Path integral approach to electrostatic problems
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A theory that is able to account for electrostatic effects in microscopic situations is formulated
in terms of the path integral method. The theory relates the solution of the Poisson equation to
the propagator of the diffusion equation. Applications are made to some typical problems of

interest, such as the solvation energy of an ion in a solution and to the electrical properties of a

diffuse surface.

I. INTRODUCTION

A number of problems of interest to chemical physicists
and physical chemists involve the analysis of electrostatic
interactions at the microscopic level. These include the eval-
uation of the image potential of an ion near a surface, the
solvation energy of an ion in solution, the polarizability of a
fragment of dielectric material, the local field induced by an
externally imposed electric field, the lifetime of excited mol-
ecules near a solid, and the dynamics of energy transfer
between molecules near a solid. Standard techniques exist
for solving such problems, but they are usually applied only
to very simple geometries. For example, the problem of de-
termining the image potential of an ion near a surface of
irregular shape is nontrivial. Similarly the calculation of the
solvation energy of an ion in a cavity of irregular shape pre-
sents a formidable problem. The same would hold true for
the other aforementioned problems. While these problems
may be addressed by introducing finite elements or by dis-
cretizing the problem on some large lattice, these approaches
are known to tax the capabilities of even the largest comput-
ers.

In this paper we introduce a method applicable to the
above class of problems, as well as others, which is based on
path integral techniques. The method is independent of the
number of dimensions and will work even if the boundaries
presented by the surfaces, solvation cavities, or particle
shapes are sharp or diffuse in nature. Our technique involves
relating the solution of the Poisson equation to the propaga-
tor of a related diffusion equation with drift. The propagator
is then evaluated by path integral techniques. The goal of
this paper is basically to define the method and to apply it to
some overidealized problems to test its applicability. In fu-
ture work we plan to study some more realistic problems in
detail. In Sec. II we present the theory for the solvation ener-
gy of an ion in a cavity. In Sec. III we study the propagator
for the diffusion equation in detail and discuss the semiclas-
sical approximation. Section IV presents an exactly solvable
model for a diffuse cavity which will prove useful for cali-
brating numerically based problems. In Sec. V we numeri-
cally obtain the solvation energy for an ion, evaluating the
path integral by a Monte Carlo approach using influence
weighting to accelerate the convergence. This is followed in
Sec. VI by a matrix method appropriate to one-dimensional
problems. Section VII concerns itself with some other quan-
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tities of physical interest. The relationship between our path
integral approach and the semiclassical approximation of
Miller is discussed in the Appendix.

II. THEORY OF THE SOLVATION ENERGY OF AN ION

Consider an ion of charge Q located at position R in a
dielectric medium of dielectric constant e(r). The medium
will be assumed to be isotropic so €(r) will be taken to be a
scalar function of position. Furthermore, since the presence
of the ion at point R excludes the presence of the surround-
ing medium at that point, we may assume that e(R) = 1.
Our goal will be to derive a general formula for the solvation
energy of this ion, U, irrespective of the inhomogeneities
inherent in the function €(r). Included in such an expression
will be the case of an ion embedded in a cavity of arbitrary
shape. Extensions of the present formulas to the case of a set
of ions or a smeared charge distribution can be readily found.

We start with Gauss’s law

V-D(r) =4705(r — R), 2.0
where the electric displacement vector D(r) is
D(r) = e(r)E(r), (2.2)

and the electric field E(r) is given in terms of the electrostat-
ic potential ®(r) by

E(r) = — V®(r).
Let us write the Poisson equation as

2 . - ArQ
V*®(r) + F(r)-V®(r) “®)

(2.3)

S(r—R), (24)

where we have introduced a vector field F(r) related to the
dielectric function by
F(r) =V In e(r). 2.5)
In order to solve Eq. (2.4) we introduce a propagator to
a diffusion equation with drift
dK(r,r';t)
a

where ¢ is a variable that we will term the “time”, although in
fact it is simply a variable with the dimensions of length
squared which we introduce for the purpose of mathematical
convenience. The propagator satisfies the “initial” condition

