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I. INTRODUCTION

Kramers’ treatment of the escape of a Brownian particle out of a potential
well'™* as a model for chemical reactions in condensed phases has played a
central role in many areas of physics and chemistry. The original application
to chemical reaction rates has in fact been disregarded by chemists until the
last decade. Other applications were mostly in solid-state physics: desorption
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from surfaces,>>¢ atom or ion diffusion in solids®® ‘or on solid surfaces,>
dynamics of Josephson junctions,> and more.

During the last decade new interest has emerged and much research effort
has been developed in the study of chemical reactions in condensed phases,
mostly in liquid solution or in the high-pressure gas phase. The Kramers
theory has been used for the interpretation of some of the data, but it has soon
become recognized that the theory, asit stood, cannot account for the physical
reactions in normal liquids or solid matrices. Many of the needed generaliza-
tions have been developed during the past few years, so that we now have
a reasonable understanding of the theory as applied to chemical reaction
rates.”* The still missing ingredients are not associated with the conceptual
structure of the theory, but rather with knowledge of molecular energetics and
dynamics on the microscopic level [the molecular potential surfaces dressed
by solvent interactions on one hand, and intramolecular vibrational relaxation
(IVR) or, more generally, the dynamic behavior of highly excited molecules
on the other].

This chapter reviews the generalizations of the Kramers model that were
developed during the past few years. The result of this effort, which we may
call the generalized Kramers theory, provides a useful framework for the
theoretical description of activated rate processes in general and of chemical
reaction rates in condensed phases in particular. Some applications of this
framework as well as its limitations are also discussed. In the last few years
there has also been substantial progress in the study of the quantum mechani-
cal Kramers model,? which may prove useful for condensed phase tunneling
reactions. This aspect of the problem is not covered by the present review.

II. THE KRAMERS TREATMENT

In this section we briefly review the original work of Kramers.! It will be seen
that much of the new developments still rely heavily on the insight obtained
from Kramers’ work.

The Kramers model consists of a classical particle of mass m moving
on a one-dimensional potential surface V(x) (Fig. 1) under the influence of
Markovian random force R(z) and damping y, which are related to each other
and to the temperature T by the fluctuation dissipation theorem,

=) LR 2.1)
m dx m
RO> =0, CRORE®)) = 2ymhky TS (1) (2.2)

The Langevin equation (2.1) is equivalent to the Fokker—Planck equation for
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Figure 1. Schematic representation of single well potential. x,, E;—position and energy associ-
ated with matching point discussed in Section VI.

the probability distribution P = P(x,v,t),

oP 1dVoP 3P

el i A —v (2.3)
ot mdx Ov 0x

F kyT 2P
+’)1|:61J(UP)+ m W

The objective is to find the steady-state escape rate k out of the potential
well. Before presenting the Kramers solution it is importan.t to noFe that for
such a (quasi) steady state to be established, a clear separation of time scales
has to exist, whereupon the escape occurs on a time scale much longer thap
all time scales associated with the motion inside the well. In particular this
implies that the well should be deep enough (sef: below).

Kramers solved Eq. (2.3) in two different regimes.

A. Moderate to Large Damping

In this case the well is assumed to be in thermal equilibrium (whi?h %s
established on a time scale proportional to y7!), and thus the dynam1.cs is
determined by the motion near the barrier top (x = x; = 0). The potential is
approximated about this point as a parabola,

V(x) = Ez — tmwix? (2.4)

where

wy = /—m V(0) (2.5)
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is the frequency associated with the barrier top. The steady-state solution
PP (x,v) is written in terms of the equilibrium solution

Fea(x,v) = Nexp[~p(3mo® + V(x))], B = (kyT)!
PP, 0) = Poy(x, 0)f(x, v) (2.6)

Equations (2.6), (2.4), and (2.3) with 0P/t = 0 lead to the following equation
for the correction function f:

59]: 25f_ ksTﬁ_ -of

U&x + wa% =7y o yv% 2.7
f should also satisfy the boundary conditions
flx— +00)-0 (2.8a)
flx—> —0)>1 (2.8b)
Using the ansatz
J0ev) = flu) = fv + I'x) (2.9)
leads to
df _ kgTyd*f

To_be consistent with Eq. (2.9) we must have wz = (T + T, namely I" should
satisfy the equation

I +Ty—w2=0 (2.11)
Equation (2.9) becomes

kT d2f df
m dur g, =0 (2.12)

with

= ———" (2.13)
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A general solution of Eq. (2.12) is

“ amz?
B

0

where F, and F, arc constants to be determined from the boundary condition§.
First note that the integral in Eq. (2.14) should remain finite for |u| — co. This
implies that o > 0, namely, of the two roots of Eq. (2.11) only

@l e

is relevant. Then the requirement f(u) — 0 for u — % implies
= amz? kg T |2

= — — |= F 2.16

F, = —F, J dzexp[ ZkBT] [ Y ] s 2.16)

Thus, replacing F, by F,

2

dzexp [—%] P, (x,0) 2.17)

v—|Ix
PP (x,v) = Ff

—o0

The current associated with this distribution is, using Eq. (2.4),

@ k T 3/2 2 1/2 _
j(B)=J duvPB(x,v)=FN<:in> < i ) e BEs (2.18)

o+ 1

—o0

This result is independent of position x, as expected of a steady-state current.
The remaining constant F is determined from Eq. (2.8b),

F= |- (2.19)

and the rate is obtained by dividing Eq. (2.18) by the well population. The
latter is given by

o 2nN '
f dx f dv P,,(x,v) ~ ﬁ” (2.20)
well —o0

- Bmw,

This result is obtained by using the fact that most of the contribution to this
integral comes from the region near the well bottom, and that in this region

il i
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the steady-state distribution P, can be approximated by the equilibrium form
P (x,v) = P(x,v) ~ Nexp[ — f(3mv* + Fmwi(x — x0)*)]  (2.21)

where x, and o, are the position and the frequency associated with the well

bottom. Dividing Eq. (2.18) by Eq. (2.20) and using the identity, obtained from
Egs. (2.13) and (2.15),

* 1 2 AN
- -5 222
a+1 a)BI: w3+<2> 2 (2.22)
we finally get
k=k® = Z,)_ %z“e_”” (2.23)
B

where the reactive frequency w, is

2\ 1/2
o, = <w§ + %) -3 (2.24)

For y — 0, w, — wy and the rate becomes

k= kygy = %e_ﬂ” (2.25)

This is the rate obtained from transition state theory (TST) by dividing the
equilibrium outgoing flux at the barrier position, that is, [ dvvP,,(xg, v), by
the well population, Eq. (2.20). This procedure relies on the two assumptions
of TST: (1) the establishment of equilibrium throughout the well occurs much
faster than the escape rate, and (2) the probability that particles return to the
well after going past x is zero. It is the second assumption that the Kramers
theory in the intermediate-to-large friction regime corrects for, and the in-
equality w,/wg < 1 (that is, k% < kp¢p) for y # 0 reflects the fact that the rate
is smaller than the TST rate on account of returning trajectories. The possi-
bility of nonequilibrium well equilibrium is disregarded in this limit of the
Kramers theory. Therefore TST is obtained in the vanishing y limit of Eq.
(2.23).
For y —» o Egs. (2.23) and (2.24) lead to

k— Q;OTG;B e #bs (2.26)
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The same result is obtained! from the Smoluchowski limit® of Eq. (2.3),

opeen) [0 [0V 2 ﬂ .
o :[&D@ax +ax) [P0 @.27)

where the diffusion coefficient D is
D = (pmy)™* (2.28)

i 1 case where y depends on
t 2.27) may be solved for the more genera : '
glqeuci)loc;gi(nate)or D = D(x)in Eq.(2.27). The steady-state flux associated with

Eq. (2.27) is

= -0 (B3 + 5 )P0 229)

X

s e v
so that in terms of j and of the equilibrium distribution P.,(x) = e B

T dy
Pss(x) = Peq(x)[l —J J\x m} (230)

The lower bound in the integral in Eq. (2.30) was chc.)sen so as to satisfy the
boundary condition Py(xe) = P, (x,)- If we also require P (o0) =0, we get

i " dy - = Er_nﬁ —BEs (2.31)
] =U D(y)Peq(y)] Dxs) "oz ¢

[To obtain this result we approximate P, near the barrier top by ex‘p( — BE g+
Imw2x?) and replace x, by —oo in the integral] The rate1 is obzta;ned
by dividing Eq. (2.21) by the well population {8, dx exp(—3pmwsx”) =
[27/(Bmw?)]¥2. This leads again to Eq. (2.26) with y = 7(x5)-

B. Low Damping

When 7 is very small, the thermal relaxation in the well is npt fast relative to
the escape rate, and the assumption that the distribution within the well can
be represented by the equilibrium Boltzmann distribution no longer hol('is._
On the other hand we can make use of the fact that the total energy E varies
on a time scale much longer than either x or v (it is conserved for y = 0). Thus
changing variables from (x, v) to (E, ¢) and eliminating the fast phase variable
# leads to a Smoluchowski (diffusion) equation for E. [Kramers! gave the
equivalent equation in terms of the action variable J{E).]

i
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OP(E,t) & 0
% =g D(E) kBTE + l)co(E)P(E, t)] (2.32)
with
D(E) = yJ(E) (2.33)
where J(E) is the action defined so that

dE
=0 (2.34)

The evaluation of the escape rate from Eq. (2.32) proceeds along lines similar

to those used to obtain Eq. (2.26) from Eq. (2.27). It is assumed that E — Eg

constitutes an absorbing barrier [so P (Eg) = 0]
ss\ep) = and that Pss E —)Pe E) as
E — 0. The steady-state flux on the energy axis is (E) oE)a

. 0
Je = —D(E) <k3 Top+ 1) (E)P,(E) (2.35)
and the equilibrium distribution (je =0)is
P (E) = o Y(E)e FE (2.36)

P(E) is obtained from Eq. (2.35) in terms of j,

. E , eﬂE’
Ps(E) = P4 ,:1 - :BJEL dE Bﬁ] (2.37)

This form satisfies the boundary condition at E = 0. The requirement

P (Ep) = 0 implies
. [ Eg eBE’ -1
Jg = dE’
e=|pB fo D E,)] (2.38)

The escape rate is again obtained by dividing the current by the well population

Ep B ‘ -1

| / k = k") = [/3 f dE o~ (E)e™FE f " ] (2.39)
0

\

0 D(E")

The superscript (W) stresses the fact that in this limit the rate is determined
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by the well dynamics. For deep wells we may approximate the integrals in Eq.
(2.39) as

J " Deg) ~ (BD(Ey)) Le"Es (2.400)

0

JEB dE 0™ (E)e™PE ~ (Pog)™ (2.40b)

o]
and hence, using also Eq. (2.33)
K = ByJ (Eg)woe™ e (241)

The product J(Egz)w, is equal to E, for a harmonic oscillator potential
truncated at E = Eg, and to 2Eg for a Morse potential with dissociation
energy equal to Ep. Equation (2.41) is the low-friction limit result of Kramers.!

There are other methods to derive the results obtained in the previous
section. One is to look for the eigenvalue A, with smallest positive real part
of the operator L defined so that 0P/0t = — LP is the relevant Fokker—Planck
or Smoluchowski equation.” Under the usual condition of time scale separa-
tion this smaliest real part is the escape rate for a single well potential. Another
way uses the concept of mean passage time.® For the one-dimensional Fokker—
Planck equation of the form

OP(x,1) G G
= l:a(x) — b(x) 5;] P(x,1) (2.42)

with a reflecting boundary condition at x; and an absorbing boundary condi-
tion at x, > x,, the mean time for the stochastic variable X, whose probability
density to take the value x is P(x,t), to reach the absorbing barrier starting
from X = x is®

X2 dx/ x’
= —_— dx"P, (x" 2.4
! j b)) Prg() J X Fel) 24
where P, (x) is the equilibrium solution of Eq. (2.42),
Po(9) = Nexp| | ax2&) @ 44j
TP e |

Consider now Eq. (2.27), which is of the form of Eq. (2.42) with a(x) =
—BD(dV/dx) and b(x) = D(x). Without loss of generality we may assume

it
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riﬂectki)r'lg tl))oundary conditions at some point x, to the far left of x, and

absorbing boundary conditions at some point x, to the far | i
eft of xg.

Eq. (2.44), Eq. (2.43) yields : o Lsing

X2 BV [y
o(x) = f dy‘;)(y) j dze Ve (2.45)

If the barrier is high [ fV(xp) » 1], then for starting positions x that satisfy
;cﬂ h< Xg gnd B [V(XB? — V(x)] > 1 this result is practically independent of x.
€ main contribution to the y integral in this case is form y = x5, and

T(x) >~

f dz e V@ J dyeﬁV(y) v (2.46)

X1 x

D(xp)

X2 s} 1
J; dyeﬁV(Y):f_ dyexp[ﬁ(EB_Emwlz;x;)} (2.47)

Also

and

Xg e © 1
L dze V@ ~ J_ dzexp l:—Eﬁmw(Z,(x — xo)z] (2.48)

1

This, with Eq. (2.28), leads to

T(x) ~ 2y

et (2.49)

Do WDp

The mean exit time from the well should b i
e actually obtained b i
7(x) over the steady-state distribution d Y AVETRERS

oy = [0 Pul)e()
[ dx Py(x)
I[PI()t;IV'e\{er, sincle r}fx) is independent of x in the region that contributes mostly
o this integral, the result, Eq. (2.49), is the final is i i
ot En (o) ) nal one. This is exactly the inverse
Similarly Eq. (2.32) is of the form of Eq. (2.42) with
1 dco(E)]

E)y=—|D -
a(E) [ (E)co(E)+ﬁD(E) T
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and b(E) = D(E)w(E)/B. Imposing a reflecting bartrier at E =0 and an ab-
sorbing barrier at E = E; we get

E

EB 1 " 1
«B)=F j & S EywlE)Po(E) f 4E"PualE") 230

where P, (E) is given by Eq. (2.36). For high barrier the result for |E — Eg| >
k, T is independent of E and is given by

eFEs

N peoD(Ep) 231

T

which is the inverse of Eq. (2.41).

III. THE NEED FOR GENERALIZATION OF
THE KRAMERS THEORY

tains much of the essential physics of the
ot be used for quantitative discussion of
In particular the model is too oversimpli-
Kramers for chemical rate pro-
ect the following short-

Although the Kramers model con
activated escape problem, it cann
many realistic activated processes.
fied for the original application intended by
cesses. The theory needs to be generalized to corr
comings of the Kramers model.

1. The Markovian description, inherent in Eqgs. (2.1)and (2.2), Is unrealistic
for most chemical situations as it assumes that the relaxation time of the
medium surrounding the molecule is faster than all molecular time scales. This
assumption obviously breaks down in the low-friction regime where the
escape rate is dominated (or at least influenced) by the well dynamics (that is,
intramolecular motion), since typical molecular frequencies are of the same
order or larger than intermolecular (solvent) frequencies. Even for higher
friction, where the escape is dominated by the dynamics in the barrier regime,
the Markovian assumption can fail because the characteristic barrier time
wj* is often shorter than the solvent relaxation time.

2. While Kramers has considered escape of a particle from a single well,
many processes involve transitions between locally stable states of a double
well potential (Fig. 2). Dissociation and desorption are examples of single well
problems; unimolecular isomerization is a double well problem. Many-well
problems are also of interest, such as diffusion of atoms or ions in solids.

