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changing dielectric function is also derived.

INTRODUCTION

Optical properties of adsorbed molecules such as absorption
line shapes, emission lifetimes and yields, and light-scatter-
ing cross sections are known to be strongly affected by the

" behavior of the local electromagnetic field near the surface.
Evaluating the optical response of such molecules requires
the ability to calculate the behavior of the electromagnetic
field at such strongly inhomogeneous structures. The latter
is a fundamental problem of electromagnetic theary that lies
at the heart of many important physical phenomena (e.g.,
image potentials and solution energies).

Analytical solutions to this problem have been obtained
for only very simple geometries characterized by high sym-
metry. Examples are the Fresnel equations of light reflec-
tion and transmission at a plane surface and the Mie theory
of light scattering by a dielectric sphere and its extension to
spheroids. For inhomogeneous media with less regular
structure, solution of the problem requires large-scale nu-
merical computations.

In this paper we describe two path-integral approaches to
this problem. For the propagator of the Maxwell equations
in an inhomogeneous medium we derive an exact path-
integral representation, and we show that its ¢ — = (c being
the light velocity) limit corresponds to ray optics (Fermat
principle). For electrostatic problems described by the
Poisson equation we derive an exact path-integral represen-
tation of the corresponding Green’s function. We show that
the image potential of a charge near a dielectric surface and
the related problem of the lifetime of an excited molecule
hear such a surface may be represented and solved with this
formalism.

PATH-INTEGRAL FORMULATION OF THE
MAXWELL EQUATIONS

We consider the Maxwell equations for a source-free
medium:
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Pl v X H, (1)
1B _uxE, (2)
c dt
v-D=0, (3)
V.B=0. (4)
We assume that the medium is linear and nondispersive; i.e.,
D=¢.E, (5)
B=yu-H, (6)

where ¢ and x are the dielectric permittivity and the magnet-
ic permeability dyadics, respectively. They are taken to be
time-independent functions of space.

We start by transforming Eqgs. (1)-(4) into a form similar
to that of the Schradinger equation. To this end we define
the six-dimensional vector

B = (8x) /2R 12 [Iﬂ (7)

where 7 is the six-dimensional matrix

PR
9 = - 8
weli Y] o

We also introduce a set of three dimensional matrices £ .
Ly, Ly

[0 o 0]

L.=]10 0 -1 (9a)
[0 1 oJ
0 0 1]

L= 0 0 o0f {9b)
-1 0 0]
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0 -1 0
L, =11 o 0] {9c)
0 0 0
These matrices satisfy the commutation rules
(L. L0= L, (10a)
£,.L)=4L, (10b)
(L, L] =L, {10¢)
By denoting (L., £,, £.,) by L, it is also easy to show that
L2=-12], (11)
A-LB=AXB-L, (12)
and
A-L,B-LI=AXB-L. {13)

On the left-hand side of Eq. (12), B should be taken as a
three-component column vector. With these definitions it
is easy to show that Egs. (1) and (2) may be cast into the form

198
c ot

0 LV
@=[_£.V . ] (15)

Note that a solution to Egs. (1) and (2) will automatically
satisfy Eqs. (3) and (4), provided that the initial conditions
are taken to satisfy Eqs. (3) and (4). By choosing #(0)
accordingly, a complete solution to Eqs. (1)-(4) may be for-
mally written in the form

la(t)y = U(e)l6(0)}, (16)

— ﬁ—l!i@j{AUZQ, (14)

where

where the time-evolution operator is
Uit) = explcR™2QR™V2). (17)

In Eq. (16) we have used a Dirac notation for 8. In this
notation the value of # at the space—time point r, ¢ is #(r, t) =
(ri8(¢)). It is convenient to introduce, in addition to r,
another variable ¥ to dencte the six components (o = 1,
2,...,6) of 8 in the same way that r denotes any one of the
continuum of components #(r, t). With this in mind we
introduce a set of basis vectors

(1] 0] 0]
0 1 0
0 0 0
x1= 0 1 XQ_ O y ) XE;: O H (18)
O 0 0

s0 that {x.8) = 0, (@ =1, 2,..., 6). More generally, we
want to describe a particular linear combination 3 a,8,.
This corresponds to the projection of § on the vector

V= A (19)

ie., (yl9) = ¥ a8, Thusthe most general projection of the
state vector |#) can be written in the form
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(e, M8 = Z af(r, t). (20)

a

A reader familiar with quantum-mechanical notation shoulg
note the analogy between Eq. (20) and the following quan.
tum-mechanical situation: Suppose that a quantum system
{e.g., an atom) is characterized by position/momentum coor-
dinates of its center of mass and by six internal stateg
Equation (20) then represents a general state of this system,
where f,(r, t) is the wave function describing the system at
state o. The probability of finding the system in this state ig
a,%, and we require here, as in the quantum-mechanical case,
that the |a,) be so normalized that