K(rx';0) =6(r—r). 2.7)

[V2+ F(r) V]K(rx;t) = 2.6)
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In addition we introduce the Green function G(r,r’) defined
as

G(r,r') = —Jm K(r,y';t)dt. (2.8)
0

If we integrate Eq. (2.6) over ¢ from t =0 to f = « and
assume that K(r,x';t) -0 as t— o we see that G(r,r') satis-
fies the equation

[VZ+ F(r):V]G(r,r') =8(r —1'). 2.9)
Thus G (r,r')is simply related to the potential (r), as can be
seen by comparing Eqgs. (2.9) and (2.4):

o) = - GaR).

(2.10)
e(R)
Hence we obtain
47 Q f”
P(r)y=—-] K(rR;t)dt. 1
(r) ® o (r,R;0)dt (2.11)

If there were no dielectric present, e(r) would equal one
everywhere and F(r) would vanish. The corresponding pro-
pagator satisfying Eqs. (2.6) and (2.7) will be denoted by
K, (r,R;t) and the corresponding potential will be denoted
by @, (r). Thus

PDy(r) = %Qf K, (r,R;t)dt. (2.12)

0
The free propagator, K,(r,R;t), may be found by using
Fourier transforms and is
Ky(r,R;t) = (47t) 2 exp[ — (r —R)¥/(41)].  (2.13)

Combining Eqs. (2.12) and (2.13) leads to the obvious re-
sult

__ 9

Dy(r) r—R] .

In calculating the solvation energy it is important to
distinguish the singular part of the electrostatic potential
from the nonsingular part. The singular contribution stems
from @, (r) and is present even in the absence of the dielec-
tric. The nonsingular part is due to the presence of the dielec-
tric and will be denoted by ®(r). The electrostatic contribu-
tion to the solvation energy is

(2.14)

U=%$(R), (2.15)
where the factor 1/2 arises due to the fact that the value of
®(R) itself is proportional to Q, so that if we regard Q as
gradually increased from zero to its final value, integration
would produce a factor 1/2. Here

®(R) = P(R) — ®,(R). (2.16)

Combining Eqs. (2.11), (2.12), (2.15), and (2.16) yields

U=27Q2f [M—KO(R,R;t)]dt. (2.17)
0 e(R)

The problem has thus been reduced to one of obtaining the
propagator which starts initially at the ion and returns to the
ion a time ¢ later. The path may be of arbitrary shape.

lil. PATH INTEGRAL FORMULATION FOR THE
PROPAGATOR

Although the calculation of the propagator by the path
integral formalism is a familiar problem we must remember
that the path integral method is generally applied to prob-
lems involving Hermitian Hamiltonians. Equation (2.6) in-
volves a non-Hermitian Hamiltonian so some care must be
exercised in evaluating it.

A formal solution to Egs. (2.6) and (2.7) may be writ-
ten in bra—ket notation

K(r,xr';t) = (rlexp[t(V* + F-V)]|r'). (3.1)

We shall derive two expressions for the path integral, one
suitable for numerical integration and one suitable for the
semiclassical approximation. We start with the former deri-
vation first. A path integral representation of X is obtained
by following a standard procedure.> We divide ¢ into N
steps of time At = ¢ /N and rewrite Eq. (3.1) as

K@yt = J- dry dry_ (r|UAD|ry )

X (l'N_ 1 |U(At),l’~_2)' . '(l‘dU(At)Il"),
(3.2)

where we have inserted N — 1 complete sets of states and let
U(At) = exp[At(V* +F-V)]. (3.3)

A Fourier decomposition of U(At) leads, to first order in A,
to

(l',,]U(At)lr,,_1> =f (Z:"):; exp{ipn.(rn —rn—-l)
+ At [ —p; +ip,F(r,) ]}

(3.4)

Evaluating the p, integral and reinserting back into Eq.
(3.2) yields

K(r,r'st) = (4mlAe) 3N fdr,---dr,,,_,

_At_N_l[ l.n—l.n+l]2]
xexp{ 2 ,.Zo F(r,,)+—————-At .
(3.5)