3. There have recently been a number of measurements of unimolecular
reaction rates as a function of molecule—solvent interaction over a large range
of such interactions—from the low-pressure gas phase (where damping is

RS OO EE] S04 SUL 10 PI-E) 6227 Wy
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B

Xc X 0 XiR Xg

Figure 2. Schematic representation of double well potential.

caused by isolated collisions) to high-viscosity solvents.® % The Kramers
theory provides two results, Eqs. (2.23) and (2.24), for the intermediate-to-large
friction range and Eq. (2.41) for the low-friction limit. A unified expression to
account for the transition between these two dynamic regimes is needed.

4. The friction (more generally, molecule—solvent interaction) is taken in
the Kramers model to be a constant, independent of the position along the
reaction coordinate. As seen, generalization to position-dependent friction is
trivial in the Smoluchowski limit. In many systems position-dependent friction
should be considered also in the underdamped case. An obvious example is
desorption where the dissociating particle ceases to feel the thermal bath as
it draws further away from the surface.

5. The Kramers model is one-dimensional. In the terminology of molecular
reaction processes this model considers the reaction coordinate only and
disregards the role played by nonreactive modes. Such modes, which couple
to the reaction coordinate, affect both the equilibrium properties of the system
(with implications to TST) and its dynamic behavior. F ormally the nonreac-
tive modes may be thought of as part of the solvent heat bath felt by the
reactive modes, but this does not lead to practical results because the time
scales associated with intramolecular and intermolecular relaxation can be
quite different. The effect of nonreactive molecular modes on the rate of
chemical reactions can in principle be very complicated. The exchange of
energy between these modes and the reaction coordinate is a process which
may be quite complicated for highly vibrationally excited molecules. Fortu-
nately for many cases (in most cases involving large molecules) IVR is fast
relative to the other molecular time scales, in particular relative to the total
energy relaxation rate and to the chemical reaction rate. Under such condi-
tions statistical considerations similar to those used in the RRKM theory
should lead to a generalization of the Kramers theory, which includes as a
new parameter the number n of molecular modes which are coupled to the
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reaction coordinate. This will thus lead to an explicit molecular size depen-
dence of the chemical reaction rate. .

6. Some escape processes of interest are affected by external forces; a -typ1ca1
situation is escape in the presence of a radiat.ion field whose frequency is close
to resonance with the well motion. Experimental exgmpllgs are rpolecular
photodissociation in condenised phases,® photodesorptlon,. and microwave-
induced transitions in Josephson junctions.'”'® To describe such processes
within the Kramers theory one needs to analyze the effect of an additional
periodic force in Eqg. (2.1) (or its non-Markovian counterpart).

In the following we review a generalized Kramers theory whigh overcomes
many of the problems mentioned. Some of .the ingredients of this general}zed
theory were developed many years ago, while may others are results obtained
in recent years by us and other workers.

1IV. THE GENERALIZED KRAMERS MODEL

In what follows we use the terminology of chemical rate processes. However,
with a suitable change of language the formulation is relevant to many other
situations of non—chemical nature. To account for the many degrees. of
freedom usually involved in a chemical reaction and for the non-Markovian
nature of the molecule—solvent interaction, the starting point for the preseI}t
treatment is, instead of Egs. (2.1) and (2.2), a set of generalized Langevin
equations (GLE) for the atomic (mass-weighted) coordinates®® !

t
X, = _ou Y J dt Z,,(t — 1)%,(t) + R, () 4.1)
5xa b 0
Z it —t _
RORD =20 =y @2)
where U(x), {x} = x;, X5, ..., Xy, N being the number of atoms, is the
molecular potential surface, and Z,(t) and R,(t), a =1, 2, ..., 3N, are the

friction kernels and the random forces associated with the surround.ing me-
dium. Nondiagonal friction kernels may arise from hydrodynamic interac-
tions between different atoms via the surrounding medium?® and also from
medium-induced impulsive interactions between modes (see below). The mass-‘
weighted form, Eq. (4.1), is obtained by scaling the regular atomic equations

’naéa = 0&6(6@ - J‘Ot dt Zab(t - T)éa(r) -+ pa(t)

Wl
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according to \/m—aéa = X,, W({x/ﬂ}) = U({x}), zg//May, = Z, and
pa/\/rh; = R,. Also note that the indices ¢ and b (= 1, 2, ..., 3N) stand for
both the atom and the three Cartesian components of the atomic coordinate.
Finally, the Markovian friction y is related to the memory kernels Z by
Yab = J& At Zp(1).

The chemical reaction is assumed to proceed when the molecule passes
irreversibly from a region of configuration space identified as the reactant to
a region identified as the product through a saddle point in the multidimen-
sional potential surface. It is assumed that this saddle point is characterized
by alocal maximum of the potential along one degree of freedom (the reaction
coordinate), while the other intramolecular degrees of freedom maintain stable
oscillations about their local minima. This saddle point constitutes the poten-
tial barrier to the reaction.

Near the barrier, Eqs. (4.1) and (4.2) can be linearized and transformed to

t

‘g Y Zejlt — O%(c) — J dt Zgg(t — 1)%g(7) + Re(t) (4.3)

iszﬁxﬁ—f
0

c

t

X = —a)J(.B)zxj — ft dt Z Z;(t — )X (1) — f dt Zip(t — 1)X&(7) + R|(t)
- ’ (44)

RADRE)) = 5% L' = {j}.R 4.5)

where the x denote the reactive modes, (x;) is the set of 3N — 7 nonreactive
modes (the six overall translational and rotational coordinates are considered
here as part of the thermal environment), wj is the barrier frequency in the
direction of the local maximum, and w{® are the frequencies associated with
the nonreactive modes near the barrier.

The description of the molecular motion in the barrier region, Eqgs. (4.3)-
(4.5), has to be supplemented by a description of the dynamics in the stable
reactant well. Here the model makes the following important assumption.
Energy redistribution between intramolecular modes takes place on a time
scale much shorter than the energy exchange between the molecule and its
environment. This is generally believed to be the case for large molecules in
the low-pressure gas phase, but is not obvious for similar molecules in con-
densed phases at room temperature. However, there are indications that this
assumption is valid also in the latter case. Gottfried et al.?? observed the
intramolecular vibrational energy redistribution (IVR) rate in the S, state of
anthracene in C,Cl, to be within the temporal resolution of their apparatus
(~2 ps), while cooling the vibrationally excited molecule, that is, energy
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transfer to the solvent, was observed to proceed an order of magnitude slower
(~25 ps). . _

The assumption that IVR is much faster than intermolecular energy relaxa-
tion considerably simplifies the description of the well dyna}mlcs. In the
following discussion the molecular motion‘in the reactant welzll is taken'to be
completely characterized (on the relevant tlrpe scale). by the time evolution of
the total molecular energy Er; the energies in the @fferent modes are deter-
mined from E; by statistical considerations. In Section VI we also present.the
solution of a model in which IVR is slow relative to intqrmoleculgr relaxathn,
though this case is probably less relevant to the chemical reaction dynamics

atomic molecules in solution. .
o I;T?:l};lly we assume that the well dynamics region (determined by the time
evolution of E;) and the barrier dynamics region (governed by the one-
dimensional flux across the saddle point) overlap somewhere below the b.ar-
dier. Furthermore we assume that the reactive mode (defined near thev barrier)
keeps its identity below the barrier, at least down tO.thIS qverlap region. The
latter assumption is trivially always valid in a one-dimensional model.

Most of the ingredients of the model described above have been formerly
postulated in treatments of unimolecular reactions. In partigular, the model
for the barrier dynamics is inherent in the usual TST for unimolecular reac-
tions involving polyatomic molecules, while taking the total mplecular energy
E . as the important dynamic variable in the well is the underlying as‘sumptl.on
in theories that use a master or a diffusion equation for E; as their starting
point.

Use of the GLE, Eq. (4.1), as the starting point for the present treatment
may raise questions concerning the generality of the model. Langevin equa-
tions are usually used in the context of Brownian motion, w'here a hfeavy
particle exchanges energy in small steps with a bath made of light Partwles.
The GLE, Eq. (4.1), is not limited in this way and with proper chmc; of the
random force R(f) may even describe low-pressure collisional relaxation. [In
this case R(f) oc f(t — t;), where f(t) is a strongly peaked function centered
about t = 0 which describes a single collisional event and {¢;} are random
times sampled from an appropriate distribution of collision times.] In the
low-pressure (or low-friction) regime where energy relaxation dominates the
escape rate, an alternative description of the process is provided by the energy
master equation ‘

OP(E, 1)
ot

= j dE'K(E, E')P(E') — k(E)P(E) (4.6)

where k(E) is the dissociation rate of a molecule with energy E. The Langevin
description with the reduction process that lead to an energy diffusion equa-

Wil
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tion corresponds to the weak collision limit of Eq. (4.6), where K(E,E') is
strongly peaked about E = E’. This limit covers a large range of energy
exchange processes in both condensed and gas-phase systems. The choice of
kernel Z(t) in Egs. (4.1), (4.3), and (4.4) depends of course on the details of the
interaction dynamics between the molecule and its environment. This issue
has recently been discussed by Grote, van der Zwan, and Hynes.?? In particu-
lar, following insight obtained from molecular dynamics simulations?4 on
liquid Ar, these authors separate the friction Kernel into its collisional (short-
time) and hydrodynamic (long-time) components. Hynes?® has shown that for
parabolic barrier crossing, the rate calculated from the GLE, Eq. (2.3), with a
friction kernel approximated by its collisional component is numerically very
close to that calculated from the BGK collision model?® for the same system.

Another objection to the present model may be made on the basis of an
interesting observation made by Rosenberg, Berne, and Chandler.2” These
authors performed molecular dynamics simulations for the isomerization of
n-butane in liquid CCl, and observed that the computed rate does not change
when the CCl, molecules are frozen in their initial configuration. As noted by
the authors, for this system, which is characterized by a large solvent-to-solute
mass ratio (mcy/meey = 0.11), once the molecule has enough energy to react,
the dominant solvent effect is to cause energy transfer between intramolecular
modes during collisions between the solute molecule and the surrounding
solvent cage. In terms of the system’s potential energy surface, this process is
associated with the occurrence of three-body (two solute, one solvent) and
higher order interaction terms. Part of the dynamics associated with such
terms will be reflected in the impulsive part of the nondiagonal friction kernel
Z,(t) of Eq. (4.1). In addition such interactions will lead to anharmonic
coupling terms between the reactive and nonreactive modes in Egs. (4.3) and
(4.4). These, together with anharmonic interactions associated with the intra-
molecular potential surface that were neglected in Egs. (2.3) and (2.4), will give
rise to an effective intramolecular friction affecting the motion of the reactive
mode. Thus the reduced reactive mode equation, Eq. (4.1), is expected to
remain formally the same. However, the effective friction tensor Z, will
contain contributions associated with the energy exchange between reactive
and nonreactive modes. With this understanding the following discussion
remains unchanged.

To end this section we note again that the assumption of fast intramolecular
energy redistribution in the reactant well introduced the number # of molecu-
lar modes as an important parameter of the theory. In a broader context # is
taken to be the number of strongly coupled molecular modes, and it is assumed
that the reaction coordinate is part of this set. In liquid solvents n is expected
to be equal to the total number 3N — 7 of modes. In the low-pressure gas
phase n can be smaller, and the possible slow energy transfer between different
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regions of the molecular phase space (disregarded in the present model) may
have a substantial influence on the reaction rate. Rat§:s l.arger or smaller than
those predicted by RRKM theory may be observed in isolated photoexcited
molecules according to whether the reaction coordlna.&? does qr doess not
belong to the set of strongly coupled modes, which is initially excited.?

V. NON-MARKOVIAN EFFECTS IN THE
ONE-DIMENSIONAL CASE

In this section we present an approximate solution for the rate associated vyith
the multidimensional model, Eqs. (4.1) and (4.2). Here we focus on the equiva-
lent one-dimensional model which disregards all modes but the reaction

coordinate

X= L vix) _ jt dt Z(t — 1)%(1) + lR(t) 5.h
m dx 0 m
(ROR(E')y = Z(t — t)mkyT, (R(®)) =0 (5.2)

The memory function Z(r) is characterized by its Fourier—Laplace com-
ponents

Z,(w) = J " it zZ()e (5.3)

0

with

o0

Zo(w) = f dtZ() =y (5.4)

o]

In addition, Z(t) is associated with the correlation time 7., which characterizes
the time scale for its decay to zero. For specificity we shall often refer to the
simple example

Z(t) = Lot (5.5)
‘CC
Z(@)=—0"P (5.6)
" 1 + inwrt,

This model is often not realistic enough for a quantitative analysis of chemical
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reactions in solutions (see below), but it contains much of the essential physics
associated with the solvent relaxation.

Several workers have recently treated different aspects of the escape prob-
lem represented by Eqs. (5.1) and (5.2). Grote and Hynes?® and later Hanggi
and Mojtabai®° have treated the non-Markovian problem associated with the
barrier dynamics. This case corresponds to the Kramers intermediate-to-large
friction case (Section II), where the escape rate at the top of the barrier is the
rate-determining step. Carmeli and Nitzan®! and Grote and Hynes32 have
treated the non-Markovian well dynamics (the analog of the Kramers low-
friction limit where the escape is dominated by the well dynamics). A singular
perturbation approach to these two cases was recently described by Dygas,
Matkowski, and Schuss.?3

Consider first the barrier dynamics problem, which is defined by replacing
the potential barrier by an inverted parabola, Eq. (2.4), and by looking for a
steady-state probability distribution which satisfies Eqgs. (2.6) and (2.8). Here
we follow the treatment of Hanggi and Mojtabai.>® Equations (5.1) and (5.2),
with V(x) = Ez — mwjx?, are used to obtain (with a procedure due to
Adelman®*) a generalized Fokker—Planck equation,

JP(x,v,t) 0 _ 0 0 kyT _  0°P
= l:—v& — wz(t)xa—u:lP + y(t)%(vP) + - y(t)ﬁ
kgT 2
+ m’; p [@%(t) — wi] ~oP (5.7)
where
7ty = d Ing(z (5.8
) = —In 41 3)
a0
wp(t) = ~50 (5:9)
P(e) = p'(t)[l + g f dr P(T)J — wpp’(t) (5.10)
[4]
0(t) = wzLp()p(r) — p*(1)] (5.11)
and where the function p(t) is defined from
B 1
) =2 [sf’- —wi+ sZ(—is):, (512
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with 7! being the inverse Laplace transform. Note that by Eq. (5.3),

Z.(—is) = r dte™Z(1) (5.13)

0

is the Laplace transform of Z(t). In the Markovian limit,

pt) = &1 [—L——} (5.14)

52 — w3+ sy

which may be used to show that (1) = y and @3() = w3 in this limit. To
proceed we follow steps similar to those used to obtain Eqs. (2.23) and (2.24).
We again look for a solution of the form