Z al=1 (21)

o

We next obtain a resolution of the identity operator in the (r,
y) space. We define a summation over the components of y
by "L

12 .
ZETJdﬁaﬁ(alz+a22+...+aﬁz— 1).
¥

(23) §
m k.
With this definition it can be shown that

> ag, =5 (29) 4
v

From Eq. (23) it can be easily shown that
(24) 4

Z‘h@:Iﬁ;
¥

where Ig is the six-dimensional unit matrix. Equation (24) 4
thus describes the resolution of the identity in ¢ space. The 3
resolution of the identity in (r, ¢) space is therefore 3

-y J drlry) (rel.
¥

Given this resolution of the identity we can now derive ‘?
path-integral representation of the evolution operator in thed
usual way. First note that the evolution of # may be writtet]
as k.

(251§

(relan) = S J dry (rlU(@) igl) (roll6(0)). (267
%o

U{t) is then written as a product U(¢) = If;-,"U(At), with A%
= t/n, and a resolution of the identity is inserted betwes
each consecutive term

(gl U = Z J dr,_; ... Z[drl

¥y ¥
X (rglUADIr,_y) . .. (rlwllU(Ar)lro\'{

n-1
= H 2 J dri(rlg{Jz'U(AC)ll’I,l%q)-
=1

In the second identily we have identified (r, ) with (ra ¥4

Consider now a typical term (raf UAD)r- -7+ 4
evaluate it, we introduce intermediate eigenstates of P
-iV; then



(23)

(24

(24}
The

(25)

ve a
1the
itten

(26)

hAf

veen

o\bo )

27N

).
To

p=
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; (l'zlf’!lUmt)i"!—l\bH}
= (il s + cARTPQRT ey, )

1

il 3
= (‘) ] dDg((r[fp;)(pﬁrf-l)(\%wﬁ_l)
2%

+ cAt(Gl(r | R YR @lp ) R RV 0 o) + .. )

1y
3 =(—) [dpg(rﬂpg)(D;|l'i_1)((¢,|\h&1>
: 2%

+ ARG R TV ) L), (28)
' where
R, = R(r) (29)
and

ol 4}

By also expanding ¢, and r,_, to first order in At:
Vi = ¥ — A, (31)
r_, =r, — Atr), (32)

we find, to first order in At, that

(rrwi!U(At)lr!—l‘;’l—-l)

= (21)3 [dpz exp[ip, - (1, — v )1 ~ AL (¥ly)

+ cAt ( ¢l|7{!_1/26[ﬂ1_1/2|¢1))

1 o .
= mf dp, exp[At(ip, - ¥, = {Y,l§)

+ el RV QRN (33}

Note that in the last term we have replaced 7, and i1 by
R and ¥, because this term is already of order At.

Equation (33) may now be used to write Eq. (27) in the
limit At — 0 as a pathintegral. Werecall that in Eq. (27) the
sum 3, is restricted to such yy's that satisfy (ilysd = 1 {or
a2 =1). This restriction may be relaxed by multiplying
the integral in Eq. (27) by 8({¥/) — 1) = [At/(27)) f=. duy
exp[—iAtw{ (g1} — 1)]. We thus find that

(U e by = j DIr(t)] [Dlpm] [Dwm] j Dw(t)]

t .
X exp{f dtfip . r— (gl{)
o

+ o (WRTIPQATVY) — iwlyly) + iw]},

(34)
where
n~1
jD[r(t)] = lim [drl, (35a)
TR
o . dp
JD[p(t)] = }..lfl f el (35b)

=]
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. n—1
[ Dly®)] = lim T 2 j da, (35¢)
PR T
and
DL)] = tim TT [ 24 35d
[ plao) = tim TT [ e (35
at—g 1
The r and y paths are restricted to satisfy
r{0) =rg, rity=mr; {36a)
w0} =y, yit) = ¢ (36b)

Some simplification of Eq. (34) may be achieved by noting
that ¢ (i.e, fa}) is real, so that (gly) = (d/dt)(¢lyi/2.
Therefore [ (¢lf)dt = W[ (¥ly), — (¥l¥)g] = 0 because at
the boundaries ¥ is normalized to 1. Thus, (inally,

gl U () rgdo) =JD[r] ]D(p)JD[\b]jD[wle‘S, (37
S = f “are), (38)
]

L=p-r—ictylR QR
— WPy} + . (39)

Further simplification is obtained if the medium is isotropic,
that is,

€= e(r)l, (40)
u = pu(r)]. (41)
In this case
ROVEQ RV = ﬁ A-p, (42)
where we have defined
A= _0 .c] (43)
A
and
A-pi=__L0.p Lo'p]- 44