This expression is useful for numerical integration pur-
poses and will, in fact, be utilized in Secs. V and VI as the
basis for the development of a Monte Carlo method and a
matrix multiplication method. However, we would like to
also be able to go to a continuum limit and this requires some
care, as has been amply pointed out in the literature.** In
order for the usual rules of calculus to apply we must start
with a Weyl-ordered operator*in Eq. (3.1). Thus we rewrite
the propagator as

K(ryx';t) = (rlexp(tQ)|r'), (3.6)

where the operator Q acting on a function g(r) has the fol-
lowing form:
Qg=Vig+i[FVg+V-(F)1 —{§(V-Fg. (3.7

These equations are mathematically identical to the previous
equations but the term containing the square bracket is now

J. Chem. Phys., Vol. 86, No. 6, 15 March 1987

Downloaded 09 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. |. Gersten and A. Nitzan: Path integral approach 3559

in Weyl-ordered form. In place of Eq. (3.4) we now have
(r,|UAD)r, _,)

_f G )3 exp[ At [p,,
(F(r,.)+F(r,._x) r,.—r,._l)
. +

2 At
+-;—V-F(r,._l)]}, (3.8)
and Eq. (3.5) becomes
K(r,r';st) = (47At) “3”’2fdr1--~drN_l
Xexp[—— 5 F(r,) + F(r,_,)
n=1 2
r, —T._ 2

We may now pass to the continuum limit by using the rules
of the standard calculus.
One usually writes this symbolically as a path integral

K(rrsn = f D [r(r)]exp( ~ ), (3.10)

subject to the “initial” condition r(0) = r’ and the “final”
condition r(¢) =r.

If e(r) is slowly varying in space we might expect a
classical description to be a first approximation to the path
integral. The classical “action” may be written as

* dr
S= f L (r,—-)dt,
"} . dt

where the “Lagrangian”, is

(3.11)

-
L=-1—[F(r) +£11] +—21—V-F. (3.12)

4 dt
The Lagrange equation is
dxr
dt?
50 we may regard this as Newton’s equation of motion for a
particle moving in the potential
V(r) = —F%*r) — (3.14)

and subject to the end-point conditions r(0) =r' and
r(t) =r. For this motion “energy” is constant, i.e.,

2
=V[£2—-+V-F], (3.13)

dr
E--—- —F? ] V-F. 1
2 (d) (0 G.13)
The “canonical momentum® is
1[dr
=—{Z+Fwm)|, .
T o
and the classical action is
s,.—.f{pz(z') +1V-Flr(s")]}dr". (3.17)
0

The semiclassical approximation consists of writing the pro-

pagator as
K(ryr';t) = F(r,x';t)exp[ — S, (r,r';8) ], (3.18)

where F(r,r’;t) is an appropriate normalization constant. In
most cases it will be a function of both endpoint coordinates
as well as 7, but we will soon study a case where it depends
only on ¢. The evaluation of F(r,x';¢) is, in general, nontri-
vial. The form of F, however, is constrained by the following
theorem:

fK(r,r’;t)e(r)dr = e(r'). (3.19)
The proof of this theorem follows from Eq. (2.6) by rewrit-
ing it as

V-[eVK ] =-§t-[eK], (3.20)
and integrating it over all space. Assuming that K(r,r';#)
falls off for large r faster than 1/7, the application of Green’s
theorem to the resulting integral will give zero for the left-
hand side so

fK(r,r’;t)e(r)dr = f(r'). (3.21)

The time-independent function f(r) may be evaluated at
time ¢ = O using Eq. (2.7), so Eq. (3.19) results. Note that if
Eq. (2.6) had been symmetrized so as to make the left-hand
side a Hermitian operator the above theorem would not nec-
essarily be true.

Equation (3.19) implies that the dielectric function is
an eigenfunction of the transpose of the propagator. The cor-
responding eigenvalue is unity. Furthermore as time
changes neither the eigenvalue nor the eigenfunction
change.