Imv* + V(x
P(x,v,t) = f(x,0,1) expli—uJ (5.15)
kg T
and seek for F the form
flx,0,0) = f(u, 1), u=v+1Ix (5.16)
Inserting Eqgs. (5.15) and (5.16) into Eq. (5.7) we get
- of kpT — a2 - w3 }6f
Y- M=+ A0 v —=2x |=— 5.17)
ot PO+ Tl5 s 240 v == x |5 (
where
- _ L =05
) — |:y(t) +T (Zz (5.18)
B
We further require, as our choice for I" in Eq. (5.16), that
. w3
lim A(t) = —— (5.19)
o0 r
It may be shown?*> that this limit exists. In fact, defining
lim (1) = 4q (5.20)

t— o0

o
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it may be shown 3° that 4, is the largest (real and positive) root of the equation Ao @
R e (5.28)
W — w0} + 22, (—i2) = 0 (521) ©n 27
Note also that Eqs (5.18) and (5.19) imply I mtorcgoablye T RO o
Nz . Turning now to the non-Markovian well dynamics, one first needs to
Jo = lim [Q—)B(t) + (ﬁ) :l _0 (5.22) generalize the energy diffusion equation (2.32) to the non-Markovian regime.
100 2 2 We recall that in this limit the damping is taken to be small enough so that
in the energy-phase representation the phase distribution can be taken uni-
which becomes identical to w, of Eq. (2.24) in the Markovian limit. form and the energy may be focused on as the variable of interest. It is
Equations (5.18) and (5.19) imply that Eq. (5.17) admits a long-time steady- important to realize the existence of a well-defined time scale hierarchy associ-
state solution which satisfies the equation ated with this limit
kyT 0*f of k«<yfor Z(w)] «t;' <o (5.29)
R TR G2)
where k is the escape rate and « the well frequency (for the energy considered).
with 17,! « w implies that the process is non-Markovian in nature, while y « ;*
means that a Markovian description should be valid for the energy relaxation
w3 itself. [Note that, as is shown below, Z (o) replace y as the rates associated

il V=T 3 (5.24) with the energy relaxation in the non-Markovian case.] The condition for the
e B escape rate to be a meaningful, measurable quantity is that k be smaller than
il These results are identical in form to the expressions obtained in the Markovian ?lllle (;gcllifzégt(i)sl'l;)se[-(::rlifl”i(nczl)t?ac;;eclielrsg;h;e(slcorvi;gﬁilng%i)vzoliidlgfl?ern :iircllee Cslcicié i

‘ !} case. '[Note that Egs. (2.11) and (2.13) yield Eq. (5.24).] The values of I and « hierarchies are of course possible. However, Eq. (5.29) is tlie most common
are dnfferent here, bu't become identical to the values given by Egs. (2.11) and one for molecular problems ' A

ai gzs.}j)sli:tt;:;%a]rikow;n limit. Since the forms are the same, we may proceed It is also important to realize that in most situations inequalities such as i
gl e » Eqgs. ( t.)14) to (2.19). In particular the steady-state distribution 7 « o hold for small enough energies, but break down near the barrier (w — 0 :
i ¢ given by at the escape threshold). The fact that the barrier solution, Eq. (5.28), is useful

L — 5 in many situations follows not because Eq. (5.29) is not valid inside the well

| | ‘ P®(x,p) = F f dz exp [_ amz :lPeq (x, ) (5.25) but because the barrier, not the well, dynamics is the rate-limiting process in

,[ | — 2kp T these situations. The energy diffusion equation to be derived below is almost

1 ‘ ke T2/ 21 \M2 always valid for describing vibrational energy relaxation inside the well, even

Ik js=FN [T:I <oc - 1) e FEs (5.26) when the barrier controls the escape rate.

! ‘ Starting from Eqgs. (5.1) and (5.2) and assuming that Eq. (5.29) holds, we
| with first make the transformation (x, v) — (J, ¢), J being the action variable related
|l to the energy by E = jJ w(J)dJ or dE/dJ = w. This transformation may be

12 expressed in the form
‘ om
| F= <27zk T> (5.27) o ing
} B x(J, ¢) = 'ZO x,(J)e (5.30a)
\ and where o and I are defined by Egs. (5. ividing j -
y Egs. (5.19) and (5.24). Dividing jg by the W)= 3 o (J)e (5.30)

normalization constant, Eq. (2.20), leads to =0
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with
x, =x¥%,, v, = v¥, (5.31)
and
v,(J) = inw(J)x,(J) (5.32)

Equation (5.1) then leads to

0 0 t 0
J=—im Y Y nxnei"¢J dt Z(t — Dve™ + iR(t) Y nx,e™ (533)
R=—00 Mm=—w0 0 n=—oo
. © © axn ing t -
p=owl)+m Y > —Fe™ dt Z(t — t)v,e™
n=-—o0w m=—-0 oJ 0
®  0x

—R(@®) :Z_ a—J"eW‘ (5.34)

We now introduce an approximation based on the time scale ordering, Eq.
(5.29). The memory kernel Z(t) decays to zero in times of orders 1,. For such
short times we can write |t — 1| < 7,

o)~ o) — ot — 1) (5.35)
V(7)) = 1,,(0) (5.36)

Therefore

t t
J dt Z(t — 1), (1)e™® ~ ¢_(t)e™O J At Z(t — 1)e” ™ot (5.37)
0 0
and for t >» 7,

t
J A Z(t — 1)v,(2)e™ ~ v, ()™ Z, () (5.38)

0

where Z, () is defined by Eq. (5.6).
Subtituting Eq. (5.38) into Egs. (5.33) and (5.34) leads to

J=—im Y Y nx,0,2Z,e"™ +iR(1) Y nx,e™  (5.39)

n=—o m=—co n=—w
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Y X ™™ _R(t) Y xjet (5.40)

RB=—0 M=—w n=—00

s

d=w+m

where x., = dx,/dJ. Despite their appearance these equations are not Mar-
kovian because the random force R(t) is characterized by the finite correlation
time T..

The time evolution of the probability distribution P(J, ¢,t) is determined
by the equation

% _ fim {1§ S

ot =0+ (T n=1 n! m, k=0
(m+k=n)

a\"(a\ )
(—) (%) [AT)™(Ad) >P]} (5.41)

where AW, = AW,(z) = W(t + 1) — W(t), W being J or ¢. Thelimit in Eq. (5.41)
should be understood as taking  « y 1. However, t is kept larger than 7, (and
w™1) in order to yield a coarse-grained Markovian equation. Our task is
therefore to evaluate moments of the form {(AJ)"(A¢,)*>. The standard
procedure?® is to use

AJ(1) = J ds J(J(t + s), p(t + s5),t + 5)

¢

where J(J, ¢, t) is given by Eq. (5.39), as a basis for iteration in the form

A7) = J ds J(J(t) + ATEV(s), (1) + AgEV(s),t + 5)
0

where [ denotes the [th iteration stage. A similar iteration procedure is used
to evaluate Ag.

In the Markovian case, where 7, is the shortest time scale, it is usually
found?® that (1) moments of the form {(AJ)"(A¢)*> with m + k > 2 are of
order t%, n > 2, and therefore do not contribute to Eq. (5.41), and (2) all the
relevant terms (that is, terms of order 1) which contribute to the first and
second moments (m + k = 1 or 2) are obtained at the second iteration stage.
This leads to the standard Fokker—Planck equation.

The present non-Markovian case is different. Terms of order 7 are obtained
in all orders of the iteration procedure, forcing us in principle to consider an
infinite number of contributions to Eq. (5.41). Simplification is achieved by,
in calculating the moments {(AJ,)"(Ad,)*>, neglecting terms of order t", n > 1,
as required by Eq. (5.41), or [Z(w)/w]", n > 1. (This is the low-friction limit.)
Note that Z(w)/w « 1 may be satisfied even if y (= Z(w = 0)) is not smaller
than o [see Eq. (5.6)].

P e
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We skip the technical details,>! which are straightforward but very cumber-
some, and note only that, as in the Markovian case, only first and second
moments yield terms that are not negligible by these criteria. Unlike in the
Markovian case, three iteration steps are needed to collect all relevant contri-
butions to these moments. The final result is the Fokker—Planck equation for

P(J,4,0),

s {s(ﬁ[mim(ﬂ]f’}Jr ro2h o0 s

ot oJ aJ o4 op
where*
e(J)=2m Y n?|x,|2Z; (5.43)
n=1
© ldx, |? . dxg\?
T(J) = 2mk, T | Ze T =2 44
)] ka n;l a7 n+ka <dJ>y (5.44)
Q) = 0U) + m( o) — kTL) 3 a| & ‘2 (5.45)
B Bror)= lar| " ’
and where

7t = Jm dt Z(t) cos(nwt)
0@ (5.46)
Z5 = J dt Z(t) sin(nwt)

0

Ifat t =0, P(J,¢) = P(J), independent of ¢, it will remain independent of ¢
at all time and will satisfy the equation

oPUY B {8( n [kBT 9w J)} P} (5.47)

o aJ oJ

Finally, transforming variables from J to E, using dE = w(E)dJ, Eq. (5.47)
yields the energy diffusion equation

OP(E,t) 0 0
5 = I:D(E) <kBTaE + 1) o(E)P(E, t)] (5.48)

* The second term of Eq. (5.44) is erroneously missing in Eqgs. (51) of Carmeli and Nitzan.3*
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where, with e(E) = e(J(E)), w(E) = w(J(E)),
D(E) = ¢(E)o(E) (5.49)

Equation (5.48)is of the same form as Eq. (2.32), with a different function D(E).
In the Markov limit Z(t) = 2y5(t), Z,(w) = ¥, and Eq. (5.42) becomes

e(J) = 5% (5.50)

To prove Eq. (5.50), the identity J = 2maw(J) Y 2, n*|x,|? is used. This identity
is obtained by inserting the expansions (5.30) into the definition

m m 2 ox(J, d)

Thus Eq. (5.49) leads to Eq. (2.33).

If the well dynamics dominates the escape rate, we can now follow the
development that leads from Eq. (2.32) to Eq. (2.39). In particular the steady-
state energy distribution P)(E), the steady-state energy flux, and the well
dynamics dominated rates are [see Egs. (2.37) to (2.39)]

E BE’
PY(E) = Peq(E)[l ~ Bis f dE ;(E,)] (551)

Eg BE’ -1
Jjg= [ﬁ f dE’ De(E,)] (5.52)
eﬂE'

k =k = [/3 J dE 0 (E)e *E J dE' > (E,J (5.53)

0 0

with D(E) given by Eq. (5.49). For deep enough wells the same approximation
that leads to Eq. (2.41) results in

k™) = BD(Eg)wqe P (554

In this limit, however, non-Markovian effects are no longer important because
o(E — Eg) — 050 that w(E) « 1.1, so the evolution becomes Markovian near
the barrier. Egs. (5.49) and (5.50) then imply that Eq. (5.54) is identical to Eq.
(2.41) in this limit.

To compute k™ from Eq. (5.53) one needs to know the functions w(E) and
D(E) [or ¢(E)]. w(E) is a property of the potential, while &(E) depends on the
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potential surface and on the dissipation process. For some cases s(E) may be
obtained analytically. For a harmonic oscillator x,(E) = E/2m®»?)d), , so
that

E
8(E) = — Z¢ (5.55)
@

For a Morse oscillator, V(x)= D{e 20704 — 2e~"x)a1 it can be
shown?! that

a? wed  \
NP =5 > 1 5.56
%, n2<4D_wOJ>, nz (5.56)
[the relation between J and E is E = —D(1 — wyJ/2D)*] which, with Eq.
(5.43), may be used for an easy numerical evaluation of &(J). For other
potential surfaces ¢ can be evaluated from

o(E) = a)ZL(E) Lw dt Z(0) 000 () (5.57)

where (v(0)v(t)); is obtained from the motion of the isolated system at a given
E (the average is over the initial phase). Equation (5.57) may be obtained from
Eq. (5.43) (see Appendix D of Carmeli and Nitzan®>) but is most easily
obtained as follows. From Eq. (5.48) at T = 0 we get, by multiplying by E and
integrating over it,

d<E)

. (5.58)

= —(D(E)w(E)>

where the average is over the instantaneous energy distribution. This means
that — D(E)w(E) is the rate of energy damping when the system energy is E.
On the other hand from the zero temperature limit of Eq. (5.1),

1d !
= —— Ve _ J dt Z(t — 7)%(7) (5.59)
m- dx o
by multiplying by % and using mxx + % dV(x)/dx = dE/dt, we get
t
<d_E> = _mj dt Z(t — 1)x(t)%(1) (5.60)
dt Jr=o 0
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Averaging over all initial conditions associated with a given total energy E
(that is, over the phase) leads to

(dE> ——m J * 4t Z() FOR0)), (5.61)

dr o

The subscript E on the right-hand side denotes fixed E (undamped trajectory).
Computing x(£)%(0) without damping is consistent with the low-friction limit
where damping is assumed to be small on the time scale 7, associated with
Z(t) [see Eq. (5.29)]. Comparing the two results for (dE/dt);_, and using Eq.
(5.49) we get the result Eq. (5.57). Equation (5.57) provides a convenient
numerical way to compute ¢(E); all one needs is to run a trajectory over the
undisturbed molecular motion at the given E for a time of several t,.

In the small damping limit it is also possible to obtain an energy diffusion
equation for the case where the friction kernel (and the associated random
noise) are position dependent.>” A convenient model with such property is
given by*

X=v (5.62)
_ _i dV(x)

m dx

! 1
— f(x(0) L de Z(t — f(x(@)o(1) + — f(R{E)  (5.63)

R(®)> =0,  <(R(t;)R(t2)> = mkgTZ(t; — 15) (5.64)

It should be noted that Eq. (5.63) may be derived from a microscopic
model3%-#° only for the special case where the friction kernel does not depend
on the particle’s velocity. This is not generally the case, and a rigorous
derivation of reduced stochastic equations describing the motion of a sub-
system coupled nonlinearly to its thermal environment leads to more compli-
cated equations. (See the References for further discussions of this issue3®742))
Equation (5.63) may still be derived for special cases. An analysis very similar
to that presented above leads to the energy diffusion equation (5.48) where
now D(E) is given by

D(E) = 2meo(E) Y. 12 |G,(E)Z((E))

n=1

(5.65)

) * For a discussion of the limitation of Langevion equations with position-dependent random
noise, see van Kampen.3® As discussed there, there is no ambiguity for non-Markovian equations
of this type.

Wi
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and where G,(E) = G,(J(E)) is related to G(x) = jx dx’ f(x') by

G(J,¢) = Z G,(J)e™? (5.66)

n=—au

where the transformation (xv) — (J¢) has been used. Note that D;(E) of Eq.
(5.49) is a special case of Eq. (5.64), in which f(x) = 1 and G(x) = x. With the
new D(E) the results, Egs. (5.51)—(5.54), remain unchanged.

V1. THE ESCAPE RATE OF A NON-MARKOV
MULTIDIMENSIONAL PROCESS

In this section we present the general solution for the steady-state ecape rate
associated with the model desirbed in Section IV. First the treatment of
Section V is generalized to the multidimensional case. Second the solutions
for the barrier region and for the well region are combined such as to satisfy
appropriate boundary conditions. Finally the overall rate is obtained from
the combined solution.

