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The non-Markovian theory of activated rate processes developed by Carmeli and Nitzan is
applied to investigate unimolecular reactions in condensed phases with particular emphasis on
the molecular size (number of internal degrees of freedom) dependence of the effect of solvent
friction on the reaction rate. The model consists of one reaction coordinate coupled ton — 1
nonreactive modes. The molecule solvent interaction is treated within the context of the
generalized Langevin equation. The reaction dynamics may be roughly described as two
consecutive processes: the well (energy diffusion) dynamics where it is assumed that fast
intramolecular vibrational relaxation and slower overall molecular energy diffusion dominate
the process, and the barrier dynamics where it is assumed that the motion along the reaction
coordinate is only weakly coupled to the nonreactive modes. This model leads to a result for
the reaction rate which, as in the one-dimensional case, is obtained as the inverse of the sum of
two times: the barrier crossing time and the energy diffusion time. The latter is very sensitive to

molecular size and becomes extremely short for large molecules. Correspondingly, the
Kramers turnover region is predicted to occur for low molecular weight solvent in the high
pressure gas phase, as was found in recent experiments. For higher viscosities the rate is
dominated by the barrier crossing time with a large (larger for larger molecules) transition
state rate plateau and with a falloff for high viscosities. Recent interesting results by Straub et
al. which have pointed out the dominance of spatial diffusion in the well for extremely high
viscosities (overdamped well motion) are argued to be irrelevant for most molecular

situations.

1. INTRODUCTION

In a recent series of papers'? we have explored several
aspects of the theory of activated processes in condensed
phases. The starting point of this study was Kramer’s treat-
ment? of escape of a Brownian particle from a potential well.
We have extended Kramers theory to the non-Markovian
regime for the whole friction range and have used the modi-
fied theory to analyze several experimental observations.
Many authors have also over the years extended Kramers
theory in these and other directions.*

On the experimental side, interest in unimolecular reac-
tions in condensed phases has been increasing over the last
decade. Of particular relevance to the present papers are
measurements of the rate as a function of the strength of the
reactant molecule~solvent interaction (as expressed, e.g., by
solvent viscosity).>'* Time resolved spectroscopy has been
utilized to study photochemical isomerization of trans-stil-
bene,!! diphenyl butadiene,*” DODCI,? binaphthyl,®°
and triphenyl methane'? in various solvents. High pressure
NMR technique has been used to study solvent effects on the
rate of ring inversion in cyclohexane!? and difluorocyclohex-
ane.'* In another important development the isomerization
of t-stilbene and of DPB have been studied also in supersonic
jet expansions'>~?° thus making it possible to directly com-
pare chemical dynamics in solution and in isolation condi-
tion. Combining these results with high pressure gas phase
kinetic data it has become possible now to study activated
chemical rate process throughout ail the relevant friction (or
other measure of the molecule—environment coupling)
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range—from the isolated (beam) condition through the low
pressure gas phase, to the high pressure gas phase and to the
liquid phase up to pressure of several kbar. Such studies have
now been completed for the #-stilbene isomerization'!?!(®
and somewhat less complete results are available also for
DPB.”?!®™ Hochstrasser and co-workers??> have recently
carried out such measurements (for z-stilbene) in ethane
above its critical temperature, thus maintaining the solvent
as a uniform fluid throughout the relevant viscosity range. A
different but related experiment is the photo dissociation
and atom recombination in the reaction Br,=2Br, carried
out by Troe and co-workers®? in different inert gases in pres-
sure range 1-7000 bar.

In addition to yielding a large body of data about the
systems studied, these experiments have raised several issues
of interest from the standpoint of general theory. These are:

(a) The viscosity (77) dependence of the rate k in some
of the studied systems (stilbene in alkanes,® DPB in al-
kanes,® and DODCI in alcohols®) is weaker (i.e., k~75~%,
0 <a < 1) than predicted by the Kramers’ theory. In others
(stiff stilbene in alkanes,’ stilbene in alcohols,?* and DPB in
alcohols**) the “usual” 7~ ! dependence was observed.
These observations were interpreted®®?6 as arising from the
non-Markovian nature of the molecule-solvent coupling in
systems involving high curvature barriers.®?72® While
this interpretation is plausible other possibilities cannot be
excluded: Schroeder and Troe?® have pointed out that pres-
sure dependence of the barrier height could in principle lead
to the observed viscosity dependence without invoking the
non-Markovian nature of the dynamics. Similar conclusions
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have been reached by Akesson, Sundstrom, and Gilbro in
their study of the isomerization of the dye diethyl tetrameth-
ylindocarbocyanine iodine.*

(b) For some unimolecular reactions involving large
molecules in supersonic beams the microcanonical RRKM
theory appears to overestimate (by about one order of mag-
nitude) the rate. This has been reported for #-stilbene!®®)-3!
and for 4-(CH,),-¢, where A is anthracene and ¢ is N,N-
dimethylaniline.>* This obviously cannot be a conclusive
statement since there are many unknown parameters in the
calculation. Obviously the RRKM rate can be made smaller
by postulating transition state frequencies larger than the
corresponding frequencies near the bottom of the reactant
well [in Refs. 18(b), 31, and 32 the two sets of frequencies
were taken equal]. This has been recently demonstrated by
Troe for both t-stilbene**® and PBD.*® Alternatively
simple modifications of the RRKM theory can be invoked to
explain the discrepancy. If fast intramolecular vibrational
energy redistribution occur only within subspaces of the full
phase space while those subspaces are only weakly connect-
ed, the rate can be either larger or smaller than that predicted
by the RRKM theory depending on whether the reaction
coordinate and the pumped mode belong to the same sub-
space or not.>*

More significant for our discussion is the observation,
for r-stilbene, that in low viscosity solvents the isomerization
rate is larger by about one order of magnitude than that
predicted from infinite pressure extrapolation of the ob-
served beam rates, or that observed in low pressure host gas
environments,'3®21:33@ (Though there are data in sup-
port of the existence of a similar phenomenon in PDB* a
recent analysis by Troe, Amirav, and Jortner®*® has led
these authors to conclude that this is not the case. ) The inter-
pretation of this observation is still an open question: Syage,
Felker, and Zewail'*® (see below) have suggested that the
difference arises from nonadiabatic effects which are more
pronounced in the gas phase because of the larger velocity
along the reaction coordinate. Courtney and Fleming?®' sug-
gest that the difference may arise from slow intramolecular
energy relaxation in the beam and in low pressure gases. In
other words the gas phase reaction may be in the energy
controlled regime and therefore slower than the fully equili-
brated process in low viscosity solvents.** Troe and co-wor-
kers!!2%33(®) gugpest that the difference has no dynamic ori-
gin and reflects solvent influence on the potential energy
surface.