IV. A SOLVABLE MODEL

In order to make our discussion more explicit let us con-
sider a solvable model. We introduce the dielectric function

€(r) = exp(a|r — R|?), 4.1

which is characterized by the parameter a. It represents, of
course, an idealization because e grows to be very large for
large |r — R| but it does satisfy the condition e(R) = 1. We
will see later, however, how this model can help us solve
more realistic problems. It will be convenient to select point
R as our reference point and to set R = 0 henceforth.

From Eq. (2.5) the characteristic vector field is given by

F(r) = 2ar, (4.2)
and the “potential” is

V(r) = — 2% — 6a. (4.3)
The general solution to Eq. (3.9) for time ¢’ <¢is

r(t’') =Aexp(2at’) + Bexp( — 2at’), (4.4)

where A and B are constants. Since r(0) = r’ we obtain

r=A4+B8B. (4.5)
At the terminal time ¢ we have r(¢) =r so
r = A exp(2at) + B exp( — 2at). (4.6)
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The canonical momentum of Eq. (3.12) is

p(z') = 2aA exp(2at’). 4.7)
The classical action of Eq. (3.13) is
S, = aA *[exp(dat) — 1] + 3at. (4.8)

Solving Eqgs. (4.5) and (4.6) for 4 and inserting this into Eq.
(4.8) yields the classical action
[r' —rexp(2at)]?
exp(4at) — 1
Let us now proceed to derive the exact formula for the

propagator. We begin by writing Eq. (3.5) in a factored form
applicable to the vector field of Eq. (4.2):

K(rx'st) = K, (xx';0)K,(py'i)K, (2,2;0),
where

S.=a + 3at. 4.9)

(4.10)

K (xx';t) = (4mAt) — N7 dxl"'fde—l

Xexp[—-——— z [X. (1 4 2aAr)

—X,.H” (4.11)
Let
Y =Px,_y —X,, (4.12)
wherex, =x,xy =x',and 8 = 1 + 2aAt. Since Eq. (4.12)
implies the constraint
N—1
Y Blyy_j=xy —B"x (4.13)
j=0 '
we may rewrite Eq. (4.11) as
K (xx'st) = dex' dyyb(xy — B x,
N
— 2 yjﬂN“j)(MrAt)'N”
Jj=1
X - 4.14
exp[ 4At jz yz] ¢ )

where we have used the fact that the Jacobian of the transfor-
mation is unity. By Fourier decomposing the Dirac delta
function and carrying out the dy, integrations this reduces
to

K (xx';t) =_F E726"19[-"02‘\’ i BWN-¥
— % 2‘)7' J

=1

+ (X —B”xo)]. (4.15)

The summation appearing in the exponent is simply evaluat-

ed and the o integration may be completed, resulting in
1-82 172

drAt(1 — ) ]

1 (1—B2
XX p[“m(l_,gw)"‘"‘ﬂ ]
In the limit of large N we have (4.16)
1-8% 1 dat
1—B8* N exp(dar) —1

K, (xx't) =

(4.17)

Since B = 1 + 2at /N. Combining Egs.(4.10), (4.16), and
(4.17) results in

372
K@yt = [ a ] Pl

wlexp(4at) — 1]
alr —rexp(2at))?
exp(4at) — 1

— 3at ]
(4.18)

Comparison of this exact expression with Eqgs. (3.18) and

(4.9) shows that the semiclassical approximation for this

€(r) is exact and that the normalization constant F depends
only on #:

Xexp[ —

F(rr't) = (4.19)

372
[27 sinh Zat] )

Note that had we known a priori that F depends only on ¢,
Eq. (4.19) could have been obtained directly from Eq.
(3.19). Alternatively, we could have utilized the following
identity:

%fK(r,r';t)dr= —fK(r,r';t)V-F(r)dr. (4.20)

[This identity also follows from Eq. (2.6) by integrating
over all space, making use of Green’s theorem, and assuming
that X vanishes sufficiently rapidly as r— co so that surface
contributions may be dropped.] Combining Egs. (4.2) and
(4.20) and integrating the resulting equation gives

J-K(r,r';t)dr = exp( — 6at). 4.21)
Again, had we known g priori that F(r,r';t) depends only on
t, Eq. (4.21) combined with Egs. (3.18) and (4.9) are suffi-
cient to yield Eq. (4.19). In the absence of such prior knowl-
edge, however, Egs. (3.19) and (4.21) act only as self-con-
sistency checks.