A. Barrier Dynamics

Starting from the set of equations (4.3) and (4.4), which are linearized about
the saddle point, we follow Grote and Hynes?® and derive a single equation
for the reactive mode by formally solving Eq. (4.4), then inserting the solution
for x;(z) into Eq. (4.3). The result is

Xg(t) = 0fxg — Jt dt Zy(t — 1)%g(v) + pr(t) (6.1)
0
<pr()pr(t')> = Zr(1)/B (6.2)

where Zg(f) is given in terms of its inverse Laplace transform Zg(s) =
§& dte™ Zg(0),

ZR(S) = ZRR(S) - Z z ZRj(S)ij'(S)Zj’R(S) (6.3)
M(s) = <sI + Z(s) + észZ)_l (6.4)
[ w? 0
0= w3 (6.5)
0 .
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Here 1 is the unit matrix and Q2 is the frequency square matrix in the space
of nonreactive modes. Equation (6.1) is a generalized Langevin equation of
the form used in treating the one-dimensional case in Section V, and leads to
the result of Eq. (5.25) (with m = 1) for the steady-state probability distribution
of the reactive mode near the barrier. In the present multidimensional treat-
ment it is convenient to redefine the distribution according to

v—|x
PO(x, 0 =——Q;;ff;’ ) Fe_/’E(""”I: o + L dze‘”z”“zl:l 66)

E(x,v) = Eg + 10?2 — o}x? 6.7

where

[o and T are defined by Egs. (5.19-5.21) and (5. 24)], and where Q, and
0,1 (x,v) are, respectively, the molecular partition function and the partition
function corresponding to the n — 1 nonreactive modes, given that the reactive
mode is held in position x and velocity v,

Qn = Jw dET pn(ET)e_ﬂET (68)
Y]

Qn—l (x’ U) = J‘w dEn—l pn—-l(En—l Ixa U)e_ﬁE"_1 (69)
0

p.(E) is the molecular density of states per unit energy, and p,_(E|x,v) is the
density of states associated with the n — 1 nonreactive modes given that the
reactive mode is in state (x,v). The notations E; and E,; for the integration
variables keep track of the meaning of E; as the total molecular energy and
E,_, as the energy associated with the nonreactive modes. [The energy of
interaction between reactive and nonreactive modes is assumed small and is
neglected in Eq. (6.9) apart from the x, v dependence of w;, j=1,....,n— 1,
which is the source of the x, v dependence of p,_; and Q,—. This assumption
is valid near the barrier. Also note that in most applications the v dependence
of p,_,(E,_,|x,v) and of Q,_,(x,v) may be disregarded.]

The steady-state molecular distribution near the saddle point may be
written explicitly by invoking two assumptions valid in that region. First,
because the reactive and nonreactive modes are nearly uncoupled, the molecu-
lar distribution is written as a product of both, Second because near the barrier
the reactive flux is directed along the reactive mode coordinate, the distribu-
tion function of the n — 1 nonreactive mode system is approximated by its

i
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thermal equilibrium form

PP, 0;E, 1) = PP, 0)P®) o (E,1|x,0) (6.10)
1

P& E,_(|x,v)=————p,_(E _|x,v)e FEn1 6.11

n 1,eq( n 1Ix U) Qn_l(X,U)pn 1( n llx U)e ( )

Note that the total energy associated with the state (x,v; E,_,) is
E;=E,_, + E(x,v) (6.12)

where E(x, v) is given near the barrier by Eq. (6.7) and the reactive—nonreactive
interaction energy was again neglected.

It is important to understand the difference between the forms of Egs.
(5.25) and (6.6) for the reactive mode distribution. Equation (5.25) is the
strictly one-dimensional form whose equilibrium limit is the unnormalized
form, exp[ — BE(x,v)]. Equation (6.6) is the proper expression for the multi-
dimensional case, obtained by integrating the overall molecular distribu-
tion P{p over all the nonreactive coordinates and momenta. Its extension
beyond the barrier region, for all (x,v), is normalized to unity because
{dxdv/2rh)Q,_, (x,v)P(x,v) = Q,.* The difference between Eqs. (5.25) and
(6.6) accounts for the different volumes of phase space associated with the
presence of the nonreactive modes.

The steady-state flux along the reaction coordinate is obtained from

j(B)=f dEn—lf dvoPiP(x,v;E, )

0 -

= foo dv vPP(x, v) (6.13)

—a0

Using Eq. (6.6) and replacing near the barrier Q,_,(x,v) by Q,_;(Eg), to be
denoted by Q2 , lead to

n—1>

] (0,58 B o
®) _ pp-3z [T ppEs 6.14
L a1 (6.14)

If the thermal relaxation within the reactant well is fast, the constant F in Eq.

* The partition function corresponding to an equilibrium situation is obtained for deep
enough wells, because most of the contribution to the integral comes from the well region where
the equilibrium distribution is a good approximation.
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(6.6) can be determined by the requirement. that P.(B"(x, v) > P (x,v) as x —
_ oo. This and Eq. (6.6) imply that under this condition

ap
Fe /; (6.15)

Using Eq. (6.15), Eq. (6.14) leads to the barrier dominated steady-state rate

B
kB = j® = L ";—lfo_'e*ﬂb‘x (6.16a)
27'Chﬂ Qn Wpg

An equivalent expression is obtained by using

e Qu_1(E)e P" ~ 2 6.17
0= ), O ey o7

where Q,_, (0) denotes the partition function associated with the subsystem of
nonreactive modes when the reactive mode is in its ground state. Equation
(6.16a) then becomes identical to the result of Hynes and coworkers,?% 21

0, 050 0% o
o = 2 o e = ke (6.16b)

In the Markovian limit, Zg(¢) = 2y6(t) and Zz(2) = yg. o, is then given by
Eq. (2.24), and Eq. (6.16b) becomes the well-known Markovian multidimen-
sional result.*374% If moreover QP = Q®,, that is, the nonreactive sub-
system is not affected by the state of the reactive mode, this becomes the
Kramers one-dimensional result.

B. Well Dynamics

As in the onc-dimensional treatment, the atomic motion in the reactant well
is assumed to be characterized by a time scale separation between the slow
energy variable and the rapidly varying phases. However, in accordance with
our model assumption (Section IV) it is the total molecular energy that is
assumed to be (relatively) slow. Individual mode energies fluctuate rapidly and
are estimated only by statistical considerations.

In order to make contact later with the barrier dynamics, we need P*(E),
the probability that the energy of the reactive. mode is E. We note in passing
that P)(E) is meaningful only provided that the reactive mode (defined near
the barrier) keeps its identity in the well region. We show below that it is
enough that this will be so high in the well, below the barrier region.

L
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The probability P™(E) can be expressed in terms of P{f’(Ey), the prob-
ability distribution for the total molecular energy E, and the conditional
probability distribution P")(E|E;) for the reactive mode to have energy E,
given that the total molecular energy is E,

PY(E) = r dE; PY(EL)PYAE|Ey) (6.18)
0

Note that P"(E|E;) = 0 for E; < E, so the lower bound in the integration
can be taken to be E.

The assumption of complete statistical distribution of energy within the n
strongly coupled modes leads immediately to the following expression for
P(W)(EIET)*t

1 pn—l(ET - E)
6.19
hon®)  pulEr) ©19

P(W)(E|ET) =

To find the distribution P{}’(E;) of the molecular energy, we need a
diffusion equation for E, which is analogous to the one-dimensional equation
(5.48).In Eq. (5.48) D(E) is related to the rate of energy loss at zero temperature,

dE
<E)T=o = —D(E)o(E) (6:20)

and the frequency w(E) appears in order to satisfy detailed balance. At
equilibrium (kz TO/0E + 1)w(E)P.4(E) = 0 leads to

P, (E) oc ——e™PE (6.21)

1
w(E)
The obvious generalization of Eq. (5.48) to the multidimensional case is
therefore

OPYEq,©) 1, 0 _
L Bl AT e+ 1 o YE ) P (E gt 6.22
a0 3E, D(E;) kBT@ET + 1), (E) P (Er,t) | (6.22)

where D(E;) is related now to the rate of molecular energy dissipation at

* Note that p,(Er — E) depends not only on the differences E; — E, but also explicitly on E.
This explicit E dependence comes from the dependence of the nonreactive mode frequencies on
the reactive mode energy E.
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dE,

<7>T=O = —D(Er)p™ (Eq) (6.23)

An explicit expression for D(E;) can be obtained from Eq. (4.1) which, for
T=0,

. ou ' .
¥o= ———— | dt ) Zy(t —1)%,(7) (6.24)
5Xa o b
Multiplying by X, and summing overa = 1,..., n, using also Ep = 3 %2 +

U({x})and ) ,(8U/0x,)%, = dU/dt, we get

(%) - _J: de ). ;Zab(t — T)X4(£)%(7) (6.25)

T=0

Invoking the model assumption that slow variation of E; relative to the
relaxation time associated with Z,(t — t) (the latter being essentially the
characteristic solvent relaxation time), and averaging the product x,(t)X,(7)
over all initial phases, assuming further that the averaged product X,(£)%,(7)
depends only on t — 1, we get

dE, o o
(7) - _j di 3. Y. Zap(t)%a(0)%(0) (6.26)
T=0 0 a b
and
pEn = e [ S Y z0TOG, (620

Equation (6.27) may be used for evaluating D(E;) using simulations based on
Eq. (4.1). Such simulations will yield the correlation function (%,(t)%;(0))z. The
average is over the initial phase and the subscript E; denotes the fact that the
total molecular energy does not change during these simulations. For a small
molecule x,(t)x,(0) can be evaluated in the absence of molecule—thermal bath
Cpupling, so that E is obviously constant. This is the lowest order approxima-
tion in the molecule bath coupling to Eq. (6.27). For large molecules the
coupling to the environment may strongly affect intramolecular energy redis-
tribution and should be included in evaluating X,()%,(0) using Eq.(4.1). Our
model assumptions still imply that E; does not change appreciably during
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the relevant time for this calculation, that is, the relaxation time associated
with Z_, (¢).

Equation (6.27) has also been derived by Zawadzki and Hynes,
its Markovian equivalent has been obtained by Borkovec and Berne.
Zawadzkiand Hynes*® have also shown that for the case where only diagonal
elements (a = b) appear in Eq. (6.27), it may be simplified to

46a and

46b

D(E,) = N(E) J : di ; Z.()m,(0) (6.28)
where
N(E) = j OE dE'p,(E') (6.29)
and
() = i%_:’i)—%)i 630)

The Smoluchowski type equation (6.22) is of the same formal form as the
equivalent equation (5.48) of the one-dimensional case. Its general steady state
(0P} /0t = 0) solution is

1 Eir , ePE
P = et 4o [ Tar s e

Er

and the steady-state flux [ j = D(ky T8/0E + 1)p, ' PifL ] is

(W) _ s

6.32)
7T 0.8 (

In Eq.(6.31) A,, 4,, and E  are constants to be destermined by the boundary
conditions. Note that only two of these are independent. At equilibrium
A,=0and 4, =1.

Having found explicit expressions for P™(E|E;) [Eq. (6.19)] and .for
P™(E|Ey) [Eq. (6.31)], we can insert them into Eg. (6.18) to get the reactive
mode steady-state distribution P*(E). This calculation (Appendix A) yields

—BE Eq B(E'+E)
PUV(E) = %%EQ( [Al + 4, JE dE -1;7:7)} 633)
R n
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where
E,=E,r—% (6.39)

and where z is the value of ¢ for which the expression p,_,(¢)e #¢ achieves its
maximum value. In the high-barrier high-temperature limit it is approximately
equal to the thermal energy in the nonreactive modes,

Ex(n—1)p (6.35)

Note that, in this approximation, if E is the energy in the reactive mode, E + €
is approximately the corresponding total molecular energy.

The steady-state flux j(E) associated with the reactive-mode steady-state
distribution, Eq. (6.33), is the same as that [Eq. (6.32)] associated with the
total energy distribution, Eq. (6.31),*

Az
0.8

C. The Combined Solution

Jj(E) = (6.36)

The assumption that relaxation within the reactant well is fast so that P (E)
is well described by a Boltzmann distribution (that is, 4, = 0) leads to the
barrier dominated rate, Eq. (6.16). When this assumption does not hold, the
unknown constants F in Eq. (6.6) and A,, 4,, and E, in Eq. (6.33) have to be
determined by matching these barrier and well solutions together. To this end
we follow the procedure of Carmeli and Nitzan®® and choose to match the
solutions at some point (x;, v; = 0) corresponding to an energy E, in the
reactive mode (E; = Ey — Jwgz?x?). We assume that there is at least one such
point where both the barrier and the well solutions are valid. Since E . 1n Eq.
(6.33) can be chosen arbitrarily, we choose it to be this matching encrgy. At
this point we require that the well steady-state distribution [Eq. (6.33)] and
the corresponding barrier distribution [Eq. (6.6)] be equal,

wg(E
R2(7t 1)p(W)(E1) = P®(x,, v, = 0) - (6.37a)

The /27 term arises from the (x, v) — (E, ¢) transformation together with the
observation that in the well the ¢ distribution is (2m)~'. Similarly the energy

. * This follows from the assumption that the intramolecular vibrational energy redistribution
1s fast on the relevant time scale.
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derivatives are taken to be equal at this point,

0 1o ”
[’af PB(x, p = 0)11 = [55 (@ (E) P ’(E))] (6.37h)

2n E,
Finally the steady-state fluxes, Egs. (6.14) and (6.35), should be the same
jB = j™ (6.38)

The three conditions, Eqgs. (6.36)—(6.38), together with the requirement that
the overall distribution be normalized, are just sufficient to determine the three
unknown constants 4,, 4,, and F and the matching point energy E;. These
conditions lead to

2n

B) p-112 ~BEs 6.39
= 0w B o 1e ( )

f}}- = mhf~1" \/% {1 + eri[ /(e + 1)B(Ez — E;)1} (640)

and

0P, _ a(Es — E ) oFlEs—E+El _ | (6.41)
(@ + DD(E, + ) T

Equation (6.41) may be solved for E,. To see its significance, consider the
limits of large and small molecules. Forn =1,2=0, Q,-, = 1, and D(E) =
w1 |2, dt Z()%()%(0) = w(E)e(E), where &(E) is defined in Section V. In this
11m1t Eq. (6.41) reduces to Eq. (3.19) of Carmeli and Nitzan.>® For a particular
model of the memory kernel the resulting E; is displayed as a function of
friction in their Fig. 2.35 Generally E, — Ej for small friction and E; — 0 when
the friction becomes very large.

In the opposite limit of large n, both factors 02, e* and D(E, + &) increase
rapidly with the number of degrees of freedom. Their ratio, however, depends
only weakly on n so that E, will not be very sensitive to molecular size. A
typical dependence of E, on molecular size and on molecule—solvent interac-
tion is shown in Fig. 3.

The last step in evaluating the steady-state distribution is the calculation
of the normalization constant

N = f"o d{x"*}d{v""} fxﬂ dx jw dv Py(x,v) = J"O dE 7 p(E7) Py (Ex)
o —w o 0
(6.42)
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Figure 3. Matching energy E, for trans-stilbene (full line) obtained using normal modes of
stilbene as calculated by Warshel*” and taking D(E) = 0.1yp(E)E, p(E) being density of states,
and w, = wp = 88 cm™'. ———molecule with same reactive mode parameters and with partition
function of nonreactive subsystem larger by a factor of 5 than that of t-stilbene; ——similar
molecule with partition function of nonreactive subsystem smaller by a factor of 5 than that of
t-stilbene. (From Nitzan.*?)

where {x""'} and {v""!} denote the sets of coordinates and velocities of the
nonreactive modes. The reaction rate is given by the steady-state flux divided
by N,

k=j/N (6.43)
Evaluating N from Eq. (6.42) yields*?

nhA,neft A,t,

N= +
Q;B—)I Qnﬁ
2 —mMA BEp o0 Er —BEr _
4 7( ’1)(8)23 wsf dETJ dEe Pn—1(Er — E|E)
Qn @, E, E, CUR(E)
A, Ey J’E” ebE'
dE; p{Ep)e PEr dE ———
0,1, 1 PulET) . D(E)
A, |7 Ea Erpy 1 (Eq — E|E) ePEFD
+ dE dE - dE’
w0, f r J wr(E) pE 7 O
where

-
;

i
2
S
5
3
n
5
5
H
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E oPE [E
T, =p LOT dE’m JO dE; p,(Ep)e PEr (6.45)
n=1+erf[ /(e + DB(Es — E;)] (6.46)
Er=E +¢ (6.47)

and where E,; is some arbitrary source point on the energy axis near the
bottom of the reactant well. 7, is the mean first passage time for a molecule
that starts with total energy E,; to reach the total energy E,. For Eop < E,
the choice of E, does not affect the result.