(¢) The crossover from energy controlled dynamics to
diffusion controlled dynamics and the range of validity of
the statistical approach (transition state theory, TST) has
been the focus of several recent studies. Kramers’ theory'™
predicts this transition as a function of solvent “friction”
where the rate increases with friction in the low friction limit
(energy controlled dynamics inside the reactant well) and
becomes inversely proportional to friction in the high fric-
tion limit (diffusion controlled dynamics on the barrier).
The quantitative aspects of the Kramers theory have been
modified by taking non-Markovian behavior (frequency de-
pendent friction) into account (see paper II1and J. T. Hynes
in Ref. 4). Still a turnover region, a maximum of the rate asa
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function of solvent friction (viscosity, collision rate, etc.) is
expected to exist: Obviously the thermal unimolecular rate
vanishes in the zero pressure limit and is a decreasing func-
tion of solvent viscosity in liquid solutions. Although there
have been some reports of experimental observation of ener-
gy controlled dynamics and of the turnover in solu-
tions,'®'%!% other experiments?!~?® indicate that for large
molecules the turnover region may be in the intermediate
pressure gas phase. Schroeder and Troe®® have recently sug-
gested that some of the apparent observations of turnover in
solutions may be due to pressure dependence of the potential
surface, in particular the threshold energy (barrier height).
A similar suggestion was recently made by Hicks et al.* for
reactions involved substantial charge redistribution. These
authors found that the barrier height for the isomerization of
p-dimethylaminobenzonitrile depends on solvent polarity
which is in turn affected by the same factors (temperature,
pressure, composition) which affect the viscosity.

(d) The possible role of nonadiabatic effects in the uni-
molecular isomerization processes discussed above has been
recently brought up by Syage, Felker, and Zewail.!*® The
excited state potential barrier for many of the photoisomeri-
zation reactions considered above is believed to result from
an (avoided?) crossing between the optically active S, state
and a higher (in the reactant geometry) state which for stil-
bene has a minimum at the perpendicular configuration.?’
Nevertheless, most of the discussions of these isomerization
processes have chosen to disregard the possible role played
by the upper potential surface (thus tacitly assuming that
the energy gap between the two adiabatic surfaces is large
compared to kT). Recently Frauenfelder and Wolynes®®
have discussed the possible effects of nonadiabaticity on the
viscosity dependence of chemical rate processes in liquids,
and Syage et al. have offered such effects as a possible expla-
nation for the larger rate observed in the liquide phase (rela-
tive to gas phase) photoisomerization of #-stilbene. This
question deserves more experimental and theoretical study.

The present work is a continuation of the effort’ to de-
velop Kramers’ model into a useful theoretical tool for the
study of unimolecular reactions in condensed media. Here I
limit myself to adiabatic reactions (one potential surface)
and generalize the non-Markovian version of Kramers’ the-
ory!* to take into account the interaction between the reac-
tive mode and the nonreactive molecular modes in a large
molecule. Some results of this work have been presented in
an earlier communication.>®

Many of the earlier applications of the Kramers’ theory
or of similar collisional theories to chemical dynamics in
condensed phases have used the original, one-dimensional
Kramers’ theory.? Multidimensional generalizations of this
theory which focus on the dynamics near the barrier (saddle
point in the multidimensional case) have been derived by
several workers,*>** and were recently generalized by Grote
and Hynes* and by van der Zwan and Hynes*® to the non-
Markovian regime. These studies lead to an expression for
the escape rate out of a multidimensional potential well of
the form

bk o
@p

(1.1)

J. Chem. Phys., Vol. 86, No. 5, 1 March 1987
Downloaded 09 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2736 Abraham Nitzan: Theory of activated rate processes. VI

where k 1¢1, the transition state theory rate is given by*’

@g Q (B)

27
In Egs. (1.1) and (1.2) Ep is the barrier energy,
B = (kzT) ™', wp is the frequency characterizing the bar-
rier along the reactive mode, Q and Q'® are the equilibrium
partition functions for the system of nonreactive modes in
the well and on the barrier, respectively, and oy, is the reac-
tive mode frequency in the well. The factor A,/wp in Eq.
(1.1) measures the dynamical correction to the statistically
originated krgy. In the Markovian limit it is given by the
Kramers’ result®

(1.2)

exp( —Bg,)-

TST

2 172
.49_=[(7)+1] __r, (1.3)
@p 2w 2wp
where y is the friction. For the non-Markovian case'(¥272%
Ao is the smallest (positive) root of the equation
A2+ AZ(—id) —@d =0, (1.4)

where Z (@) is the Fourier-Laplace transform of the friction
Kernel [see Eq. (2.1)]
Z(w) =f dte=Z(1); Z(0)=1y. (1.5)
0

The result (1.1) is based on the assumption that the
escape rate is dominated by equilibrium distribution in the
well and by the dynamics near the saddle point. As the fric-
tion (yor Z) goesto0,1,/wy — | and k- k g7 . This expres-
sion therefore cannot describe the turnover into the well
dominated dynamics. This failure results from the assump-
tion of thermal equilibrium in the well, inherent in the results
(1.1) and (1.2).

Another limiting form of unimolecular rates is common
in treatments of gas phase unimolecular reactions. In its sim-
plest form this is just the Lindeman theory and in its most
elaborate version is obtained by adding microcanonical
RRKM decay rates k(F) into an energy master equation:

aP(—;’”—::de'K(E,E’)P(E') — k(E)P(E) (1.6)
[k(E) =0 for E < Eg]. The overall reaction rate is
k= [ dEPEYK(E). (17

Ep
For high pressures P(E) » P, (E) and Eq. (1.7) becomes
the thermal RRKM rate, while for low pressure the rate is
dominated by the energy exchange rates K(E,E').

Troe*® and Schroeder and Troe*® have modified
Kramers’ result by combining Kramers’ barrier solution
with a Lindemann-type expression which describes the low
collision rate limit. The so constructed expression takes the

(1.8)

where k., is an appropriate gas phase reaction rate [e.g., k
of Eq. (1.7) if K(E,E") in Eq. (1.6) are collisional energy
transfer rates], k 4 is the Kramers’ high friction (diffusion
controlled) limit

Wp
kdiﬁ‘ = kTST >

(1.9)

and where FYf is a “broadening function” of the form*°

Fom =1 l)[ Y +1-1L ]
(+w3 2wp 20p

The form (1.8) extrapolates between the gas phase and
between the high friction liquid rates.

