,, and W/, the three entries in the
table correspond to: (1) a fit based on all cluster sizes be-
tween R =7 a.u. and R = 100 a.u.; (2) a fit based on the
range 7<R<30; and (3) a fit for the range 20<R<100.

These results lead to the following conclusions:

(a) While the exchange and correlation energies domi-
nate the ionization potential (work function) for the bulk
metal (as inferred from the 4 values in Table II) the R de-
pendence reflects mostly the behavior of the Coulomb ener-
gy (it should be kept in mind though that the Coulomb ener-
gy is affected by the values of k and A which are in turn
determined also by the other components of the total ener-

gy).

TABLEIL Parametersfor thefits AE = A + B/R + C /R % Seethetextfor
the meaning of the different entries for AE ., and W;.

ry = 2
A B C
AE,,, —0.0634 —0.0471 — 0422
AE,, —0.164 — 0.0483 —0.351
) —0.0226 0.471 —0.200
AE cou 2) —0.0228 0.468 —0.188
3) —0.0224 0.489 —0.486
(0 —0.123 0.376 —0.271
W, (2) —0.124 0.359 —0.206
(3) —0.123 0.408 —0.616
r,=4
A B C
AE,;. —0.0402 —0.0773 —0.227
AE,, 0.128 0.0239 0.221
(1 0.0103 0.457 0.111
AE o 2) 0.0111 0.436 0.218
(3) 0.009 89 0.486 —0.246
(1) 0.0980 0.403 0.104
W, (2) 0.098 6 0.385 0.201
3) 0.0976 0.430 —0.221
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3.0
B Na
L Wi - 3g%/8R
2.5F — . E
(eV) \\ W;-q2/2R
201 ST
) exp,
lerror
i | | |
Y 0.2 0.3

I/R(A)™

FIG. 3. W,(R) — ag’/R for Na. W, (R) is the observed (Refs. 1 and 19)
ionization potential of the sodium cluster of radius R. Triangles: a = 3/8,
squares @ = 1/2. The straight lines are obtained from least-square fits of the
corresponding results. The arrow at the vertical axis denotes the literature
values for the bulk work function.

(b) The kinetic energy provides only a small, practically
negligible, part of the total ionization potential of the cluster
at all sizes considered.

(c) The value of the parameter B is close to 3/8, the
value appearing in Eq. (la). In particular the value
B = 0.385 is found to fit best the W, values of small spheres
(R<30a.u.) inthe 7, = 4 case. This may explain the success
of Eq. (1a) in fitting the experimental results on Na and K
clusters as shown in Figs. 3 and 4. We see however that the
apparent success of Eq. (1a) was accidental. The factor 3/8
does not result from electrostatic theory as believed before,
but from the compensation of the classical result [Eq. (1b)
or (64)] by other corrections. These corrections result from
two quantum mechanical effects of different natures: First
the spilloff of electron density into the > R regime as re-
flected by the finite value of A. Second, the small but signifi-
cant contributions of the kinetic and the exchange—correla-
tion terms. Without the latter, the ionization potential
would have been given by AE ., which is halfway closer to
the classical result than W, itself. Note that AE o, still con-
tains the quantum spilloff effect [cf. Eq. (81)]. The infinite

3.0

2.5

. Wy -3q2/8R
(eV) - 'y 1 3q

» \:. IGXP.

1 ]
I‘SO.I 02 03

/R (A)!

FIG. 4. Same as Fig. 3, for K.

barrier (4 — o) limit is given by Eq. (82). [The apparent
contradiction between the negative sign of the C coefficients
for AE -, in Table IT and the corresponding positive term in
Eq. (82) results from the fact that in Eq. (82), but not in
Table II, the A — « limit was taken. ]

(d) For larger clusters, classical contributions are more
dominant. This is reflected by the larger values of the B pa-
rameter obtained from the fits in the larger sphere regime.
This is consistent with the observation (Fig. 5) that Eq. (1b)
gives a somewhat better fit than Eq.(1a) to the experimental
results on Ag clusters in the R 40-60 a.u. range. (Note how-
ever that in these data the particle size distribution have
rather large error bars.) For very large clusers R > 100, we
find that the ionization potential is dominated by the Cou-
lomb term which in turn approaches the limit Q2/2R for
Ro .

In Fig. 6, we compile again the experimental results on
Na and K clusters, together with the results of the corre-
sponding density functional calculations. The jellium model
is not expected to give a very good value of the bulk work
function, but as seen from Fig. 6, it accounts well for the
trend observed for the cluster size dependence, especially for
the Na clusters. For these, the downward shift of the experi-
mental results relative to the theoretical curve reflects the
fact that the experimental results of Refs. 1 and 19 do not
extrapolate to the accepted value of the Na work function for
R - . In fact, fitting these results to the form (83) we find
A = 2.5 eV. If we subtract this value from the experimental
ionization potentials instead of the accepted bulk value (2.75
€V) that was used in Fig. 6, the experimental and theoretical
lines for Na would agree within experimental error. For K
the discrepancy between the extrapolated ionization poten-
tial and the accepted value of the bulk work function is
smaller and the corresponding curves in Fig. 6 indeed lie
closer to each other. There is however a small unexplained
difference in slopes. For Ag (Fig. 7) the fit is again good up
to a small vertical shift.