The reaction rate may now be obtained from Eqgs. (6.32) and (6.44). To
simplify the resulting rate note that the ratios between the flux j = 4,/0,f
and the first and third terms of Eq. (6.44) contain the term k‘®), the barrier
dominated rate [Eq. (6.16)]. The final result for the rate is thus

e

(B)
o _ @r =0 Q?(;)l o—PEs (6.49)
wg 2n Qp2

| B Pui(Eg — E|E)
F=n+ Q2 —n— dE e‘ﬂETJv dEZ—"—"———=  (6.50)
H " ( 7’]) JVEI T £, h(UR(E)

n

T=1;+ 1T, + 13 (6.51a)

where 7, is given by Eq. (6.45),

E; Eir el’E' b)
Ty = dE; p,(Ep)e PE f dE' ——— (6.51
2 ﬁ J‘o T ( T) £ D(E )
w© E; e—ﬁEp ~1(ET _ ElE) J'El ePE+?)
Ty = dE dE n dEl——— (6.51¢)
s=F L r JO g (E) z D(E +7%)

In the one-dimensional case E,; = E;, 1, = 73 =0, and 7 = 7,. In Ap-
pendix B we show that for deep wells

Eir BE’

15 B0, j dE’D &) (6.52)

0

where the equality is a reasonable approximation. The right-hand side of Eq.
(6.52) is a good approximation to

ACTIVATED RATE PROCESSES IN CONDENSED PHASES 527

Er eﬁE' E’
I Jl) dE,D(E’) fo dE e PEp (E) (6.53)

This is the mean first passage time to reach from the bottom of the well to the
energy Eir = E; +€= E; 4+ (n — 1)/f. Thus t correspond approximately to
this mean first passage time, in analogy to the one-dimensional case.

In the one-dimensional case p,_; = 0 so 7j = 5. For a very large molecule
the double integral in Eq. (6.50) can be approximated by

@ B p (Ep— E|E)
dE e_ﬁE"J dEle(T— = 6.54
L re hon® 2 (659

because most of the contribution to Eq. (6.54) comes from energy regions E,
E » E,.In this case i = 2.
In summary, the escape rate from the polyatomic reactant well has been

obtained in the form
2 -1 -1
=G 659

7is given by Eq. (6.51), which for large barriers may be approximated by

Eir , ePE’ _ _
T~ fBQ, fo dE ﬁ, B=(kgT) (6.56)

which is approximately the mean first passage time for the reactant to reach
the energy

Eg=E +¢ (6.57)

E_is defined as the energy where p,_; (E)e™#* achieves its maximum, and in the
high-temperature large barrier limit it is equal to the energy in the nonreactive
modes € ~ (n — 1)/B, n being the number of strongly coupled internal degrees
of freedom. 7 is given by

i 1 (= Er o (Ep—E|E)
’7=77+(2—17)ﬁf dE e_BETJ ) o nt ket il 6.
0, s, e, hao(E) (6.58)

n=1+erf[ /(e + VB(Ez — E;)] - (6.59)

Where o is given by Eq. (5.24) and E, is the solution of Eq. (6.41) whose typical
dependence on the solvent friction is shown in Fig. 3. 0, is the equilibrium

b
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partition function of the n-mode system. D(E), given by
D(E) = p.,(E)j dt }, ;Zab(t)(xa(t)xb(o))ET (6.60)
') a

is related to the rate of energy damping by the reactant molecule,

d
(—E> ~ —D(E)E) (661)
dt Jr=o
Finally k® is the barrier dominated rate given by
B — Qs'B‘)_l_ &e—ﬂEs ~ wp(0) 0% fu_’e—ﬂEa (6.62)
2nhfQ, wg 2n O wp

A few comments should be made concerning these results.

1. The result, Eq. (6.55), exhibits a smooth transition from a well-dominated
rate 7' to a barrier dominated rate k. For very weak solvent interactions the
denominator in the right-hand side of Eq. (6.55) is dominated by the energy
accumulation times 7, and the rate is given by k ~ t™*. (Note that in this limit
E, is equal to Ejg, the barrier height along the reaction coordinate.) When
solvent interactions become stronger, T decreases and at the same time 7
approaches 2, so k becomes dominated by k®. Note that the low-friction limit
of k® is the transition state expression for the transition rate. Also note that
the way in which the rate depends on solvent friction changes with the
molecular size. In the large molecule limit (large n) 77 becomes 2 as discussed
above. Also in this limit 7 can be neglected (see below) unless the friction is so
low that E, is equal to Ey. Equation (6.55) can then be written as

k= |:k‘3"1 + 50, rw dE’ b?g—)}_l 6.63)

0

In this form the rate is given as the inverse of the sum of two times, the barrier
crossing time k®~! and a time characteristic to the energy relaxation rate
within the reactant well.

2. The calculation which leads to Eq. (6.55) is based on a single well
(dissociation) model. Its extension to a double well (isomerization) situation
can be carried out in complete analogy to the single well treatment. The result
is simply (for the left to right transition rate, for example)

kpep = (K& + o + 9.7r17} (6.64)
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where k! ; is the barrier dominated rate, Eq. (6.62), for the L — R transition,

Y eBE
w ~ fOw JO dE D EY W=L,R (6.65)
E(Y = Eiw + &y (6.66)
de = Q1/0x (6.67)

The subscripts W (= R, L) in Eqs. (6.64)—(6.67) denote quantities related to
the right (R) or left (L) wells. Thus Qp is the partition function, ny the number
of strongly coupled modes, and Dg(E) the relaxation function in the right well.
kg and k@) | are, respectively, the overall and the barrier dominated transi-
tion rates from left to right.

To obtain the result, Eq. (6.64), for the model displayed in Fig. 2 of Carmeli
and Nitzan,*® we need to start with the solutions for the three different
regimes: left and right well solutions, both of the form of Eq. (6.33) with energy
fluxes of the form of Eq. (6.36) (with two sets of coefficients: 4,;, 4z, 45},
A,z), and the barrier solution, Eq. (6.6), modified to include two free pa-
rameters,

v—|Ix
P®(x,v) = %F(“‘x’”’ [F + f dzexp <—% ﬁazz>:| (6.68)
n 0

[Before we had F' = /=n/20f so as to have P® — 0 for x — c0.] We then use
the matching conditions, Egs. (6.37) and (6.38), at the two points (x; z, v = 0)
and (x,;, v = 0) in the right and left wells, and the flux continuity conditions,
Eq. (6.39), for both wells. We then obtain two equations of the form of Eq.
(6.41) for the energies E,; and E, associated with the two matching points.
The six matching conditions together with the (assumed given) populations
in the right and left wells are enough to determine the six parameters 4 and
F and the two matching energies E, .

When the escape rate is dominated by the barrier (so that 7, and 7, may
be neglected), the result, Eq. (6.64), is the same for a single well and a double
well model. The difference between the two processes becomes evident in the
low-friction limit where for the escape from a single well k ~ 71, while in the
dpuble well case kg ; ~ (7, + g.7x)"". The two contributions to the escape
tIIn_e are associated with different, though closely related physical processes.
Tr 1s the characteristic time for energy pumping in the left well, while the
nverse dependence of kg.p on g,y is related*® to the effect of trajectories
Teturning to the left well after colliding with the far wall of the right well.

LT

i
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3. The rates of Egs. (6.55) and (6.64) go through a maximum when the
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T = (BE;rkyr(E, T)eiﬂE1 ) rem T DIIEE/ (] (6.73)

friction grows from zero. For extremely small damping the rate is given by

7%, which grows linearly with the friction, while for large damping the rate is For n — oo this leads to the nonactivated form % =5
dominated by k®, which decreases with increasing damping.* The quantita- 2 33
tive behavior is very sensitive .to molecular size.. The barrier tefgl in Eq. .(6.55) = (BE  phoyg(E1p)) ! (6.74) g g E
[or Eq. (6.64)] is not much different. The additional factor Q;2,/Q,_; is, for g+ i
isomerization reactions, on the order of 0.1-10. The relaxation time 7 may, . . . .o C o oeN
however, be orders of magnitude different. To see this take as a rough estimate It is unphysical, however, to assume In Fhls limit that energy redistribution _f’?: W
for 7 (which holds for E,; » k, T) the expression between Fhe modes is the fastest process in the system.. ' . % 2
Equations (6.72)—(6.74) show that t decreases dramatically for an increasing ¥ 98

o SE, number of molecular degrees of freedom. This results both because of the o

e~ Qe ~Q en—le- (6.69) larger kyy expected for larger molecules and because of the n-dependent SRR

D(E;r) " D(E,r) correction in Eqgs. (6.72)-(6.74). Equation (6.55) then implies that the turnover § g}f

from well dynamics to barrier dynamics dominated rate occurs for large =T

and use molecules at much smaller solvent viscosities (or pressure in the gas phase) £
than for small molecules. This point was discussed in the literature*?-4% and :7

(6.70) was the subject of several recent experimental investigations. Since for this éfg

i

D(E) = p(E)Eky(E)

where kyp(E) is the vibrational energy relaxation rate of the molecule at total
vibrational energy E. Using also the classical approximations for @, and p,

with o a characteristic molecular frequency,

small friction the barrier dominated rate is identical to the TST rate, it may
be concluded that for large molecules a plateau in the rate versus solvent
friction, where k = kqgr, should be observed.

4. While the model employed in the present work provides a reasonable
picture of a unimolecular reaction involving a large molecule in solution, other
ingredients not considered here may play a role in some systems. The possible

kg T \" (E/hw)y ! 671
n= <%> ; p(E) = m (6.71) role played by intramolecular friction (nonlinear coupling between the reac-
tion coordinate and other nonreactive modes near the barrier) has been dis-
leads to cussed in Section IV. Also, the dependence of the molecular potential surface,
in particular the activation barrier on the molecule—solvent interaction, may
-\ e L(n — 1)! dominate in some cases the observed solvent effect on the rate. Such may be
—_— (6.72) the case (see Section VIII) in a polar solvent when the reaction involves a

T= kVR(ElT)_leﬁEl

(BE; +n—1y

For n =1 this yields © = (k{x E;e #F)"1, which is exactly the low-friction
generalized Kramers result. (The friction y is replaced here by the more general
kyg, which incorporates non-Markovian effects if present. In this low-friction
limit E, = Eg.) For intermediate large values of n Eq. (6.72) may be approxi-
mated by vibrational relaxation rate kygx(E) = E™' dE/dL,

* It should be kept in mind that increasing the solvent viscosity does not necessarily imply
stronger damping, because it may be accompanied with slower solvent motion (longer solvent
relaxation time) and smaller effective friction due to the larger non-Markovian nature of the
solvent molecule interaction. See, for example, Bagchi and Oxtoby.*

change in the molecular dipole moment (such as a charge transfer reaction).
5. The results listed above are based on several approximations. Some are
essential parts of the model: the assumption that intramolecular relaxation is
much faster in the well region than intermolecular energy exchange, the
decoupling between the reactive coordinate and the nonreactive mode in the
barrier region, and the assumption that a unimolecular rate is well defined
(which is valid if E; > k,T). Other approximations serve to simplify the
results. Thus Eq. (6.56) is the large barrier approximation to Eq. (6.51), while
Eq. (6.35) for & and Eq. (6.72) for t are based on the assumption that the
temperature is high enough to permit the use of classical statistical thermo-
d_ynamics in evaluating the molecular distribution. While these approxima-
tions served to illustrate the essential points in the theory, they are not valid

* Equation (6.70) results from Eq. (6.60) together with the definition of the vibrational ; ) I ' .
relaxation rate kyg(E) = E"1 dE/dt. In many practical situations. In the much studied isomerization of trans- “
T o
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stilbene, for example, the barrier to isomerization is ~ 1150 cm™, while the
largest molecular frequencies are in the 3000-cm ™! range. The theory may be
applied to such situations by avoiding the simplifying classical approxima-
tion and resorting instead to numerical integrations. In particular the high-
temperature expression € = (n — 1)/ canot be used in this case. Instead & can
be computed as the energy for which p,_,(E)e™#* attains its maximum. For
t-stilbene at T = 300 K this yieldsg = 1870 cm . The plot of E, versus friction
in Fig. 3 was obtained using such numerical estimates.

6. The results of Egs. (4.1)-(4.15) stress the number of strongly coupled
modes n as an important parameter of the theory which, together with the
activation barrier height and the solvent frequency dependent friction, deter-
mine the reaction rate. The barrier height and the friction can in principle be
determined by independent measurements (Arrhenius temperature depen-
dence of the rate in the transition state regime and molecular vibrational
relaxation rates). The number of strongly coupled degrees of freedom is an
undetermined parameter of the theory. In this respect our situation is similar
to that of the RRKM theory, and in fact the present results may be viewed as
a unification of the RRKM and the generalized Kramers theories of chemical
reaction rates. Using n as a fitting parameter has been a traditional way of
applying the RRKM theory to the interpretation of experimental data. Be-
cause of the large sensitivity of the calculated rate to n (in both the RRKM
theory and its present extension) such a fitting can at best lead to very crude
estimates. An interesting possibility is to estimate n from transition state
(high-pressure gas-phase) data and to use the so obtained number of strongly
coupled modes to predict the full-range pressure—viscosity dependence. Such
a procedure may work if intramolecular energy distribution is dominated by
intramolecular interactions. More likely we may find that the number of
strongly coupled modes is pressure dependent at low pressures, as discussed
at the end of Section II.

7. The assumption that IVR is much faster in the well region than inter-
molecular energy exchange is reasonable for large molecules where the density
of states is very large, so that IVR can be induced by long-range soft collisions
with solvent molecules.* The situation is less clear for small molecules (2-4
degrees of freedom) where the molecular density of states is small and the time
scale associated with vibrational energy spacing is short relative to the dura-
tion of most collisions. In such cases IVR may be as slow as or slower than
the energy accumulation and relaxation process.

* Recent numerical simulations by Borkovec et al.3® indicate that increasing solvent—molecule
interaction may give rise to effective decoupling between molecular modes, that is, the dynamics
appear more one-dimensional with increasing solvent interaction. However, in these simulations
interactions of the kind discussed here were not included.

T
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A simplified model, which illustrates these effects and may be solved an-
alytically if IVR is slow relative to the total energy relaxation rate, is given by
(for simplicity we use the Markov limit for the following demonstration)®?

X = —ml_laV(xl,xz)/axl — X+ mIIRl(t) (6.75)
Xy = —m3toV(x(,X,)/0x, — y,%, + m5 R, (f) (6.76)

with
CROR()) = 2y;mkg T,;0(t — t') (6.77)

and with the potential V(x,, x,) taken to be

V(x1,%5) = U(xy) + dmym3(x; — pxy)? (6.78)
U(x;) may be any one-dimensional potential along which the escape occurs.
x4 is thus the reactive coordinate while x, is the nonreactive coordinate. The

calculations reported below use the potential

forx <b
forx > b

amyoi(x; — a),

Ux,) = { (6.79)

1 2,2
Ey — am wpxt,

with a, b <0 and a < b. The requirement that U(x) and its derivative be
continuous at x = b leads to

aw?

b=l .
w? + 0} (650

and

2E 02

mywia® — 2E, (681)

W% =

To solve the escape problem associated with this model, Eq. (6.76) may be
solved for x, and the result inserted in Eq. (6.75). This leads to & non-
Markovian equation of motion for the reaction coordinate of the kind solved
In Section V.

A simple result is obtained for this model if the nonreactive mode is fast
relative to the reactive mode. [From Eq. (6.76) the time scale associated with
X, 1s given by the roots of its characteristic equation, 1/2[y, + (v — 4w2)*2].]