Note that £ -p = L.p, + Lyp, + L.p,, 50 A - p, 15 a six-
dimensional matrix. The Lagrangian, Eq. {39}, now takes
the form

=pr+— a(p-Aa-w@-al+w (45
n(r)
Here we have represented y by the correspending six-dimen-
sional vector coefficient a so that, e.g., (Yly) = & -a (i is the
transpose of the column vector a).
The following comments should be made at this point:

(a) The derivation presented above for the path integral
associated with the Maxwell equations follows essentially
similar derivations for the Schrodinger equation. This deri-
vation rests on some mathematical steps whose validity is
not strongly established [e.g., Eq. (31)], and the same doubts

SO1SAYd 20BJING IISET



. 296 J. Opt. Soc. Am. B/Val. 4, No. 2/February 1987

Laser Surface Physics

Table 1. Eigenvectors and Eigenvalues of (¢/mA-T

Index Eigenvector Eigenvalue
E
0
1 H
0 9] 0
LD
3 1 S] e
Vzle "
4 1 ‘5] 2]
ﬁ L—$ n
5 L EJ P
v2L4 n
6 1fq _cp
JZLs n

expressed with regard to the quantum-mechanical deriva-
tion! are also relevant here.

{b) In many interesting situations ¢ and u are functions of
w, a fact not taken into account by Eqgs. (1)-(4). For prob-
lems involving a monochromatic field we can still use the
present formalism by putting the corresponding values for ¢
and ux in Eqs. (1)-(4).

(¢) The speed of light ¢ is seen here to play a role similar to
that of 1/h in quantum mechanics. It is of interest to exam-
ine the “classical limit,” which is the asymptotic expansion
of the path integral for ¢ — «. In particular, the maximal
path should have some physical significance. We examine
this path next.

For large ¢, most of the contribution to the path integral
[Eq. (37)] should come from the vicinity of the path for
which 58 = 0 (classical). The Lagrange equations associat-
ed with this problem yield

p=-"a(p-A)anv (l) (46)
n n

r=——c—i-A-a, 47)

0=1-4d-a, (48)

0=Sp-Aa — wa. {49)
n

Equations (48) and (49) restrict the vectors a to being
normalized eigenvectors of the six-dimensional matrix (c/
n)p - A and restrict » to being the corresponding eigenvalue.
These eigenvectors and eigenvalues are easily found and are
listed in Table 1. In this table p is a unit vector in the
direction of p, while ¢ and s are unit three-dimensional
vectors chosen so that (g, p, s) constitutes a right-handed
mutually perpendicular set of vectors.

We observe that there are four propagating modes and two
nonpropagating modes and that for the propagating modes
each three-dimensional subvector of a is perpendicular to p.
For all these modes Eqgs. {46} and (47) may be written as
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. 1
p=wnV-, (50)
r
r=-wh, (51)
p

where w = 0 for the nonpropagating modes and w = +cp/n(r)
is the Iocal speed of light for the propagating modes.

Equation (51) is very suggestive, as it describes the motion
of a particle in the direction p with the local speed of light ¢/
n. In what follows we show that Eqgs. (50} and (51) lead to
the Fermat principle.

The Fermat principle of geometrical optics states that a
ray of light propagating in an inhomogeneous medium char-
acterized by an isotropic refractive index n(r) follows a path
for which

a=jdf’1=0, (52)
e
where dr is an element of path length. By rewriting Eq. (52)
in the form
t dr \2
& dt —1} =90,
L n(r) ( . t) (53)

we get the corresponding Lagrange equation in the form

% {(nu) = v¥n, (54)

where v = |dr/dt{ and 0 = v/u. Itis not difficult to show that
Eqgs. (50) and (51) also imply Eq. (54). Thus the external
path associated with the Lagrangian [Eq. (45)] satisfies the
laws of geometrical optics. A possible interpretation of the
trajectory defined by Eqs. (50) and {51) is that it describes
the motion of the wave front or of the ray. The vector a
seems to be related to the polarization.

Further advances in this direction may be expected along
lines similar to those taken in the corresponding quantum-
mechanical problem, namely, “semiclassical” evaluation of
the path integral or numerical calculations based on meth-
ods developed for guantum-mechanical path integrals.
This goal has not yet been achieved for the general electro-
dynamical problem. We next turn to the electrostatic prob-
lem, where another path-integral formulation leads to nu-
merically tractable expressions.