Two other recent papers are relevant to the present
work. Borkovec and Berne®® have evaluated the collisional
rate coefficients K (E,E ') in Eq. (1.6) for a polyatomic mole-
cule within the BGK model and have elucidated the effect of
molecular size (number of coupled degrees of freedom)
within this model. In the weak collision limit their treatment
is equivalent to the Markovian-Kramers low friction limit.

Zawadzki and Hynes®! have evaluated the energy relax-
ation rate of a polyatomic molecule whose interaction with
the surrounding solvent is described by a generalized Lange-
vin equation. To account for the whole friction range they
use the construction (for a symmetric double well)

k=[k;'+ (ky/27'] 7, (1.11)

where k is the barrier dominated rate [k of Eq. (1.1)] and
where k , is the energy relaxation rate in the well. Equation
(1.11) is used to analyze molecular size effect on the transi-
tion from the low to high friction regimes.

The present paper is a detailed version of an earlier com-
munication®® which is also aimed at studying molecular size
effects on the dynamics of unimolecular reactions in con-
densed media. While the final result may be cast in a form
similar to Eq. (1.8) or (1.11), this result is derived (not
constructed) from the generalized Langevin equation. This
derivation makes it possible to track down the approxima-
tions involved in the forms (1.8) and (1.11), and provides
more general forms for cases where these approximations
breaks down.

Section II describes the model employed in this work
while Sec. III presents the mathematical derivation of the
rate expression and its analysis in limiting cases. Some nu-
merical estimates are provided in Sec. IV. Section V dis-
cusses the results in view of recent experimental work.

(1.10)

fl. THE MODEL

The starting point for the present treatment is a set of
generalized Langevin equations (GLE) for the atomic
(mass weighted) coordinates*>*

au ! .
x, = — o — Eb: J;dTZ,,,,(t —7)x, (1) + R, (1),
2.1)
(R,(OR, (t))Y=Z,,(t—t")/B;, B=(kyT)7},
(2.2)

where U({x}) ({x} =x,, x,,....Xy, N is the number of
atoms) is the molecular potential surface, Z,, (¢) and R, (¢)
(a =1,2,...,3N) are the friction kernels and the random
forces associated with the surrounding medium. Nondia-
gonal friction kernels may arise from hydrodynamical inter-
actions between different atoms via the surrounding medi-
um* and also from medium induced impulsive interactions
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between molecular modes (see below). The mass weighted
form (2.1) is obtained by scaling the regular atomic equa-
tions

maga = - W({g})/aé‘a

—J‘drza,,(t—f)g',,(r) +p, (1)
(1]

according to
\/;aé—a = a’w([L]) = U({X}), zab/\/ mamb = Zab
Jm
and
pa/\/za = Ra‘

Also note that the indices a,b ( = 1,2,...,3¥) stand for both
the atom and for the three Cartesian components of the
atomic coordinate.

The chemical reaction is assumed to proceed when the
molecule passes irreversibly from a region of configuration
space identified as the reactant to a region identified as the
product through a saddle point in the multidimensional po-
tential surface. It is assumed that this saddle point is charac-
terized by a local maximum of the potential along one degree
of freedom (the “reaction coordinate”) while the other in-
tramolecular degrees of freedom maintain stable oscillations
about their local minima. This saddle point constitutes the
potential barrier to the reaction.

Near the barrier Egs. (2.1) and (2.2) can be linearized
and transformed to

t
Xp =0%xg — fdf N Zg;(t —7)%;(7)
o G

_deZRR(t_T)xR(T) + Rg (1), 2.3)
0
¥ = —oPx — J.dr EZI, (t—7)x; (1)
0 J
—fdfzjx(z— P)ig () + R, (1), (2.4)
0
(R, ()R, (tN)=Z,(t—1")/; i’ ={jLR, (2.5)

wherex, denote the reactive mode, {x ;} is theset of 3¥ — 7
nonreactive modes (the six overall translational and rata-
tional coordinates are considered here as a part of the ther-
mal environment), @y is the barrier frequency in the direc-
tion of the local maximum, and w{® are the frequencies
associated with the nonreactive modes near the barrier.
Turning to the reactant well region, great simplification
is achieved by assuming that energy redistribution between
intramolecular modes takes place on a time scale much
shorter than the energy exchange between the molecule and
its enviroment. This is generally believed to be the case for
large molecules in low pressure gas phase but is not obvious
for similar molecules in condensed phases at room tempera-
ture. However there are indications that this assumption is
valid also in the latter case: Gottfried er al.’ have observed
intramolecular vibrational energy redistribution (IVR) rate
in the S, state of anthracence in C,Cl, to be within the tem-
poral resolution of their apparatus (~2 ps), while cooling

the vibrationally excited molecule, i.¢., energy transfer to the
solvent was observed to proceed an order of magnitude
slower ( ~25 ps). With this assumption the molecular mo-
tion in the reactant well is completely characterized (on the
relevant time scale) by the time evolution of the total molec-
ular energy E;; the energies in the different modes are deter-
mined from E; by statistical considerations.

Finally, as in the one-dimensional version of the
theory,!®> I assume that the well dynamics region (deter-
mined by the time evolution of E ) and the barrier dynamics
region (governed by the one-dimensional flux across the
saddle point) overlap somewhere below the barrier. Furthe-
more, I assume that the reactive mode (defined near the
barrier) keeps its identity below the barrier at least down to
this overlap region.

The use of the GLE (2.1) as the starting point for the
present treatment may raise questions concerning the gener-
ality of the model. Langevin equations are usually used in the
context of Brownian motion where a heavy particle ex-
changes energy in small steps with a bath made of light parti-
cles. In the context of the master equation description of the
energy evolution [Eq. (1.6)] this situation corresponds to
the weak collision limit where K(E,E ') is strongly peaked
about E = E'. Unlike the regular Langevin equation, the
GLE may in principle describe processes involving strong
collisions, however as in previous work'® Ishall use reduc-
tion procedures which are valid only in the weak collision
limit. This limit covers a large range of energy exchange
processes in both condensed and gas phase systems. The
choice of Kernel Z(¢) in Egs. (2.1), (2.3), and (2.4) de-
pends, of course, on the details of the interaction dynamics
between the molecule and its environment. This issue has
been recently discussed by Grote, van ‘der Zwan, and
Hynes.** In particular, following insight obtained from mo-
lecular dynamics simulations on liquid Ar,** these authors
separate the friction Kernel into its collisional (short time)
and hydrodynamical (long time) components. Hynes** has
shown that for parabolic barrier crossing, the rate calculated
from the GLE (2.3) with a friction kernel approximated by
its collisional component is numerically very close to that
calculated from the BGK collision model*® for the same sys-
tem.