In this case the nonreactive osciilator may be considered as part of the heat

et
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Figure 4. Transmission coefficient k/kygr as a function of . /m, /m, for model defined by Egs.
(6.75) and (6.76). Parameters are wp = 1, ; = 5, w, = 4.5, Eg/kyT = 10, and y, = 0.05. —,
py = 1073y, = 107, ——, y, = 2.0. (From Carmeli and Nitzan.**)

bath. Indeed, in this case an equation of motion of the form of Eq. (6.75) for
x, is recovered with y, replaced by>!*

m
ST (682)
1

In the general case the escape rate may be obtained as described in Sec.tion
V. Some characteristic results are given in Fig. 4. Two important observations
can be made about these results.

1. Qualitatively mode—mode coupling increases the effect o.f the thermal
bath (solvent). If the one-dimensional system is in the low-friction regime
(dashed curve of Fig. 4), increasing u causes first an increase then a decrease
in the escape rate, the same as what increasing friction would have.dope-
Similarly in the higher friction cases, increasing u has the same qualitative
effect as increasing 7.

2. For larger friction the effect of mode—mode coupling appears smallei
(dot—dashed curve of Fig. 4). This is reminiscent of the results of Bokovec €

* A different, but related model was considered in Fonseca et al.>>
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al.>° Note that in our model we have taken u to be independent of v, while in
reality collisions may affect the coupling between intramolecular modes.

VII. ESCAPE IN THE PRESENCE OF EXTERNAL PERIODIC
FORCE: THE LOW-FRICTION LIMIT

A relatively unexplored extension of the Kramers theory is the escape of a
Brownian particle out of a potential well in the presence of an external periodic
force. Processes such as multiphoton dissociation and isomerization of mole-
cules in high-pressure gas or in condensed phases,!® laser-assisted desorp-
tion,'® and transitions in current-driven Josephson junctions under the influ-
ence of microwaves'” ' may be described with such a model, where the
periodic force results from the radiation field.

Itis to be expected that an external oscillating force will have a major effect
in the low-friction regime where the motion is characterized by well-defined
frequencies that can be pumped by the field. Recently treatments of such
models were given by Carmeli and Nitzan,*® Sazonov and Zatsepin,>* Faetti
et al,>> and Frouzoni et al.’® Here we follow the treatment of Carmeli and
Nitzan.>3

The simplest problem of this kind is the escape from a truncated harmonic
well in the low-friction Markovian limit. This problem was treated by Ben
Jacob et al.'” The model is defined by

1
X+ 9% + w’x = Acos(wgt) + — R(t) (7.1
m

where A4 is the amplitude of the external force divided by M, of frequency wg.
The termal noise R satisfies

Ry =0 <R(E)R()> =29k Tty — t5) (7.2)

The equilibrium distribution for this model was found to be

2602 (E1/2 _ E1/2)2
P (E)= N, - K .
ss( ) Eexpl: CUZ + w]z{ kBT :I (7 3)
Where
_ wz + 2 AZ
= m( wg) (7.4)

4[(0? — 03)* + y*wi]

and the mean first passage time to reach the threshold energy Eg, which may
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be identified with the inverse escape rate, is, for w = wy,
Ey J vz _ g2 y (21/2 . Euz)z
_ y y
= (vk,T) ! -7 S — d — 7.5
I e e R ol

For high barriers or low temperatures (Ez — E » kzT) Eq. (5) reduces to

| (4nE\" E, — E  [(EY* — E¥?)? 06
= — €X .
T\l T E, P Ky T )

For anharmonic potential surfaces the problem becomes much more com-
plicated. The underlying deterministic equation (zero-temperature limit) may
have several locally stable state solutions corresponding to resonance of the
external force with higher harmonics and subharmonics of the potential well.
These give rise to the phenomenon of steps in the current—voltage charac-
teristics of the microwave-driven Josephson junction.'® For a strong external
driving force the deterministic motion becomes chaotic and it seems impossi-
ble to identify a slow dynamic variable for a convenient reduction of the
problem. [The simplicity of the solution, Egs. (7.3)~(7.5), stems from the fact
that in the low-friction limit the energy near steady state varies much more
slowly than the phase.] An analytical treatment is therefore possible only in
the weak oscillating force limit.>’

In many physical systems the situation becomes simpler due to the inherent
stochastic nature of the driving field itself. To see the possible significance of
this effect, consider a conventional CO,-laser pulse with 10-ns duration and
a bandwidth of 1 cm™! incident on a diatomic molecule characterized by an
environment-induced energy relaxation time of ~ 100 ns. The laster pulse is
obviously not uncertainty limited, and its width is associated with the random
fluctuations in its phase and/or amplitude. For simplicity we consider random
phase fluctuations, whence the external field is

F(t) = F,cos [coRt + jt dﬂqﬁ(t’)] (7.7)

with ¢ being a Gaussian random variable,

POy =0;  <plt1)dltz)> = 2T0(t: — 12) (7.8)

so that

(F(t;)F(ty)> = Fgexp(—T|t; — t,])cos[w(t; — t;)] (7.9
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I'!is the inverse correlation time and T’ may be shown to be an additive part
of the beam spectral width. For the present example 1, is thus 107! sc. This
is much shorter than the energy relaxation time, so that in this respect the
radiation field is similar to a thermal bath. In particular, phase coherence
necessary to generate deterministic chaos does not exist in this situation.

Another source of dephasing originates within the system itself and arises
from the presence of the random noise R(z). In this context we find it useful
to generalize R(z) to include multiplicative noise terms g(x)R(¢).°® In the
presence of such terms [and also for the case of purely additive noise, if the
potential V(x) is anharmonic] it is possible, in analogy to quantum statistical
mechanics, to distinguish between pure dephasing (T,) processes and dephasing
associated with energy relaxation (7;) processes. We will show that in the
presence of strong internal dephasing processes, reduction to a simple energy
Fokker—Planck equation is possible, and an expression for the low-friction
escape rate easily follows.

A. Phase-Diffusing Driving Field
The model is defined by

X=v

so Ldve 1 1
= T TS O RGO+ F) (7.10)

where R is a Gaussian random function satisfying (R> = 0 and
(R(t)R(t,)) = mkgTZ(t, — t,) (7.11)
and F is the external driving force which satisfies
CF(t)F(ty)) =mY(t, —t,) (7.12)

The co?relation functions Z(t) and Y(t) decay to zero on time scales 7, and 12,
respectively. We assume that the time scales characterizing the process satisfy

o« dln E\™? i
;i " (7.13)

Whe1.re w(E) is the frequency associated with the potential ¥(x) and with the
Particle’s mass m and energy E. Under these conditions we can use a reduction
Procedure identical to that described for the purely thermal case {Section V)
to derive a Smoluchowski equation for the energy. The result is>3

o(E)y' « 1,

f

Qi
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OP(E,t) & 0
+ i D (E)i(w(E)P(E t))] (7.14)
E | > BE ’ '
with
D, (E) = w(E)e(E) (7.15)
D,(E) = o(E)u(E) (7.16)
where
o(E) = 2m i n2|x, [22¢ (7.17)
W(E)=2m Y. n?|x, 2 (7.18)

The results, Egs. (7.14)—(7.16), are a generalization of the energy-diffusion
equation (5.48) obtained in the absence of the external phase-diffusing driving
force (D, = 0). Itis interesting to note that Eq. (7.14) may be written in the form

OP(E,t) 0 G
= |:D1 (E) (kB TeE) 5 + 1> w(E)P(E, r)] (7.19)

where the energy-dependent effective temperature is given by

LalB) =T+ kBDé(lI(EJ)E) (7.20)
The general steady-state solution (9P, /¢ = 0) of Eq. (7.19) is
P(B)= Lo [— F dE’[?(E’)}
o(E) .
- wfélzf) f OE dlff(;),) exp [— LE dE”l?(E”)] (7.21)

where

BE) = [kp Teee(E)] ™ (7.22)
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and where 4, and A4, are constants. One of them may be determined from

the normalization condition and the other is easily shown to be the steady-
state current

d
Jss = —Di(E) [ﬁ‘l(E)gE + 1}60(E)PSS(E) =4, (7.23)

The equilibrium solution (in the presence of the driving field) corresponds to
zero current,

P.(E)= wfé) exp [—j dE’B(E’)} (7.24)

In the very low friction limit the barrier energy E; may be considered to
be an absorbing boundary for the diffusion motion described by Eq. (7.19),
that is, P (Eg) = 0. This and Eq. (7.21) imply

A, = A, L " Ifl(é ,)) exp[ L dE”ﬁ(E”)} (7.25)

The rate is given by

_ jSS
k= _fg” dEP(E) (7.26)

which, using Eqs. (7.21)(7.26), results in

_ Ep ﬂ(E) . E , , -1
k_UO dEm[Peq(E)] L dE'P,(E )] (7.27)

The following observations can be made concerning these results.

1. When B(E) is replaced by (k;T) ™1, the result, Eq. (7.27), becomes identical
to the low-viscosity rate obtained in the purely thermal case (Section V).

2. The effect of the phase-diffusion driving force enters through the (gener-
ally energy-dependent) effective temperature T,;(E).

To see the significance of the effective temperature more explicitly, we may
consider the harmonic-oscillator case together with the simple choices

Z(t) = L gmih (7.28)

<

Qi
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Y(t) = F2e " cos(wgt) (7.29)

7, and 7 = I'"! are the thermal and the driving-force correlation times,
respectively. Equations (7.17) and (7.18) become

I
)= T (730)
wy =15 d (731)

2 T2+ (g — o)

[In the harmonic-oscillator case only the term n =1 appears and x;, =
(J2mw)? = 0 Y (E/2m)*”. In Bq. (7.31) we disregard a small term propor-
tional to T[I'? + (wg + @)*]171.]

From Eq. (7.20) we get

F? 1+ (o7)
BT + o= 2
2Ty 1 + [(wg — w)/T7]

kT =k (7.32)

We see that T goes through a maximum near the resonance condition
wg = o, where w is the oscillator frequency. The phase-diffusing driving force
results in thermallike kinctics with a renormalized temperature, which is
resonantly enhanced relative to the bare temperature.

B. External Oscillating Force in the Fast Thermal Dephasing Limit
The model is defined by [compare Egs. (5.62)—(5.64)]

% =v (7.33)
o= LI ) f de Z(t — D (x(D)o(2)
m  dx o
+ 1f (x@)R() — 1 Mcos(a}Rt) (7.34)
m m dx
(R =0;  (R(t)R(ty)) = mkgTZ(t; —t5) (7.35)
and it is assumed that
y = Jw At Z(t) « 171 « w(E) (7.36)

Here t, is the characteristic time of relaxation for Z (¢). In addition it is assumed
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that the external force is not too strong so that

du, (E)
dE

« 1 (7.37)

and that dephasing is fast. The last assumption is expressed by

du(E) T,
dE w

(7.38)

In Eqgs. (7.37) and (7.38) the u,(E) functions are defined as the coefficients of
the expansion (see Section V)

ux) =Y m,(E)e™ (7.39)

and I, is the pure dephasing rate given by

2

dG,
To(E) = mky Ty ’ a)(E)d—EO (7.40)

where G, is the n = 0 coefficient in the expansion of G(x) = [*dx' f(x’) in (E, ¢)
coordinates,

G =3 GiE)e™ (7.41)

H=—0

With these assumptions it is again possible to derive an energy diffusion
equation. The result is of the form of Eq. (7.19), but with different functions
B(E) and D(E),

D(E) = ¢(E)w(E) — n(E) (7.42)
_ L&E) — n(E)/ow(E)

B(E) = ﬁﬁ_x(E} + i) (7.43)

¢(E) = 2m 2 n2|G,|2Z¢ (7.44)
_ e T/ ke T

AE) = 2 ,;1 (nw — wg)? + n*T? (7.45)
g, Ldly 0T — (no — wg)?

n(E) = 2.5 |l dJ [n*13 + (nw — wg)?]? (7.46)
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The energy diffusion equation (7.19) leads again to the form of Eq. (7.27) for
the rate, with D(E) of Eq. (7.42) replacing D, (E). Again an energy-dependent
inverse temperature S(E) replaces (kz7)"'. For the special case of harmonic
oscillator with Z{t) = (y/t.)e "®, u(x) = ax, and f(x) = 1 + x/¢, a and being
parameters, Egs. (7.42)—(7.46) become>?

_ kg Ty
R (7.47)
n(E)=0 (7.48)
_ Ey 1 E 1 }
“B) =5 {1 B 2mel(B)E 1+ R2oEr] (7.49)
T, a’E/2mw?*(E)
ME) = 2k T [w(E) — wg]* + T2 (7:50
D(E) = e(E)w(E) (7.51)
_ MEN!
ME)—kBT<1+EG§> (7.52)

Again the effective temperature S(E) is resonantly enhanced when w(E) = wg.

The results obtained in the presence of dephasing, both in the external
driving field and in the system itself, stand in sharp contrast to those obtained
for a coherent radiation field [Eqgs. (7.3)—(7.6)]. There, in the harmonic limit,
the equilibrium distribution in the presence of the field [Eq. (7.3)] has a
maximum for E = E, and the resonant behavior enters through the resonant
nature of E [Eq. (7.4)]. In the present case the driving field enters through the
effective temperature. Physically the difference between the two situations
arises from the fact that in the former one the deterministic (T — 0) system
has a well-defined phase relative to the radiation field, while here, because of
the field’s phase diffusion, this coherence is lost and the field operates in this
respect as a temperature source. Remarkably, this effective-temperature source
still maintains its resonance properties. The difference between the three
models is shown in the Markovian limit (z, = 0) by the results displayeq in
Fig. 5. It is seen that the effects of external driving on the energy distribution
function lead to qualitatively different results for the different cases. As seen
in Fig. 5, in the absence of dephasing an external periodic force leads to a pea}<
at finite energy in P, (E), while in the presence of strong dephasing this
peak is absent and the enhancement is best associated with a (generally
E-dependent) effective temperature.

Figure 6 shows, for a Morse potential [V(x) = Eg(e™>¥* — 2¢7*#)] in the
Markovian limit the resonant nature of the low-friction escape rate for the
model of Egs. (7.33)—(7.35). The strong asymmetry in the resonant behavior

o 2 ) i ot
2060 80
E/kgT

Figure 5. P, (E) versus E/kyT for harmonic well potential. coherent external field
[Eq. (7.3)]; ——phase-diffusing external field [ Eq. (7.24) ]; ——— coherent external field with intrinsic
dephasing [Eq. (7.24) with Eq. (7.43)]; ----- distribution obtained in absence of driving field.
Parameters used in calculation are a/, /kzTm?* = 0.03; y = 0.01; T = Ty = 0.025; Eg/ky T = 8.0;
® = wg, 7. = 0. (From Carmeli and Nitzan.*?)