PATH-INTEGRAL FORMULATION OF THE
POISSON EQUATION

When the characteristic distances of the physical system are
much smaller than the electromagnetic wavelength, the so-
lution to the electromagnetic problem can be found in the 3
electrostatic approximation. In this case the time depen-
dence of the field is given by, e.g., E(r)exp(iwt), where the 3
amplitude E(r) is derived from a potential that satisties the §

Poisson equation

=V - [e(r)VE(x)] = drxp(r), (55) ':"

where p(r) is the source charge distribution.
may be rewritten in the form

T2&(r) + Fir) . V&(r) = — i:_i o(r), (56) :

Equation (55)
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where
F{r) = V Ine{r). (57)

{t is sufficient to solve Eq. (56) for the Green’s function G(r,
7

[V + F(r)- V]G(r, r) = 8(r - 1), (58)
in terms of which ®(r) is given by
(r) = —dr J ar *C) e, v, (59)
e(r)
We recently showed that G{r, r) can be represented as
Gir,r) = — J dtK(r, v'; 1), (60)
0
where K(r, r; t), which satisfies the equation
LD 924 B - Tk r50 (6D

with the initial condition

K(r,v’;0) = 6(r — r’), (62)
has the path-integral representation
Kir, r. t) —] [r(t))e5, (63)
] (r —)dt (64)
1 dr
E[F()+~Jt—]+2v F. (65)

The paths contributing to Eq. (63) are restricted by r(0) = r’
and r{t) = r.

An approximate numerical evaluation of the path integral
of Eq. (63) may be achieved by using the {approximate)
discretized form

K(r, ¥; t) = (47 ag)-2V2 j dr,... [ dry_,

n=0_

at e LS T

X exp{— s Z [F(rn) + A —:, (66)
and calculating Eq. {(66) by the Monte Carlo method. We
have shown by comparing numerical and analytical solu-
tions for an analytically solvable model that this method is
indeed reliable.

For problems of low dimensionality (mainly one-dimen-
stonal problems) K may be evaluated also by direct matrix
multiplication:

) 1 o -
K(x, x t) = - z . Z My My, (6T
L="m by gm—
where M is the non-Hermitian matrix
Ax 2
M = - — 1 P, Ax +—l—l
ln#-lltn m ex p{ [ ( ) A ( n n+])jl }

(68)
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and where Ax is the spatial discretization step. In Eq. (67)
loAx = x" and IyAx = x. In actual calculation the infinite {
summations are truncated:

= L
Doy (69)
l=me I=—L
The fact [Eq. (60)] that what we actually require is the time
integral over K may in some cases lead to a simplification of
the problem. Consider, for example, the problem of calcu-
lating the image potential experienced by a point charge at
location x near a flat surface (the surface is in the yz plane)
where the dielectric function depends on 1 in some specified
manner. [In the regular textbook problem ¢(x) is a step
function.] Even though the problem is of one-dimensional
symmetry, we have to consider the three-dimensional propa-
gator, given by an equation similar to Eq. (67):

K(r r; C) = (*-—)5 2 Z .M,N_IN_I B 'M'lplo' (70)

Iy

where
Zj IZ% !.Il
and where
ml:’l:—l = MEJI'IU*I):(I)MIU '!:— (Y)M!.'vi(rt):(ﬂ’ (71)
2
M= AL exp{~ 2t [F(sz’) + 8 z)} } (72)
dr it 4 At
2
My = 2 exp[— O e ,)2], (73)
JirAt 44t
2
My = - exp[_ & (- 5)2]. i
drAt 44t

The summations over the free propagators in the v and 2
directions can be carried out exactly, leading to [for r = ({Ax,
0,0) and v’ = (VAx, 0, ()]

K(r, r; NAt) = - L (M),

- ——— Nz 75
4r NAL Ax (75)

or

1 1 ,
K(lax, VAx NAY) = —— 1T+ ——= = (1 = 5, ) (M)
( x x ) Ax l: 4-,TNAt ( 5[\,'0)( M ) :I

Inserting into Eq. (60), we get

—At i HINAL)

g =
N=0
At "N
=_= _A E NN 77
Ax I+4 At MY :| ()
ar
At [
= - I - — (1)
§ Ax | 47rA Inr =1 )] (78)
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Thus, to evaluate ¢, we need the evaluation of In(J — M),
which requires diagonalization of the matrix I~ M=, The
image potential felt by a charge @ at location Axl is

4
- RE% (g - ¢}, (79)

‘bimage =

CONCLUSION

We have derived a path-integral expression for the time-
evolution operator associated with the Maxwell equations in
inhomogeneous media and have shown that its asymptotic
behavior yields geometrical optics. We have also obtained a
path-integral expression for the Green’s function of the La-
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place equation and reduced it to a form thal can bhe evaluat-
ed numerically. Application of this method to surface elec-
tromagnetic phenomena will be described in a future paper.
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