At this point it is perhaps worthwhile noting that
Miller’s method’ for calculating the normalization constant
agrees with our previous derivation. This is discussed in the
Appendix. The significance of this correspondence lies in the
fact that semiclassical methods based on the Miller formal-
ism may now be applied simply to electrostatics problems.

Before proceeding further let us use a direct approach to
calculate the solvation energy for an ion at point R in a di-
electric given by Eq. (4.1). This is very elementary since the
electric displacement vector is

D(r) = Q’ (4.22)
So from Eqgs. (2.2), (2.3), and (4.1) we obtain

P(r)=Q J-w(r')‘zexp( —ar?)dr. (4.23)
Since ®y(r) = @ /r, Egs. (2.15) and (2.16) imply

U——f & (exp( — ar®) — 1]. (4.24)

Carrying out the integral proceeds by differentiation with
respect to a, evaluating the resulting Gaussian integral over
r and then integrating over a again. Thus

(4.25)
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This same result is obtained from Eq. (2.17) by using the
path integral formalism. Thus for R = O the propagator is
372
K00 =L ———“——] .
w {exp(d4at) — 1]
Thus

=_Q;(E_)‘” f ”{[ 4 l]m—x‘m}dx, (4.27)
T 0 e —

where we have set x = af. A numerical evaluation of this
integral confirms that this expression gives identical results
to the formula given by Eq. (4.25).

From a statistical mechanical point of view a compari-
son of Eqgs. (4.24) and (4.27) is most interesting. Equation
(4.24) expresses the solvation energy as an integral over
configuration space, whereas Eq. (4.27) expresses it as an
integral over time. This is reminiscent of the ergodic hypoth-
esis which relates averages over configuration space with
averages over time. One may either determine the solvation
energy by expressing it in terms of the electrostatic field, and
thus by doing an appropriate spatial integration, as in Eq.
(4.24), or by following the motion of fiduciary particles in
time and performing the appropriate average. Both proce-
dures give equivalent results. This again is reminiscent of
particle-field duality.

(4.26)

V. MONTE CARLO EVALUATION OF SOLVATION
ENERGY

The path integral formalism for the solvation energy
yields the following prescription for its computation. Start at
the position of an ion and draw a loop which, after time ¢,
returns to the ion. By summing over all times Eq. (2.17)
gives the desired result. The prescription is quite general and
not restricted by any particular symmetry constraints. By
summing over all loops the ion is able to sample the presence
of all inhomogenieties and all asymmetries. It thus repre-
sents a general and elegant way of solving the Laplace equa-
tion.

We would like to treat problems which are more com-
plex than the model dielectric of Eq. (4.1). To this end we
now develop a Monte Carlo technique, similar to that used in
the evaluation of path integrals associated with quantum
mechanical problems.® In free space the propagator may be
written, from Eq. (3.5) as

K, (r,r';t) = (47At) ‘3”/2f dl'l---fdr,\,_1

—rn+l]2] (5 1)
4 < At ) )

Let us define a free probability function
(4mAr) —3¥72
Ky(r,r';t)

Ar N2, -rn+l] ]

Xexp{ —_ Z

Po(rpyeesty_y) =

(5.2)
which is normalized so that P,»0 and

J.Po(rl,...,r,\,_l)al’rl---afr,\,_1 = 1. {5.3)

Then Eq. (3.5) may be expressed as

, , At N-—1 2
K(r,r';t) = Ky(r,r';t){exp ~ > [F*(r,)
n=0

2
renl)

+—F(r,) (r
where (- -*), denotes an average with respect to the prob-
ability function Py(r,...,r5_ ;). This average is now com-
puted using a Monte Carlo procedure with importance sam-
pling.