1.0

In(k/kg)
o
w

0.0

wR/wo

Figure 6. In(k/ko) versus wg/w, for Morse potential with multiplicative random noise (intrinsic
dephasing). Parameters for solid line are au/ky T = 0.45; Ep/k,T = 8.0; &/a = 0.42; y = 0.0225.
(From Carmeli and Nitzan.®3)
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of the field-enhanced rate and the red shift of the peak from the bottom
frequency w, result from the unharmonicity of the potential well, namely, the
existence of lower frequencies associated with higher energy states in the well.
Asymmetry and shift are well known in multiphoton dissociation of large
molecules and were recently observed in the microwave-induced transition
from the zero-voltage state to the nonzero-voltage state of an underdamped
current biased Josephson junction.!®

VIII. NUMERICAL RESULTS AND APPLICATIONS

One of the important recent developments in generalizing the Kramers theory
of escape processes was the solution of the model equations of motion in the
entire friction regime. Such a solution is given by Eq. (6.55) for a single well®®
or by Eq. (6.64) for a double well model.*® These results were obtained using
some approximations as described in Section VI. In order to check the quality
of these approximate analytical solutions, Carmeli and Nitzan®® have carried
numerical simulations for a single degree of freedom based on the geralized
Langevin equation, Egs. (5.1) and (5.2). The potential used in these calculations
is

V(x) = D[e” ™19 — ¢=GMT2 8.1)

with a/b = 20.0 (so that E; = 0.658D and w,/wg = 5.236). The memory kernel
is give by Eq. (5.5). For these parameters the matching energy E,, obtained
from the numerical solution of the one-dimensional analog of Eq. (6.41),%° is
shown in Fig. 7. The transmission coefficient k/krsr as a function of y/w, is
shown in Fig. 8, together with simulation results for w7, = 0 and w7, = 4.
The agreement between the approximate analytical results and the simulations
is very good.*

Several other authors®°~%* have recently obtained solutions of the Kramers
problem extended to larger friction regimes than in the original Kramers
work. Matkowsky et al.®® calculate the escape rate as the inverse of the sum
of two times: the mean first passage time to reach the barrier energy E; and
the mean first passage time to reach from Ej to the separatrix, which separates
the well region and the unstable escape region in phase space. Their result,
obtained for a symmetric double well in the Markov limit, is, with mass m = 1

* Recent simulations by Straub et al.’8 show that the non-Markovian theory of Section V
may break down for very large friction and very large correlation times 7. of the thermal bath.
This failure is due to the fact that in such extreme (and unphysical) limits of the parameters, the
well motion may become again the rate-limiting step in the process, in contrast to the theoretical

assumption.® 9

E,/Eg

0'0—3 -2 =1 0 |

LOG(y/wy)

Figure 7. E,/E versus log; (y/w,) for one-dimensional model [Eq. (8.1)] in Markovian (w,7, =
0) and non-Markovian (wg7, = 10) limits. Ep = 10kyT; ———Eg = 4kyT. (From
Carmeli and Nitzan.3%)

i
-3 -2 - 0
LOG(y/wg)

Figure 8. k/krsy as a function of y for particle moving in potential (8.1) with Ep = 4kgT.
weTe = 0 ———WoT, = 2 ——woT, = 4; -+ Wy, = 10. Circles with error bars are results of
numerical simulation based on Langevin equation [Egs. (5.1) and (5.2) with Eq. (5.6)]. ®, @yt = 0;
0, wyt, = 4. (From Carmeli and Nitzan.??)
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1
= — 8-2
T, + 21, ®.2)
where t, is the inverse of Eq. (2.41) and where
2n w
T, 2 efPy (8.3a)

" 0, (G0f + )P~y

vp(x) ( dy )
= erf dx 8.3b
1 isEH 2nJp 2kg T (8.35)

In Eq. (8.3b) vy(x) is the closed velocity versus position curve for E = Eg,
Jg = (1/2m) § vg(x) dx is the action for E = Ep, erf is the error function, and d
is the distance between the curve E(x,v) = Ey and the separatrix.

The solution of Buttiker et al.%% (see also Hanggi and Weiss®*) connects
between the low-friction limit, Eq. (2.41), and the transition state behavior,
Eq. (2.25). This solution is obtained by disposing the low-friction assumption
that the escape occurs once Ej is reached, and allowing for such trajectories
to escape in finite time or to return to E < Ejp.

These three solutions, together with the Kramers limiting solutions, are
shown in Fig. 9 (taken from Matkowsky et al.®®). The close agreement between
the result of Carmeli and Nitzan?3 and that of Matkowski et al.®® is strong
evidence for the validity of both.

kMST

kBHL

k/krsy

¢] J
2
0 y
Figure 9. Comparison between Kramers low (k) and intermediate-to-large (k,) friction rates and

results of Carmeli and Nitzan (key), Matkowsky et al. (kysr), and Buttiker et al. (kg ) for potential
V(x) = x*(x? — 16x/5 + 6). BE; = 2. (From Matkowsky et al.5%)
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The Kramers theory and its extensions have found many applications since
the original work by Kramers. Recent application of the non-Markovian
theory in the low-friction limit to thermal desorption was described by Nitzan
and Carmeli.®® Another novel application of the Markovian theory is to
transition from a nonequilibrium state of a Josephson junction.®”-3¢ In what
follows we shall briefly review the recent application of the generalized
Kramers theory to chemical rate processes. More detailed reviews of the
experimental and theoretical status of this field may be found in Hynes.*:*

Interest in unimolecular reactions in condensed phases has been increasing
over the last decade. Of particular relevance to the present review are meaure-
ments of the rate as a function of the strength of the reactant molecule—solvent
interaction (as expressed, for example, by solvent viscosity).> 1468775 Time-
resolved spectroscopy has been utilized to study photochemical isomerization
of trans-stilbene,'*%® diphenyl butadiene,®%° DODCI,’® binaphthyl,”*72
and triphenyl methane’? in various solvents. High-pressure nuclear magnetic
resonance technique has been used to study solvent effects on the rate of ring
inversion in cyclohexane’* and difluorocyclohexane.”s In another important
development the isomerization of t-stilbene and of DPB has been studied also
in supersonic jet expansions,’®~®! thus making it possible to directly compare
chemical dynamics in solution and in isolated condition. Combining these
results with high-pressure gas-phase kinetic data, it has now become possible
to study the activated chemical rate process throughout all the relevant
friction (or other measure of the molecule—environment coupling) range, from
the isolated (beam) condition through the low-pressure gas phase to the
high-pressure gas phase and to the liquid phase up to pressures of several
kilobar. Such studies have now been completed for the t-stilbene isomeriza-
tion,'® * and somewhat less complete results are available also for DPB.*>!
Hochstrasser and coworkers®? have recently carried out such measurements
(for t-stilbene) in ethane above its critical temperature, thus maintaining the
solvent as a uniform fluid throughout the relevant viscosity range. A different
but related experiment is the photo dissociation and atom recombination in
the reaction Br, = 2 Br, carried out by Troe and coworkers!? in different inert
gases in the pressure range of 1-7000 bar.

In addition to yielding a large body of data about the systems studied, these
experiments have raised several issues of interest from the standpoint of
general theory. '

1. The viscosity n dependence of the rate k in some of the studied systems
(stilbene in alkanes,®® DPB in alkanes,®® and DODCI in alcohols’?) is weaker
(that is, k ~ 7% 0 <« < 1) than predicted by the Kramers theory in the
Smoluchowski limit. In others (stiff stilbene in alkanes,®® stilbene in alcohols,??
and DPB in alcohols®*) the “usual” #~! dependence was observed. These
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observations were interpreted®® 79-48-3% 44 arising from the non-Markovian
nature of the molecule—solvent coupling in systems involving high curvature
barriers using the barrier-controlied dynamics described in Section V. While
this interpretation is plausible, it has to be kept in mind that solvent effects
on the potential surface associated with the reaction coordinate may also give
rise to deviations from the Kramers behavior.'# 8586

2. For some unimolecular reactions involving large molecules in super-
sonic beams, the microcanonical RRKM theory appears to overestimate
{by about one order of magnitude) the rate. This has been reported for
t-stilbene”®”87 and for A-(CH,);-¢ where A is anthracene and ¢ is N, N-
dimethylaniline.®® This obviously cannot be a conclusive statement since there
are many unknown parameters in the calculation. Obviously the RRKM rate
can be made smaller by postulating transition state frequencies larger than
the corresponding frequencies near the bottom of the reactant well. (In some
studies”°% 87-88 the two sets of frequencies were taken equal.) This has recently
been demonstrated by Troe and coworkers for both ¢-stilbene®® and PDB.?°
Alternatively simple modifications of the RRKM theory can be invoked to
explain the discrepancy. If fast intramolecular vibrational energy redistribu-
tion occurs only within subspaces of the full phase space, while those subspaces
are only weakly connected, the rate can be either larger or smaller than that
predicted by the RRKM theory, depending on whether or not the reaction
coordinate and the pumped mode belong to the same subspace. This issue
stresses the significance of the set of strongly coupled modes and the sensitivity
of the result to the number of these modes and to whether the reaction
coordinate is a part of this set, as discussed in Section VL

More significant for our discussion is the observation, for ¢-stilbene, that
in low-viscosity solvents the isomerization rate is larger by about one order
of magnitude than that predicted from infinite pressure extrapolation of the
observed beam rates, or that observed in low-pressure host gas environ-
ments.!%11:794.89 (Although there are data in support of the existence of a
similar phenomenon in PDB, a recent analysis by Troe, Amirav, and Jortner®®
has led these authors to conclude that this is not the case.) The interpretation
of this observation is still an open question: Syage, Felker, and Zewail”®* have
suggested that the difference arises from nonadiabatic effects which are more
pronounced in the gas phase because of the large velocity along the reaction
coordinate.”! Courtney and Fleming'® suggest that in the gas phase energy
transfer still controls, at least partly, the rate, while in the liquid energy
relaxation is fast and the rate achieved (for low-viscosity solvents) its maximal
TST value. Troe and coworkers!# 8589 suggest that the difference has no
dynamic origin and reflects the solvent influence on the potential energy
surface.
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3. The crossover from energy controlled dynamics to diffusion controlled
dynamics and the range of validity of the statistical approach (TST) have been
the focus of several recent studies. In Section VI we have seen that this
phenomenon is very sensitive to molecular size, more specifically to the
number of strongly coupled modes. A turnover region is always expected to
exist. Obviously the thermal unimolecular rate vanishes in the zero-pressure
limit and is a decreasing function of solvent viscosity in liquid solutions.
Although there have been some reports of experimental observation of energy
controlled dynamics and of the turnover in solutions,”’2”7# other experi-
ments*?~14-82 indicate that for large molecules the turnover region may be in
the intermediate-pressure gas phase. Schroeder and Troe®> have suggested
that some of the apparent observations of turnover in solutions may be due
to pressure dependence of the potential surface, in particular the threshold
energy (barrier height). A similar suggestion was recently made by Hicks et
al.®2 for reactions involving substantial charge redistribution. For such reac-
tions the barrier height strongly depends on solvent polarity, which in turn is
affected by the same factors (temperature, pressure, composition) that affect
the viscosity.

Zawadzki and Hynes®?® have very recently carried out a series of calcula-
tions based on the model of Egs. (4.1) and (4.2) and in particular the result of
Eq. (6.64)* in order to estimate the solvent interaction effect on several
unimolecular reactions. In these calculations the possibility of solvent shift of
the barrier energy is disregarded. The friction kernel is taken in the form

Z(t) = Z(0)e @ 4 A tre ™ (8.4)

This form is adopted from the molecular dynamics computer results of
Levesque and Verlet.2% 24 The first term in Eq. (8.4) is the short-time colli-
sional contribution characterized by the collisional time 7., while the second
term originates from long-range many-body interactions and is characterized
by the hydrodynamic time 7,. From the discussion of Section VI it follows
that in highly non-Markovian situations (such as large wy in barrier domi-
nated processes) the collisional term in Eq. (8.4) makes the dominant contribu-
tion. (This observation is very significant for the analysis of the viscosity
dependence of the rate.?*-°3) Within this model and using available informa-

* The expression used by Zawadski and Hynes (ZH) is in fact not identical to Eq. (6.64). First
ZH use the symmetric well result [¢, = 1 in Eq. (6.64)]. More important is the fact that in the
ZH calculation the times 7 in Eq. (6.64) are the mean times to reach E from the left or right wells,
while the calculation of Section VI shows that © should be taken as the mean times to reach
Eg + (n — 1)”. This difference makes no change in the formal form of the theory, but presumably
the parameter estimates made by ZH will be somewhat different if our result was used.
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tion on molecular potential surfaces and normal modes, these authors esti-
mated the turnover in the rate versus friction dependence to be at liquid
densities for butane isomerization in Ar or CCl,. This is due to the small
number (2) of strongly coupled degrees of freedom estimated for this reaction.
For stilbene in Ar methane or ethane the calculation predicts the turnover to
be in the high-pressure gas phase, in accord with a recent estimate by Nitzan*?
and in agreement with the experimental results mentioned above. For cy-
clohexane inversion the calculation places the turnover in the gas phase in
contrast to the experimental estimates of Hasha et al.”* The latter result is
based on the assumption that kg is independent of pressure.?*

Although these calculations represent the best that we can do at present in
applying the generalized Kramers theory to chemical rate processes, we
should keep in mind that in view of the uncertainty about some key parameters
(such as the number of strongly coupled degrees of freedom, the dependence
of the activation energy and the activation volume on the molecule—solvent
interaction and the possible role played by nonadiabatic (curve crossing)
effects in the unimolecular isomerization process) these estimates should be
considered as only intelligent guesses about the behavior of the corresponding
systems. Obviously we are only at the beginning of a long road in our quest
to understand chemical reaction in solutions. More experimental work and
more detailed theoretical calculations are needed to sort out and to distinguish
between the different effects of solvent interactions on chemical reaction rates.
In particular we would like, by controlied experiments or by a combination
of theory and experiment, to separate the dynamic (friction) solvent effects
from static solvent renormalization of the molecular potential surface. Also a
greater and better understanding of the possible role played by nonadiabatic
effects in condensed phase reactions is needed. Finally, more experimental and
theoretical work is needed to sort out the effect of molecular size. In these
efforts, the formalism of the generalized Kramers theory has played so far and
is expected to continue to play a central role.

APPENDIX A. EVALUATION OF THE REACTIVE
MODE WELL DISTRIBUTION

Inserting Eqs. (6.31) and (6.19) into Eq. (6.18) leads to

—BE

- Al

PW(E) T (B0, I(E) (A1)
© Er BE’

I(E) = L dETp,,_l(ET—E)e‘”(ET‘E’[AI + A, L dE'B‘E} (A.2)
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Note that at equilibrium where A4, =0 and A, =1, I(E) becomes
{ dE'p,_(E'|E)e”"*Q,_,(E). (Here the dependence of p,_; on the reactive
mode energy E was written explicitly.) Thus,

PM(E) = _th(gg oI (A3)

To simplify I(E), define E, — E = ¢,

Eir

] BE’
I(E) = J dap,,_l(.s|E)e—ﬂf[A1 + A, j dE’%} (A4)

0 E+e

and notice that the term p,_, (¢| E)e #¢is strongly peaked at some ¢ (= ) while
the remaining term in the integrand is constant at equilibrium and mono-
tonically decreasing with increasing ¢. Therefore

Eyr , ePE
I(E) ~ 0,y (E) I:Al + 4, '[ RLe: (E/)] (A5)

E+e

Equations (A.1) and (A.5) lead, after changing variables (E' — E’ + & and
E,r— E, + %), to Eq. (3.40). & is approximated by

{3 deep,-,(e)e " _n—1
(8 dep,_1()e™™ B

(A.6)

T~

where the second equality holds for high T.
APPENDIX B. EVALUATION OF z [EQS. (6.51)]

For deep enough wells 7, [Eq. (6.45)] is independent of E,, and the latter
may be replaced by zero. An upper limit on 7, is

o<p | a7 appEe (B.1)
. Co@ ), |

This is actually a good approximation to t, because e’*'/D(E’) is strongly
peaked near the upper limit E.*

* This is true provided that D(E) increases with E much more slowly than e?%. D(E) depends
on E like p,(E). Using the semiclassical expression p,(E) = (E/hw)"~*/hw(n — 1)! we see that for
large enough E this is indeed the case.
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Using Egs. (B.1) and (6.51b) we get

ir oPE. [E: e
T, + 1, < dE’ dE'p,(E)e PE B.2
il 2 ﬁ J\O D(E/) J\o p( ) ( )

where again the equality is a good approximation for deep wells.
Consider now 75 [Eq. (6.51¢)],

0 ’ ’ B(E"” +¥)
— —BE ,pn I(E E |E) // e B
14 ﬁL. dEe L I d e (B.3)

Integration by parts yields

9] E; e/}(E’+E) E’ P (E = E"|E")
o dEe‘/’EJ dE’——#J dprftZ T 21 gy
=k, . EoE e, hon®E) Y

Replacing E’ in the upper limit of the E” integration by E and using
(8dE"p,—,(E — E"|E")/hog(E") = p,(E) leads to an upper bound on 13,

r oo

13< B | dEe *Ep,(E) J dE’

JE;

B(E'+E)
D(E' + %)
("0 1T oPE’
—p | dEetEnm) j ) gudil
JE; € D(E)

n ]
Eyr ePE

<p dE'

0 e dE e PEp (E) (B.5)

For large BE, the equality in Eq. (B.5) is a good approximation to 3.
Equations (B.2) and (B.5) now yield

BE'

Eir : e
’SBQ"L E D)

which is Eq. (6.52).
Acknowledgment

This research was supported by the Commission for Basic Research of the Israel Academy
of Science and by the U.S.—Israel Binational Science Foundation. I thank Dr. B. Carmeli for
many helpful discussions.