Another objection to the present model may be made on
the basis of an interesting observation made by Rosenberg,
Berne, and Chandler.’” These authors have performed mo-
lecular dynamics simulations for the isomerization of #-bu-
tane in liquid CCl, and observed that the computed rate does
not change when the CCl, molecules are frozen in their ini-
tial configuration. As noted by the authors, for this system
which is characterized by a large solvent to solute mass ratio
(Meu/Mcea = 0.11), once the molecule has enough energy
to react the dominant solvent effect is to cause energy trans-
fer between intramolecular modes during collisions between
the solute molecule and the surrounding solvent cage. In
terms of the system’s potential energy surface this process is
associated with the occurrence of three body (two solute one
solvent) and higher order interaction terms. Part of the dy-
namics associated with such terms will be reflected in the
impulsive part of the nondiagonal friction Kernel Z,, (¢) of
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Eq. (2.1). In addition such interactions will lead to anhar-
monic coupling terms between the reactive and nonreactive
modes in Egs. (2.3) and (2.4). These [together with anhar-
monic interactions associated with the intramolecular po-
tential surface that were neglected in Egs. (2.3) and (2.4) ]
will give rise to an effective inttamolecular friction affecting
the motion of the reactive mode. Thus, the reduced reactive
mode equations [Eq. (3.1)] is expected to remain formally
the same, however the effective friction tensor Z, will con-
tain contributions associated with the energy exchange
between the reactive and nonreactive modes. With this un-
derstanding the discussion in this paper remains unchanged.

To end Sec. I note again that the assumption of fast
intramolecular energy redistribution in the reactant well in-
troduced the number 7 of molecular modes as an important
parameter of the theory. In a broader context 7 is taken to be
the number of strongly coupled molecular modes and it is
assumed that the reaction coordinate is part of this set. In
liquid solvents # is expected to be equal to the total number
3N — 7 of modes. In the low pressure gas phase n can be
smaller, and the possible slow energy transfer between dif-
ferent regions of the molecular phase space (disregarded in
the present model) may have a substantial influence on the
reaction rate.”®

HI. EVALUATION OF THE STEADY STATE RATE

In what follows I evaluate the steady state rate for the
model described in Sec. I1. The calculation follows that de-
scribed for the one-dimensional case (paper III): First the
steady state fluxes associated with the barrier and with the
well motion are obtained; second the solutions for the two
regions are combined such as to satisfy appropriate bound-
ary conditions. Finally the overall rate is obtained from the
combined solution.

A. Barrier dynamics

Starting from the set of Egs. (2.3) and (2.4) which are
linearized about the saddle point, I follow Grote and
Hynes*® and derive a single equation for the reactive mode
by formally solving Eq. (2.4) then inserting the solution for
x;(2) into Eq. (2.3). The result is

Xg (1) = 0hxg _deZR (t — 1)k (1) + pg (1),
0
(3.1
(e (Dpr (1)) =Zx (1)/B, (3.2)

where Zg () is given in terms of its inverse Laplace trans-
form Z (s) = fgdte= " Z4(1):

2o ()=Zgp (5) = 3 S Ze (M ()Zpr(s), (3.3)
i 7
A A -1
M(s) = [sl + Z(s) + %ﬂz] , (3.4)
w? 0
FISI (3.5)
0

Here I is the unit matrix and Q2 is the frequency square

matrix in the space of nonreactive modes. Equation (3.1)
leads to the following expression for the steady state prob-
ability distribution of the reactive mode near the bar-
rier'®*72%  (from now on I drop the index R from
Xg,Ug, and Ex—the reactive mode position velocity and
energy, and use it only when necessary to avoid confusion)

P®(xp) = F——-———eQ" =150 g
2mhiQ,

X [ 2;:8 + & IT|x dze— 1/2&’222]’ (3.6)

where the constant F will be determined by the boundary
conditions, where

2

- WOy
a=—-, 3.7)

r—o;

E(xp) = E; + ¥ — lwjx?, (3.8)

2
=9 (3.9)

Ao

A, is the largest (real and positive) root of the equation

A2 —wh +AZ(A) =0, (3.10)
and where Q,, and Q, _ | (x,v) are, respectively, the molecu-
lar partition function and the partition function correspond-
ing to the n — 1 nonreactive modes, given that the reactive
mode is held in position x and velocity v:

o, =rdETp,.(ET)e‘”E, 3.11)
(]

Qn -1 (x0) =J. dE,_, pn_1(E,_;)|xp)e” "5,
0
(3.12)

pn (E) is the molecular density of states per unit energy.
Pr—1 (E|x,0) is the density of states associated with the
n — 1 nonreactive modes given that the reactive mode is in
state (x,v). The notations E; and E, _, for the integration
variables keep track of the meaning of E';- as the total molec-
ular energy and E,, _ ; as the energy associated with the non-
reactive modes [the energy of interaction between the reac-
tive and nonreactive modes is assumed small and is neglected
in Eq. (3.12)1.%°

The steady state molecular distribution near the saddle
point may be now written as

PP (xuE, ) =PP(x0)PP (E,_ |x0),

PP L (E,_|xv)

n—leq
1

T 0, xw

(3.13)

pn—— 1 (En— 1 Ix’v)exp( _BEn_ 1 ),
(3.14)

where, again, the coupling between the reactive and non-
reactive modes near the barrier is taken to be weak so that
the flux along the reactive coordinate does not disturb much
the (otherwise equilibrium) distribution in the nonreactive
subsystem.