To compute the average in Eq. (5.4) we begin a compu-
tation cycle by randomly selecting a point in the 3(N — 1)
dimensional configuration space ¢ = (ry...,Iy_;). We
compute Py(g) as well as Q(g) where

() —exp[ - z [Fz(r )

) |J

We then select an index j randomly in the range 1<j<N — 1.
A point r* is selected randomly in space (within some speci-
fied range of the point r; ). Let us denote the new point in
configuration space by g* = (Fy,..,lj _ 1, EF 1ol y—1)-
The free probability at point g* is computed:

= Py(g*). (5.6)
We define the probability for changing the configuration
space point as G:

P *
G=—nl (5.7)
Py +Pg
The corresponding probability for not changing the point is
1 — G. Let us call the configuration space point for the next
cycle ¢'. Thus

(5.4)

+—A7F(r,,)-(r,, - (5.5)

with probability G

q= [q with probability | — G .8

After running through M cycles we evaluate Eq. (5.4) as

M
K@r'n) = Kot 5 (). (59)

m=1

In practice we allow the configuration point to incubate for
some number of cycles M; before actually starting the aver-
aging procedure. This allows the originally selected point in
configuration space to relax to a more probable region of
space. When computing the average we also allow a few cy-
cles to evolve between successive augmentations to the sum
in Eq. (5.9). This makes for a more uniform sampling of the
important parts of configuration space. Since Ko(r,r'’;t) is
known analytically from Eq. (2.13), Eq. (5.9) gives a useful
representation for the propagator.

In our discussion of the Monte Carlo procedure we
based our average on the use of the free propagator
K, (r,x';t). This, however, is not necessary. Any propagator
which is known analytically may be used as a base upon
which to build the Monte Carlo averaging scheme. In parti-
cular we can replace K, (r,r’;t) by the K(r,r';t) given by Eq.
(4.18). Let us call this the quadratic case and indicate this by
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using a subscript a. Thus

a 372
K, (rr';) = [ ]
wlexp(dat) — 1]
[r' —rexp(2at) ]2]
Xexpt — . (5.10
p{ exp(4at) — 1 ( )
Then the associated probability distribution is
(47At) —3N72
P =
=@ K, (r,r';t)
1 N-—-1 R
Xexp[ vy nzl)[(l + 2aA0)r, —r1, ] ]
(5.11)

The quantity Q(g) to be evaluated is now

N—1 — 2
() _—_exp[_% 3 (F(r")+i_ﬂi)
n=0

Ar
r, —r 2
_ 20!,. n n+l):|}.
( T+ At

Now « is a parameter to be suitable defined. The rest of the
Monte Carlo calculation proceeds as before except that aver-
ages are taken with respect to P,,.

A big advantage of employing these particular Monte
Carlo procedures is that at each cycle only one three-dimen-
sional subsector of the 3(N — 1) dimensional configuration
space is changed. Thus, for 2<j<N — 2:

P,(¢g*) =P, (q)eXP( -

(5.12)

o )

{1+ (1 +2a802](x; + 1)

—2(1 4+ 2aB0)(r;_, +71;,, )}). (5.13)

For j = 1 the formula is valid but the term r; _; is omitted.
For j=N — 1 the term r; _, is omitted instead. A similar
simple formula applies to Q(g*). Thus one need only change
one sector of configuration space at a time and modify the
functions P and Q in the immediate vicinity of that sector.
As a simple test of the Monte Carlo method we have

TABLE 1. Comparison of exact and Monte Carlo calculations of the one-
dimensional propagator. In the Monte Carlo calculation (Sec. V) the time
interval 0- - -# was divided into N = 15 intervals and, following an incuba-
tion period of 10 000 steps, M( = 10 000) more steps were used to evaluate
the average (5.9). The ratio between these Monte Carlo resuits and the
exact ones (5.14) is given in column R,. The ratio between the calculation
based on matrix multiplication and the exact result appears in column R,.
In the matrix multiplication calculation the time and length intervals used
were Az = 0.015, Ax = 0.125. The x matrices were truncated at L = 40.