—

ACTIVATED RATE PROCESSES IN CONDENSED PHASES 553

References

H. A. Kramers, Physica (Utrecht) 7, 284 (1940).

2. For reviews, see (a) T. Fonseca, J. A. N. P. Gomes, P. Grigolini, and F. Marchesoni, Adv.

16.

17

18.
19.
20.
21
22,
23.
24.
25.

Chem. Phys. 62, 389 (1985); (b) P. Hanggi, J. Stat. Phys. 42, 105 (1986).

. For recent reviews of theories of chemical reactions in condensed phases, see J. T. Hynes, in

M. Baer (Ed.), The Theory of Chemical Reactions Dynamics, Chemical Rubber, Boca Raton,
FL, 1986.
J. T. Hynes, Ann. Rev. Phys. Chem. 36, 573 (1985).

. (a) See, e.g., C. Caroli, R. Roulett, and D. Sant-James, Phys. Rev. B 18, 545 (1978); (b) for a

review, see W. Dietrich, F. Fulde, and I. Peschel, Adv. Phys. 29, 527 (1980); (c) G. Wahnstrom,
Surf. Sci. 159, 311 (1985); (d) E. Ben Jacob, D. J. Bergman, B. J. Matkowsky, and Z. Schuss,
Phys. Rev. A 26, 2805 (1982).

. (@) M. V. Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906); 48, 1103 (1915); Phys. Z. 17,

557, 585 (1917); (b) P. L. Bhatnager, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954); (c)
G. T. Evans, J. Chem. Phys. 65, 3030 (1976); (d) Z. L. Skinner and P. G. Wolines, Physica A
96, 561 (1979).

. (a) H. Risken, The Fokker Planck Equation, Springer Ser. in Synergeties 18, Springer, New

York, 1984; (b) P. Hanggi and H. Thomas, Phys. Rep. 88C, 207 (1982).

. (a) G. H. Weiss, Adv. Chem. Phys. 13, 1 (1966); (b) A. Szabo, K. Schulten, and Z. Schulten, J.

Chem. Phys. 72, 4350 (1980); (c) Z. Schuss, Theory and Applications of Stochastic Differential
Equations, Wiley, New York, 1980.

. S. H. Courtney and G. R. Fleming, Chem. Phys. Lett. 103, 443 (1984).
. S. H. Courtney and G. R. Fleming, J. Chem. Phys. 83, 215 (1985).
. S. H. Courtney, G. R. Fleming, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 80, 4559

(1985).

. M. Lee, G. R. Holtom, and R. M. Hochstrasser, Chem. Phys. Lett. 118, 359 (1985).
. H. Hippler, V. Schubert, and J. Troe, J. Chem. Phys. 81, 3931 (1984).
. (a) G. Manake, J. Schroeder, J. Troe, and F. Voss, Ber. Bunsenges. Phys. Chem. 89, 896 (1985);

(b) J. Troe, J. Phys. Chem. 90, 357 (1986).

. For reviews on multiphoton excitation and dissociation of molecules, see (a) V. S. Leokhov

and C. B. Moore, in C. B. Moore (Ed.), Chemical and Biochemical Applications of Lasers, vol.
3, Academic, New York, 1978; (b) V. S. Letokhov and R. V. Ambartzumian, ibid.

(@) J. P. Cowin, D. J. Auerbach, C. Becker, and L. Wharton, Surf. Sci. 78, 545 (1978); (b)
G. Wedler and H. Ruhmann, ibid. 121, 464 (1982); (c) D. Burgess, Jr., R. Wiswanathan,
L. Hussla, P. C. Stair, and E. Weitz, J. Chem. Phys. 79, 5200 (1983); (d) T. J. Chung and
I. Hussla, in B. Pullman, J. Jortner, A. Nitzan, and B. Gerber (Eds.), Dynamics on Surfaces,
Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol. 17, Reidel, Dordrecht, 1984;
(e) J. Heidberg, H. Stein, Z. Szilagyi, D. Hoye, and H. Weiss, in (d).

E. Ben Jacob, D. Bergman, B. Carmeli, and A. Nitzan, Proc. 6th Internat. Conf. on Noise in
Physical Systems (Washington, DC, 1981, unpublished).

E. Ben Jacob and D. Bergman, Phys. Rev. A 29, 2021 (1984).

M. H. Devoret, J. M. Martins, D. Esteve, and J. Clarke, Phys. Rev. Lett. 53, 1260 (1984).

R. F. Grote and J. T. Hynes, J. Chem. Phys. 74, 4465; 75, 2191 (1981).

G. van der Zwan and J. T. Hynes, J. Chem. Phys. 77, 1295 (1982).

N. H. Gottfried, A. Seilmeier, and W. Keiser, Chem. Phys. Lett. 11, 326 (1984).

R. F. Grote, G. van der Zwan, and J. T. Hynes, J. Phys. Chem. 88, 4676 (1984).

D. Levesque and L. Verlet, Phys. Rev. A 2, 2514 (1970).

J. T. Hynes, Chem. Phys. Lett. 79, 344 (1981).




554 ABRAHAM NITZAN

26.

217
28.
29.
30.

31,

32.
33.
34.
35
36.
37
38.

39.
40.
41.

42.

43.

46.

47.
48.
49.
50.
51
52.
53
54.
55.

56.

57.
58.
59.
60.
61.
62.
63.

(a) D. Bohm and E. P. Gross, Phys. Rev. 75, 1864 (1949); (b) P. L. Bhatnager, E.. P Gro'ss,
and M. Krook, ibid. 94, 511 (1954); (c) for applications of the BGK model for chemical barr{er
crossing, see M. Berkovec and B. J. Berne, J. Chem. Phys. 82, 794 (1985) and references therein.
R. O. Rosenberg, B. J. Berne, and D. Chandler, Chem. Phys. Lett. 75, 162 (1980).

M. W. Balk and G. R. Fleming, J. Phys. Chem. 90, 3975 (1986).

R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980); 74, 4465 (1981).

(a) P. Hanggi and F. Mojtabai, Phys. Rev. A 26, 1168 (1982); (b) P. Hanggi, J. Stat. Phys. 30,
401 (1983). - .

(a) B. Carmeli and A. Nitzan, J. Chem. Phys. 79, 393 (1983); (b) B. Carmeli and A. Nitzan,
Phys. Rev. Lett. 49, 423 (1982).

R. F. Grote and J. T. Hynes, J. Chem. Phys. 77, 3736 (1982).

M. M. Dygas, B. J. Matkowsky, and Z. Schuss, SIAM J. Appl. Math. 46, 265 (1986).

S. A. Adelman, J. Chem. Phys. 64, 124 (1976).

B. Carmeli and A. Nitzan, Phys. Rev. A 29, 1481 (1984).

M. Lax, Rev. Mod. Phys. 38, 541 (1966).

B. Carmeli and A. Nitzan, Chem. Phys. Lett. 102, 517 (1983). y

N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North Holland, Amster-
dam, 1981, p. 245.

H. Mori, Prog. Theor. Phys. 49, 764 (1972); 51, 109 (1974).

D. N. Zubarev and V. G. Morozov, Physica 120A, 411 (1983). .
(a) H. Grabert, P. Talkner, and P. Hanggi, Z. Phys. B26, 389 (1977); (b) H. Grabert, P. Hanggi,
and P. Talkner, J. Stat. Phys. 22, 427 (1980).

A. Nitzan, J. Chem. Phys. 86, 2734 (1987).

G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

. R. Landauer and J. A. Swanson, Phys. Rev. 121, 1668 (1961).
45.

J. S. Langer, Phys. Rev. Lett. 21, 973 (1968); Ann. Phys. 54, 258 (1969).
(a) A. G. Zawadzki and J. T. Hynes, Chem. Phys. Lett. 113, 476 (1985); (b) M. Borkovec and
B. J. Berne, J. Chem. Phys. 82, 794 (1985).

Warshel, J. Chem. Phys. 62, 214 (1975).

B. Carmeli and A. Nitzan, J. Chem. Phys. 80, 3596 (1984).

B. Bagchi and D. W. Oxtoby, J. Chem. Phys. 78, 2735 (1983).

M. Bokovec, J. E. Straub, and B. J. Berne, J. Chem. Phys. 85, 146 (1986).

B. Carmeli and A. Nitzan, Chem. Phys. Lett. 106, 329 (1984).

T. Fonseca,J. A. N. F. Gomes, P. Grigolini, and F. Marchesoni, J. Chem. Phys. 79,3320 (1983).
B. Carmeli and A. Nitzan, Phys. Rev. A 32, 2439 (1985).

V. N. Sazonov and 8. V. Zatsepin, Chem. Phys. 52, 305 (1980).

(a) S. Faetti, P. Grigolini, and F. Marchesoni, Z. Phys. B 47, 353 (1982); Phys. Rev. A 32, 1150
1985).

Ea) L.) Fronzoni, P. Grigolini, R. Mannella, and B. Zambon “The Linear .Response Qf a
Nonlinear Stochastic Oscillator,” to be published: (b) T. Fonseca, L. Fronzoni, and P. G.rlgo-
lini, “Transition from Coherent to Incoherent State Induced by Unharmonic Interaction,”
to be published.

J. Lin, Phys. Lett. 70A, 195 (1979).

J. E. Straub, M. Borkovec, and B. J. Berne, J. Chem. Phys. 83, 3172 (1985).

S. Oknyama and D. W. Oxtoby, to be published.

B. J. Matkowsky, Z. Schuss, and C. Tier, J. Stat. Phys. 35, 443 (1984).

V. I. Melnikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 (1986).

. Rips and J. Jortner, to be published. }

Zz) llt/}l.)Buttiker, ENP; Harn's,I:md R. Landauer, Phys. Rev. B 28, 1268 (1983); (b) M. Butliker
and R. Landauer, Phys. Rev. Lett. 52, 1250 (1984).

|

64.
65.

66.
67.
68.
69.
70.
71
72.

73.
74.
75
76.

77.
78.
79.

80.
81.
82.
83.
84.
85,
86.
87.
88.
89.
90.
91.
92!
93.

ACTIVATED RATE PROCESSES IN CONDENSED PHASES 555

P. Hanggi and U. Weiss, Phys. Rev. A 29, 2265 (1984).

Earlier works in these direction are (a) J. L. Skinner and P. G. Wolynes, J. Chem. Phys. 69,
2143 (1978); 72, 4913 (1980); (b) D. K. Garrity and J. L. Skinner, Chem. Phys. Lett. 95, 46
(1983); (c) P. B. Visscher, Phys. Rev. B 13, 3273 (1976); 14, 347 (1976); (d) R. S. Larson and
M. D. Kostin, J. Chem. Phys. 72, 1392 (1980); (e) H. Risken, H. D. Vollmer, and H. Denk,
Phys. Lett. A8, 22 (1980); (f) B. J. Matkowsky, Z. Schuss, and E. Ben-Jacob, SIAM J. Appl.
Math. 42, 835 (1982).

A. Nitzan and B. Carmeli, Israel J. Chem. 22, 360 (1982).

D. J. Bergman, E. Ben Jacob, and Z. Schuss, Ph ys. Rev. B 25, 519 (1982).

G. Rothenberger, D. K. Negus, and R. M. Hochstrasser, J. Chem. Phys. 79, 5360 (1983).

S. P. Velsko and G. R. Fleming, J. Chem. Phys. 76, 3553 (1982).

S. P. Velsko, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 249 (1983).

C. V. Shank, E. P. Ippen, O. Teschke, and K. B. Eisenthal, J. Chem. Phys. 67, 5547 (1977).
D. Millar and K. B. Eisenthal, J. Chem. Phys. 83, 5076 (1985).

V. Sundstrom and T. Gillbro, J. Chem. Phys. 81, 3463 (1984).

D. Hasha, T. Eguchi, and J. Jonas, J. Am. Chem. Soc. 104, 2290 (1982).

J. Ashscraft, M. Besnard, V. Aquado, and J. J onas, Chem. Phys. Lett. 110, 420 (1984).

J. A. Syage, W. R. Lambert, P. M. Felker, A. H. Zewail, and R. M. Hochstrasser, Chem. Phys.
Lett. 88, 266 (1982).

T. J. Majors, U. Even, and J. Jortner, J. Chem. Phys. 81, 2330 (1984).

T. J. Shepanski, B. W. Keelan, and A. H. Zewail, Chem. Phys. Lett. 103, 9 (1983).

(a) J. A. Syage, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81, 4685 (1984); (b) ibid. 81,
4706 (1984). ;

L. A. Heimbrook, B. E. Kohler, and T. A. Spiglanin, Proc. Nat. Acad. Sci. US. 80, 4580 (1983).
A. Amirav and J. Jortner, Chem. Phys. Lett. 95, 295 (1983).

M. Lee, G. R. Holton, and R. M. Hochstrasser, Chem. Phys. Lett. 118, 359 (1985).

V. Sundstrom and T. Billbro, Chem. Phys. Lett. 109, 538 (1984).

K. M. Keery and G. R. Fleming, Chem. Phys. Lett. 93, 322 (1982).

J. Schroeder and J. Troe, Chem. Phys. Lett. 116, 453 (1985).

E. Akesson, V. Sundstrom, and T. Gillbro, Chem. Phys. Lett. 121, 513 (1985).

L. R. Khundkar, R. A. Marcus, and A. H. Zewail, J. Phys. Chem. 87, 2473 (1983).

J. A. Syage, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81, 2233 (1984).

J. Troe, Chem. Phys. Lett. 114, 241 (1985).

J. Troe, A. Amirav, and J. Jortner, Chem. Ph ys. Lett. 115, 245 (1985).

H. Frauenfelder and P. G. Wolynes, Science 229, 337 (1985).

J. Hicks, M. Vandersall, Z. Babarogic, and K. B. Eizenthal, Chem. Phys. Lett. 116, 18 (1985).
A. G. Zawadzki and J. T. Hynes, “Vibrational Energy Transfer and Isomerization is Solu-
tions,” to be published; “Isomerization Reaction Rates in Gases and Liquids,” to be
published.




	scan0045.pdf
	scan0046.pdf
	scan0047.pdf