The steady state flux along the reaction coordinate is
obtained from
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= J dE, _ ‘f dvvPP (x,E,_,)

=f dv vP ® (x,0). (3.15)

Using Eq. (3.6) and replacing near the barrier Q, _, (x,v)
by Q. _, (Eg) (to be denoted by Q &, ) lead to

j(B) - Qfﬂl FB-32 2r e FEs
2mhQ, a+1

If the thermal relaxation within the reactant well is fast,
the constant Fin Eq. (3.6) can be determined by the require-
ment that P*® (x,v) > P, (x,0) as x— — co. This and Eq.
(3.6) lead to F = VJaf /2. Using also Egs. (3.7)-(3.10) to
getVa/(@ + 1) = Ay/wp and the relation

3 —BE )
Q,,=—1' dEQn—l(E)e ~ Qn—l
o wg (E) Bfiwg (0)

where Q {2 | denotes the partition function associated with
the subsystem of nonreactive modes when the reactive mode
is in its ground state, Eq. (3.16) leads to the result of Hynes
and co-workers*>*¢ for the barrier dominated rate rp:

= = o 22 () 02,

wy 2mr Q%
In the Markovian limit, Zg(#) =2yx6(z) and
Zg (1) = y&. Equation (3.17) then yields the well-known
Markovian multidimensional result.**** If, moreover,
0P = Q% (ie., the nonreactive subsystem is not af-
fected by the state of the reactive mode) this becomes the
Kramers one-dimensional result.

The result (3.18) corresponds to the case where the
thermal relaxation in the reactant well is fast. In the general
case the deviation of the well distribution from equilibrium
has to be considered.

(3.16)

,  (3.17)

— BEg

(3.18)

B. Well dynamics

As in the one-dimensional treatment'®** the atomic
motion in the reactant well is assumed to be characterized by
a time-scale separation between the slow energy variable and
the fast changing phases. However, in accordance with our
model assumption (Sec. II) it is the total molecular energy
which is assumed to be (relatively) slow. Individual mode
energies fluctuate rapidly and are estimated only by statisti-
cal consideration.

In order to make contact later with the barrier dynamics
we need P (E)—the probability that the reactive mode
has energy E. We note in passing that P’ (E) is meaningful
only provided that the reactive mode (defined near the bar-
rier) keeps its identity in the well region. I show below that it
is enough that this will be so high in the well, below the
barrier region.

The probability P’ (E) can be expressed in terms of
P {9’ (E, )—the probability distribution for the total molec-
ular energy Er, and the conditional probability distribution
P™ (E |Ey) for the reactive mode to have energy E given
that the total molecular energy is Er:

P (E) =J dE; P (E;)P ™ (E|E;).  (3.19)
(]

Note that P’ (E |E) = Ofor E < E so the lower bound in
the intergration can be taken E.

The assumption of complete statistical distribution of
energy within the n strongly coupled modes leads immedi-
ately to the following expression for P (E |[E;)%:

1 p n—1 (E T E )
ﬁwx (E ) P n (E T )

To find the distribution P$y’ (E) of the molecular en-
ergy, I need a diffusion equation for E; which is a general-
ization of the one-dimensional equation’®

__‘”’(E")=i[ (k y ) E ]
=5 | DB ks T+ o (BPED |

(3.21)

The required generalization of Eq. (3.21) to the multidi-
mensional case is

P®(E|E,) = (3.20)

OP ¥ (Ep,t) F:] a
= DE )k, T 1
at aET[ ( T)( B aET+ )

Xpn '(ET)P}C}”(ETJ)], (3.22)

where D(E7) is related now to the rate of molecular energy
dissipation at T = 0:

(dET) = — D(E;)p™"(Er). (3.23)
T=0

dt

An explicit expression for D(E ) can be obtained from Eq.
(2.1) which leads to

dE 1 ‘ .
( dtT)T=o = _J;dfza:gzab(t—T)x,,(t)x,,(q—),
(3.24)

Invoking the model assumption: slow variation of E; rela-
tive to the relaxation time associated with Z_, (¢ — 7) (the
latter is essentially the characteristic solvent relaxation
time), and averaging the product x, (¢#)x, () over all initial
phases assuming further that the averaged product
x,(t)x, (7) depends only on t — 7, I get from Egs. (3.23)
and (3.24):

D(Ep) =p, (E,)J0 dt Y 3Z,, () [%, (0%, (0) ] g,
a b
(3.25)

Equation (3.25) may be used for evaluating D(E;) using
simulations based on Eq. (2.1). Such simulations will yield
the correlation function [x,(#)x,(0) ], . The average is
over the initial phase and the subscript E; denotes the fact
that the total molecular energy does not change during these
simulations. For a small molecule X, (#)x, (0) can be evalu-
ated in the absence of molecule-thermal bath coupling (so
that £ is obviously constant). This is the lowest order ap-
proximation in the molecule bath coupling to Eq. (3.25).
For large molecules the coupling to the environment may
strongly affect intramolecular energy redistribution and
should be included in evaluating x, (#)x,(0) using Eq.
(2.1). Our model assumptions still imply that £, does not
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2740 ' Abraham Nitzan: Theory of activated rate processes. VI

change appreciably during the relevant time for this calcula-
tion [i.e., the relaxation time associated with Z,, (¢) ]. Equa-
tion (3.25) has also been derived by Zawadzki and Hynes,>!
and its Markovian equivalent has been obtained by Borko-
vec and Berne.*°

The Smulochowski-type equation (3.22) is of the same
formal form as the equivalent equation (3.21) of the one-
dimensional case. Its general steady state (JP{¥’/dt = 0)
solution is

P%(Er)
Er
= E ‘”ET[A A4,| dE'——— ]
‘_PQ (T)e 1+ e, D(E')
(3.26)

and the steady state flux [j = D(kz T3 /3E + 1)p, 'P{}),
is
A,

0.8

InEq. (3.32) A,, A,, and E , ;- are constants to be determined
by the boundary conditions. Note that only two of these are
independent. At equilibrium 4, =0and 4, = 1.

The expressions for P’ (E |E;) [Eq. (3.20)] and for
PP (E|E;) [Eq. (3.26)] are now used with Eq. (3.19) to
get the reactive mode steady state distribution p” (E). This
calculation (Appendix A) yields

(W)(E )_

3.27)

P (E) =ME oy J~E. - PE+D ]
s fiwg (E)Q, D(E +9)
(3.28)
where
Ei=Eir—¢ (3.29)

and where € is the value of € for which the expression
Pn_1(€)e” e achieves its maximum value. In the high bar-
rier high temperature limit it is approximately equal to the
thermal energy in the nonreactive modes

€E~(n—1)/B (3.30)

Note that, in this approximation, if E is the energy in the
reactive mode, E + €is approximately the corresponding to-
tal molecular energy.