438 A
s Wr-3q%/8R
436
Ag
434
{eV)
432}
a
. W;-q2/2R
430 =9
n
4.28 ' ' '
“Y003 004 005 006
I/R(A)"!

FIG. 5. Same as Fig. 3 (experimental points only), for Ag.
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' T T Jellium K

Jellium Na—
exp,
error p .

AEXP K " exp Na
Ny

e ST n
i i ed
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1
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0.0 [ I { L
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I/R(A™")

FIG. 6. Experimental results (Refs. 1 and 19) and theoretical jellium calcu-
lations for Na and K clusters. The dotted lines connecting the experimental
points serve only to lead the eye. The values plotted are the cluster ioniza-
tion potentials from which the bulk work function was subtracted. For the
experimental points this was 2.75 for Na and 2.3 for K. The R = 10 A data
point for K is an estimate based on Fig. 2 of Ref. 20. For the jellium resuits,
the values of A (Table IT) were used.

We end these discussions with three comments: (a)
While calculated ionization potentials successfully account
for the experimental observations, the calculated ground
state energies are relatively poor, and sometimes become
positive [e.g., for r,=2 and R=40 A we obtain
E, = 3.440. The corresponding result with the Snider—Sor-
bello trial function, Eq. (70), is 3.397]. This is probably due
to the fact that the calculation of the ground state energy
based on Eqs. (66)—(69) does not completely eliminate self-
interaction of the electrons. This however is expected to
make almost no effect on the calculated ionization potentials
which involve differences of such ground state energies.

(b) While the crude density functional calculations per-
formed here and in Ref. 14 seem to account well for the
general behavior of the cluster size dependence of the ioniza-
tion potential, they should by no means be taken as conclu-
sive. More elaborate self-consistent density functional calcu-
lations'®'® predict oscillations in W, as a function of the
number of atoms (i.e., of R). Such oscillations are not ob-
served experimentally.'® The applicability of the density

functional approach was recently under some controver-
sy 19,20

06 A
i 29 Jellium

05

WI‘WF(GV)

o
[\
I

1 1
0.0 0.05 0.10 015

Ay
I/R({A)
FIG. 7. Same as Fig. 6, for Ag clusters.

VI. CONCLUSION

We have corrected an error in the widely used classical
expression [Eq. (1a)] for the ionization potential of small
metal spheres. The correct classical result for the size depen-
dent shift of the ionization potential and the electron affinity
of a dielectric or a metal sphere is most directly obtained
from generalizations of the Born theory of solvation. We
have gone in some length into calculating these quantities in
a different way, by calculating the work necessary to physi-
cally move the charge through the interface. This route leads
to results consistent with those based on solvation energies,
provided proper cutoffs are used in evaluating the potential
near the interface. Erkardt has reached similar conclu-
sions.?!

The apparent success of Eq. (1a) in accounting for the
general trends observed in the ionization potentials of very
small metal clusters was shown to result from quantum me-
chanical corrections to Eq. (1b). For large clusters, Eq.
(1b) accounts better for the observations. These observa-
tions and the general trends in the experimental results on
small Na, K, and Ag clusters are accounted well by a crude
density functional calculation.

The size dependent, classical electrostatic ionization po-
tential for a dielectric sphere, leaving a positive charge at the
sphere center (» = 0), is given by Eq. (43). The analogous »
dependent expression has been used as the electrostatic po-
tential in a simple model for the ionization potential of a
semiconductor sphere, assuming the ionization leaves a de-
localized hole at the top of the valence band.?? In this case
the ionization potential also has a size dependent quantum
term, involving an effective mass. Quantitative experimental
data for comparison do not appear to be available.
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APPENDIX

Consider the sum

n

S X
o+ a

(AD)

o= =x"%;, a>0,

o0 xn+a
I= . (A2)
n=0n+a

From Eq. (A2),
dr _ x*~!

dx 1—x

; 1(0) =0, (A3)

SO

a—1

I(x) =x“”f dyy (A4)
0

1—y’
The term inside the square brackets in Eq. (31) may be writ-
ten as
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R 21— a) (R/R + h)? -1
—_— dy ——
(R+h) J; yl—y

R—_h\-2 (R—h/R)? -1
-5 7L e
R o 1—y
with a@ = €,/(€; + €,). The coeflicients of each of the inte-
grals in Eq. (AS5) are 1 4+ O(4). The integrals themselves
diverge logarithmically for #—0, therefore the O(h) terms
may be neglected in this limit. We are left with

(R/R+ h)? @1 2
J gy ho0 1= —h/R?
(R— h/R)? 1—yp 1—(1+h/R)?

(A3)
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