K, (0,0;)

t (exact) R, R,
0.015 2.269 1.0008 1.008
0.15 0.622 1.014 1.008
0.3 0.370 1.030 1.010
0.6 0.178 1.008 1.015
0.9 0.095 1.095 1.018
1.5 0.028 1.107 1.033
38 0.00028 e 1.062

J. 1. Gersten and A. Nitzan: Path integral approach

t=1.5
xll
o 5 n 10, 15
(arb.
Jarb. W
t=0.15

-1

FIG. 1. A sampling of two paths at two different times . Here » is theindex
labeling the intermediate values of the coordinates x,, . These paths appear
in the evaluation of the one-dimensional propagator after the incubation
period has elapsed.

evaluated the one-dimensional propagator X, (0,0;¢) both
exactly and by using the Monte Carlo approach. For the
model dielectric of Eq. (4.1) we have from Eq. (4.18) (ap-
plied to one dimension)

(5.14)

a 172

K. (0,0;t) = { ]
wlexp(4at) — 1]

The results are tabulated in Table I in which we compute the
ratio of K, evaluated by the Monte Carlo procedure to X,
given by Eq. (5.14). The value of a was taken to be 1. In
these calculations we took 15 intervals () and allowed the
initial configuration space point to lie in the range
— 1<x, <1. A total incubation period of 10 000 steps was
chosen during which we allowed these points to relax
towards a high probability distribution. For each new ran-
dom excursion of a given point x, to x* we allowed the
distance to move randomly up to 0.2 units. When computing
the Monte Carlo average we allowed five steps to evolve
between samplings. The results show that for short times the
agreement between the exact and approximate results are
excellent. As ¢ grows, however, fluctuations become more
important. To maintain accuracy an increased number of
samplings, M, are required.

In Fig. 1 we show a typical set of points {x,} at two
times z. These represent the configurations attained right
after the incubation period of 10 000 steps. We notice that as
t increases the size of the fluctuations in the path increases.
These fluctuations mean that the propagator tends to be less
and less dominated by the semiclassical approximation. For-
tunately, however, the actual size of X, (0,0;¢) falls rapidly
with increasing z, so that the solvation energy is rather unaf-
fected.

VI. THE MATRIX MULTIPLICATION METHOD

While the Monte Carlo procedure is expected to be the
most suitable approach to evaluate the propagator (3.5) in
the general multidimensional case, a much simpler approach
to one-dimensional problems is based on the matrix multipli-
cation procedure of Thirumalai ef a.” In this method the
time discretized path integral, Eq. (3.5) is further discre-
tized in space by introducing a grid on the one-dimensional
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TABLE II. Diagonal matrix elements M(Z,]) at time ¢ = 3.8. x = 0.125,
t=0.15, L =40,

K, (JAx,IAx;t)
I (exact) R,
0 2.61x10~* 1.062
10 5.47x1073 1.050
20 5.06x 1077 1.014
25 1.51x 1078 0.988
30 2.06x10"1° 0.957
35 1.29x10~12 0.920
38 423x107™ 0.861
40 3.70x 10~ 0.531
space axis
K(xx';t)
— (41TAt) —N/2
o0 o
xl “., z MININ—IMIN~ lIN-—Z...MIIIO’ (6.1)
1= — @ N—1= — @

where M is the (non-Hermitian) matrix

= exp| — £ Feaxt,) + 22

L-no])

(6.2)
and where Ax is the spatial discretization step. In the actual
calculation the infinite / summations are truncated:

© L
2T
where the truncation number L is chosen large enough so
that LAx is large relative to all physical distances in the prob-
lem. Equations (4.1) and (4.2) imply that K (x,x’,£) may be
obtained as a function of 7 by iterative matrix multiplication

K(lAx,]'Ax;t + Ar)

M,

n+ 1

6.3)

= (4rAr) "1/ Z M. K(1"Ax,l'Ax;t).
= —~L
Using Eq. (4.4) the time evolution of the propagator is easily
evaluated in the one-dimensional case.