The steady state flux j*’ (E) associated with the reac-
tive mode steady-state distribution (3.28) is the same as that
[Eq. (3.27)] associated with the total energy distribution
(3.26)%:

4,

H(w) (E) — .
’ 0,8

(3.31)

C. The combined solution

The assumption that relaxation within the reactant well
is fast so that P®’ (E) is well described by a Boltzmann
distribution (i.e., A, = 0) leads to the barrier dominated
rate [Eq. (3.21)]. When this assumption does not hold the
unknown constants Fin Eq. (3.6) and 4,, A,, and E, in Eq.
(3.28) have to be determined by matching these barrier and
well solutions together. To this end I follow the procedure of

Carmeli and Nitzan!‘® and choose to match the solutions at
some point (x,,v; = 0) corresponding to an energy E, in the
reactivemode (E, = — 1/2wgx% ). 1 assume that there is
at least one such point where both the barrier and the well
solutions are valid. Since E, in Eq. (3.28) can be chosen
arbitrarily, I choose it to be this matching energy. At this
point I require that the well steady state distribution [Eq.
(3.28)] and the corresponding barrier distribution [Eq.
(3.11)] are equal:

wg (E;)
T

[the @/27r term arises from the (xv) — (E¢) transformation
together with the observation that in the well the ¢ distribu-
tionis (277) ~']. Similarly the energy derivatives are taken to
be equal at this point:

P®(E,) = Py (%0, =0) (3.32)

a 1{3d

—— P®(x, =0] =——[—— EyP“)N(E ]
[BE (o =0)] = GpleEPT B
(3.33)
Finally the steady-state fluxes [Egs. (3.16) and (3.31)]
should be the same:

(B) _ ;(w)
J=rT

(3.34)

The three conditions Egs. (3.32)—(3.34), together with the
requirement that the overall distribution is normalized, are
just sifficient to determine the three unknown constants 4,,
A,, and F and the matching point energy E,. Equations
(3.32)-(3.34) lead to

4, (B) 172 27— pE,
V= T ¥a_ e 3.35
7 —@niB 11 (3.35)
ﬁl__ ~1/2 27
F e a
+ [1+ef(Ja+ DBE; —E) ],  (3.36)
and
Dy [C_Z(En —El)]l/zeﬁ[&(EB—-E,)+§]=l
(@a+ 1)D(E,+ & )
(3.37)

Equation (3.37) may be solved for E,. To see its signifi-
cance consider the limits of large and small molecule. For
n=1€=0, Q,_, =1 and #D(E) =0~ f;°dtZ(t)
X X(2)x(0) = weE [e(E) is defined in paper III; see also
Eq. (30) of Ref. 2(c)]. In this limit Eq. (3.37) reduces to
Eq. (3.19) of paper III. For a particular model of the mem-
ory Kernel the resulting E, is displayed as a function of fric-
tion in Fig. 2 of paper II1. Generally E, — E5 for small fric-
tion and E; —0 when the friction becomes very large.

In the opposite limit of large n, both factor Q (¥, &
and D(E, + €) increase rapidly with the number of degrees
of freedom. Their ratio however depends only weakly on 1 so
that 6Ez' , will not be very sensitive to molecular size (see Sec.
IV).
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The last step in evaluating the steady state distribution is
the calculation of the normalization constant

‘/szw d{x""}d{v"“}fn dxfw dv Py (x,0)

=f dE; p,(Er)Py(Er), (3.38)
(+]
|
=W2"lepE‘+A271 + m(2 — 17)A 5 st wdE
¥, Q.8 0.0®, i, T
4, (* _pE, (BT &°F A
+ dEy p, (Ep)e %" j g’ 2
Q. Jo 7PatET E, DE" +
where
E, pl;:
= dE'—— | dE E;)e P51 (3.41
Ty BEOT D(E, J‘ Tpn( T)e ( )
n=1+ef[ @+ DB(E; —E) |, (3.42)
Er=E +§E (3.43)

and where E ;- is some arbitrary source point on the energy
axis near the bottom of the reactant well. 7, is the mean first
passage time for a molecule that starts with total energy E o
to reach the total energy E,. For E o € E the choice of E o1
does not affect the result.

The reaction rate may now be obtained from Eqgs. (3.27)
and (3.40). To simplify the resulting rate note that the ratios
between the flux j = 4,/(0,8) and between the first and
third terms of Eq. (3.40) contain the term rz—the barrier
dominated rate [Eq. (3.18)]. The final result for the rate is
thus

r={[Q/Prs17 +7}74, (3.44)
0 (B)
=0 2x) @acy ps, (3.45)
opg 27 Qfxoll
=9+ Q2-7) 1 dE, e P57
Qn E,
E. E,.—E|E
xf g Py Er —E|E) (3.46)
E, ﬁwx(E)
T=Ty+ T+ T3 (347)
Where'rl is given by Eq. (3.41),
17 eBE'
= dE E e‘”“‘ff dE’ \ 3.48
T = B rPx(Er) . DE) (3.48)
E, - PEg E,—E|E
=8|, dET apf__Pro1Er —E|E)
o fiwg (E)
E eB(E’+'E’)
X| dE' ———. (3.49)
J;- DE'+78)

In the one-dimensional case K, = E;, 7, = 73 =0 and
7=7,. In Appendix C I show that for deep wells,

E\r E’
7560, f dE’ & ,
0

3.50
DED) (3.50)

where {x"~ '} and {v” — '} denote the sets of coordinates
and velocities of the nonreactive modes. The reaction rate is
given by the steady state flux divided by ./

r=j/AN. (3.39)

The evaluation of .#"is described in Appendix B. The result
is

Edee‘”E’,._,(ET E|E)

E, wR(E)

" aE, [agPr=1 Er = LY el

5 wg (E) DE +8)°
(3.40)

(
where the equality is a reasonable approximation. The right-
hand side of Eq. (3.50) is a good approximation to

Eyr E
B dE,B(E'—) dEe‘ﬁEp (E) (351)
0

This is the mean first passage time to reach from the bottom
of the well to the energy £, =E, + é=E, + (n — 1)/B.
Thus 7 corresponds approximately to this mean first passage
time, in analogy to the one-dimensional case.

In the one-dimensional case p,_, =0 so # in Eq.
(3.45) is equal to the factor 7 as already obtained in paper
III. For a very large molecule the double integral in Eq.
(3.46) can be approximated by

© Ey
f dE; e _BETJ dE
0 0

because most of the contribution to Eq. (3.52) comes from
energy regions E;, E> E,. In this case 7 = 2.

Equations (3.44)—(3.49) are the final equations for the
reaction rate. Next I discuss these results.

Prn—1 (ET _EIE)

-0, (352)
g (E) 0

IV. DISCUSSION

The escape rate from the polyatomic reactant well has
been obtained in the form

r={[2/Mrg] ' +7}71 (4.1)
r is given by Eqgs. (3.47)-(3.49) which for large barriers
may be approximated by

Eir PE’
7~BQ, dE’' ——;
2 o D(E")

which is approximately the mean first passage time for the
reactant to reach the energy

E,=E,+¢€ (4.3)
€ is defined as the energy where p,, _ , (€)e ~#¢ achieves its
maximum, and in the high temperature large barrier limit is
equal to the energy in the nonreactive modes €~ (n — 1)/8
(n is the number of strongly coupled internal degrees of free-
dom). 7 is given by

B= (kBT)_‘ (4.2)
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o Ep
F=n+Q@-n— | dE e " | dE
n El El
pn—l(ET_E|E) (443)
fiwg (E)
1=1+ert @+ DBE; —Ey. (4.4b)

@ is given by Egs. (3.8)—(3.10), E, is the solution of Eq.
(3.37) whose typical dependence on the solvent friction is
shown in Fig. 1. In particular E,—Ejy in the low friction
limit and E, -0 when - . @, is the equilibrium partition
function of the n-mode system; D(E), given by

D(E) =p, (E) 'r’ dty > Z, (1) [x,(0)%,(0) ] g,
0 a b

(4.5)

is related to the rate of energy damping by the reactant mole-
cule

(i“i) = —D(E)o; \(E). (4.6)
dt/r=o0
Finally r, is the barrier dominated rate given by
ry = 02, A, —pEs_ R 0) 952, Ao —BEy
2m7BQ, wp 27 Q% wp
4.7)

A few comments should be made concerning these results.

(a) As in the simpler one-dimensional case, the result
[Eq. (4.1)] exhibits a smooth transition from a well domi-
nated rate 7~ ! to a barrier dominated rate r . For very weak
solvent interactions the denominator in the right-hand side
of Eq. (4.1) is dominated by the energy accumulation time 7,
and the rate is given by 7~7~'. When solvent interactions
become stronger 7 decreases and at the same time % ap-
proaches 2, so r becomes dominated by 7 . Note that the low
friction limit of r5 is the transition state expression for the
transition rate. Also note that the way in which the rate
depends on solvent friction changes with the molecular size.
In the large molecule limit (large n) 7 becomes 2 as dis-
cussed in the previous section. Also in this limit 7 can be
neglected (see below) unless the friction is so low that E| is
equal to E. Equation (4.1) can therefore be written

1 E”EdE, LE 1!

g [r” +BQ"L D(E’)] '
In this form the rate is given as the inverse of the sum of two
times: the barrier crossing time r; ' and a time characteristic
to the energy relaxation rate within the reactant well.

{b) The calculation which leads to Eq. (4.1) is based on
a single well (dissociation) model. Its extension to a double
well (isomerization) situation can be carried out in complete
analogy to the similar extension of the one-dimensional
problem described in paper IV.® For a large molecule the
result is simply

(4.8)

TRo L = [rB_,1(l~L + 7. +49.7x ] - (4.9)

7, =P0, ng) dE’ il (w=L,R), (4.10a)
o D, (E")

E{P =E,, +&, (4.10b)

q.=Q1/Qx- (4.11)

The subscripts W( =R,L) in Egs. (4.9)-(4.11) denote
quantities related to the right (R) or left (L) wells. Thus Qg
is the partition function, n, is the number of strongly cou-
pled modes, and Dy (E) is the relaxation function in the
right well. 7z _; and 7g ., are, respectively, the overalland
the barrier dominated transition rates from left to right. As
discussed in paper IV, the appearance of 75 in the expression
for r._, is associated with the back scattering of trajectories
from the far wall of the product well.

(c) As discussed with respect to the one-dimensional
model and in recent experimental papers, the rate equation
(4.1) goes through a maximum when the friction grows
from zero. For extremely small damping the rate is given by
7! with E, = E; which grows linearly with the friction
while for large damping the rate is dominated by 7, which
decreases with increasing friction.%* While the situation here
is qualitatively similar to the one-dimensional case, the
quantitative behavior is quite different. The barrier term in
Egs. (4.1) [or Eq. (4.8)] and (4.7) is not much different:
The additional factor Q2 _,/Q, _, is, for isomerization re-
actions, of order 0.1-10. The relaxation time 7 may however
be orders of magnitude different. To see this take as a rough
estimate for 7 (which holds for E ;> kz T') the expression

Eyr :
T~ Q,,eﬂ =Q,,e"“‘ o= (4.12)
D(Er) D(E,r)
and use®®
D(E) =p(E)Ekyg (E), (4.13)

where k v (E) is the vibrational energy relaxation rate of the
molecule at total vibrational energy E. Using also the classi-
cal approximations for Q, and p (with @—a characteristic
molecular frequency)

kT1" (E /)"~ !
| PE)Y="F— 4.14
leads to
T=[kVR(EIT)Me—B[E,+(n—I)/B]]_1'
(n—1)!
(4.15)

Forn = 1thisyields 7 = (kyr BE e ~## ) ~! which s exact-
ly the low friction generalized Kramers’ result (the friction ¢
is replaced here by the more general k vy which incorporates
non-Markovian effects if present. In this low friction limit
E, = Ep). This results both because of the larger kyg ex-
pected for larger molecules and because of the explicit # de-
pendence in Egs. (4.15)-(4.17). Equation (4.1) then im-
plies that the turnover from well dynamics to barrier
dynamics dominated rate occurs for large molecules at much
smaller solvent viscosities (or pressure in the gas phase)
than for small molecules. This point was discussed in Refs.
39, 50, and 51. Since for this small friction the barrier domi-
nated rate is identical to the TST rate, it may be concluded
that for large molecules a plateau in the rate vs solvent fric-
tion, where 7 = rygr, should be observed. It should be kept in
mind that identifying this plateau value with r g rests on
the assumption that the number n of strongly interacting
modes is equal to the total number of internal degrees of
freedom, and that energy redistribution among these modes
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occurs instantaneously relative to other relevant times. If
this is not the case, rates larger or smaller than r;¢; may be
observed depending on whether or not the reaction coordi-
nate belong to the group of directly pumped modes. This
may explain some of the recent observations on the isomeri-
zation rates of ¢-stilbene and of diphenylbutadiene.5’

(d) In the large molecule limit I have shown that % in
Eq. (4.1) becomes 2 so that the rate r is always smaller than
rg, and therefore also bounded by the transition state rate
rrsy (assuming that » is equal to the total number of degrees
of freedom). Equation (4.1) was also shown to yield in the
one-dimensional limit the results of paper III which has sim-
ilar properties. In the general case I did not succeed to prove
that the form [Eq. (4.1)] is bounded by g, though this
was the case for all the numerical checks. Obviously, pro-
vided than r is equal to the total number of internal degrees
of freedom, the rate r should be bounded by r;sr and any
possible deviation of Eq. (4.1) from this will be the result of
the approximations employed in the derivation.