To demonstrate the use of this procedure we have evalu-
ated the propagator K(x,x';t) using the matrix multiplica-
tion method. R, in Table I denotes the ratio between the so
evaluated X, (0,0;2) and the corresponding exact value cal-
culated from Eq. (5.14). It should be noted that the calcula-
tion gives for each time all the elements X (x,x';¢). For all of
them except those corresponding to the first few points near
the edge of the truncated x axis the result is of accuracy
similar to that shown in the table. The erosion of accuracy at
the edges of the truncated zone is shown by the results of
Table Il where K, (IAx,IAx;t) is listed for different values of
I.I = 0isthe center of the zone. The computer time required
for these one dimensional calculations is considerably less
than the corresponding Monte Carlo calculations. The latter
becomes superior for problems of higher dimensionalities.

(6.4)

VII. POLARIZABILITY AND LOCAL FIELD

Having found an expression for the Green function in
terms of path integrals allows us to obtain other quantities of

physical interest. Two such quantities are the polarizability
of an inhomogeneous dielectric “cloud” and the local field at
any point in the cloud when it is subjected to a uniform elec-
tric field. Both calculations are similar, so we present them
together. To calculate the polarizability let us place a point
charge Q at position R far from the cloud. The field pro-
duced by this charge will be approximately uniform if R is
large enough and this field will induce an electric dipole

(1.1)

where « is the polarizability tensor of the dielectric cloud.
The dipole can also be expressed in terms of the volume
integral of the polarization vector P which in turn is related
to the electric field by P = [e(r) — 1]E/(47). Thus

p= i f ®(r)Ve(r)dr,

where we have integrated by parts. From Eq. (2.10), assum-
ing that e(R) =1 (i.e., that the charge is in free space) we
have

(7.2)

®(r) = — 47QG(r,R). (7.3)
Combining this with Eq. (2.8) gives finally
aR= —lim R? | dt| drK(r,Rt)Ve(r). (7.4)

R~ 0
Thus the various components of the o tensor may be deter-
mined by carrying out the space and time integration called
for in the above equation.
In calculating the local field we simply combine Eq.
(7.3) with Eq. (2.3). Let us intoduce the “amplification”
tensor A defined as

E(r) = A(r)E, (7.5)

where E, = — QR/R? is the external electric field. Then
employing Eq. (2.8) yields

lim 47R?*| dt VK(r,R;2). (7.6)

R-w 0
Here the local field is simply related to the time integral of
the propagator.

AR=

Viil. CONCLUSION

In this paper we have developed a method based on the
path integral formalism, for the numerical solution of sever-
al electrostatic problems relevant to solid state physics and
to ionic solutions. For one-dimensional problems iterative
matrix multiplication provides an efficient computational
method, while in more complicated situations a Monte
Carlo technique can be used. Numerical evaluation of simple
model cases that can also be solved exactly demonstrates the
potential usefulness of this method.
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APPENDIX: THE MILLER SEMICLASSICAL APPROACH

Miller has presented a formalism which allows one to
calculate the semiclassical approximation to the propagator.
We will apply the formalism to the model ¢(r) of Sec. IV.

According to Miller the semiclassical formula for the

propagator would b«:/mv .
K(rr'it) = {(2ﬂ-)3 % ] exp[ —S.(r,r';0) ],

(Al)

where ||- - +|| denotes the determinant of the matrix of partial
derivatives. From Eq. (4.7) we have the “initial” momen-
tum given by

P =2aA. (A2)
Combining this with Egs. (4.4)-(4.6) allows us to write

r= % exp(2at) + [r’ - %]exp( — 2a1). (A3)
Then
ﬂ _ sinh(2ar) }3
[l === (a0

SO

K(rr) = [ 27 sinh(2at) ] =32
a

exp(—Sy).  (AS)

This formula is in agreement with Eq. (4.18), as should be
expected for this quadratic problem.
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