(e) Aninteresting difference exists between the low fric-
tion limit of the rate obtained in the present work and
between the low friction rates calculated by other
workers.’%*! Borkovec and Berne®® as well as Zawadzki and
Hynes identify this limit rate as the inverse mean first pas-
sage to reach from the bottom of the reactant well to the
reactive mode barrier energy E. The rate is then given by
the inverse of Eq. (4.15) with £, =E, + (n — 1)/f re-
placed by Ej. In the present work, the low friction rate is
obtained as the inverse mean first passage time to reach the
energy E; + (n — 1)/B. Mathematically this is obtained as
a consequence of our connecting procedure: the flux across
the reaction barrier was assumed in Sec. III to take place
with the nonreactive modes at thermal equilibrium [Eq.
(3.14) ]. This implies that the products are formed with their
internal degrees of freedom at equilibrium while taking £y
as absorbing barrier implies that the products are formed
with zero internal energy.

It should be stressed that the correct mathematical low
friction limit is that corresponding to E; as an absorbing
barrier: if the friction (or the gas phase pressure) is low
enough, the molecule will spend enough time near E so that
a fluctuation in internal energy distribution that leads to re-
action will occur. Such a fluctuation is less likely for a larger
molecule. For a large molecule, we expect that a range of
friction/pressure exists for which the rate still obeys low fric-
tion dynamics but the effective absorbing barrier (effective
threshold) is considerably higher than Eg. Such “chemical
shifts” of the effective threshold are well known.®® Our mod-
¢] implicitly assumes that this shift is (n — 1)/8.

(f) The results (4.1)-(4.15) stress the number of
strongly coupled modes 7 as an important parameter of the
theory which together with the activation barrier height and
the solvent frequency dependent friction determine the reac-
tion rate. The barrier height and the friction can in principle
be determined by independent measurements (Arrenius
temperature dependence of the rate in the transition state
regime and molecular vibrational relaxation rates). The
number of strongly coupled degrees of freedom is an unde-
termined parameter of the theory. In this respect our situa-

tion is similar to that of the RRKM theory, and in fact the
present results may be viewed as a unification of the RRKM
and the generalized Kramers’ theories of chemical reaction
rates. Using »n as a fitting parameter has been a traditional
way of applying the RRKM theory to interpretation of ex-
perimental data. Because of the large sensitivity of the calcu-
lated rate to n (both in the RRKM theory and in its present
extension) such a fitting can at best lead to very crude esti-
mates. An interesting possibility is to estimate # from transi-
tion state (high pressure gas phase) data and to use the so
obtained number of strongly coupled modes to predict the
full range pressure/viscosity dependence. Such a procedure
may work if intramolecular energy distribution is dominated
by intramolecular interactions. More likely we may find that
the number of strongly coupled modes is pressure dependent
at low pressures as discussed at the end of Sec. IL. (See also
Ref. 69. In this paper Borkovec ef al. describe a model in
which molcular mode-mode coupling seems to effectively
decrease with increasing pressure. However the model does
not include the possibility of collision induced energy trans-
fer between the modes, a process which may dominate the
relaxation behavior of large molecules.) In any case, it is
obviously important to get experimental information on the
parameter #z in the different pressure/viscosity regimes. The
present results provide a theoretical framework for such
studies.

(g) Very recently it was shown by Straub, Borkovec,
and Berne’® that in highly non-Markovian situations and for
high friction the barrier dominated rate rp as derived by
Grote and Hynes?’ (see also Hanggi and Mojtabai*® and
paper I11) does not provide a proper description of the over-
all escape rate out of the reactant well, as obtained by the
simulation. These observations have been subsequently ex-
plained by Okuyama and Oxtoby.”! Qualitatively the origin
of this behavior can be understood by considering the model

memory function used by Straub et al.”®:
13
X= — LQ}_’_(X_) - f dr Z(t — 1)x(7) + —I—R(t),
m Jx ) m
(4.16)

(R(OR(t)) =mkyTZ(r) (4.17)
with

Zy=Ye " 1 =ay. (4.18)

(4

The potential V(x) is characterized by the well bottom w,
and the barrier @, frequencies. As ¥ increases so does the
bath correlation time 7,. However, provided that aw? > 1
the reactive frequency A, (defined in Sec. I1I) remains finite
as ¥ — o, so that the barrier crossing rate 7 also remains
finite. On the other hand the relaxation rate associated with
the overdamped well motion vanishes in this limit”* so that
as in the -0 situation the well dynamics becomes rate de-
termining and dominates the overall rate.

It should be noted that this limit involves a very strong
molecule-solvent interaction which substantially changes
the intramolecular motion.® There is no spectroscopical evi-
dence for such an effect even in high viscosity solvents or for
molecules imbedded in solid matrices. In the present work
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(as in our previous work) I have made the assumption that
the well motion is underdamped and is not qualitatively
changed by the solvent interaction. Moreover I have as-
sumed that at such energies where the motion may not be
underdamped the system is close enough to the barrier to
make it possible to describe the latter as an inverted parabo-
1a. These assumptions will obviously break down in the situ-
ation considered by Straub er al.”

(h) While the model employed in the present work pro-
vides a reasonable picture of a unimolecular reaction involv-
ing a large molecule in solution, other ingredients not con-
sidered here may play a role in some systems. The possible
role played by intramolecular friction (nonlinear coupling
between the reaction coordinate and other nonreactive
modes near the barrier) has been discussed in the Introduc-
tion. Agmon’ has recently discussed a model in which the
rate is controlled by diffusion perpendicular to the reaction
coordinate and has shown that such a model can give rise to
the fractional power dependence of the rate on solvent vis-
cosity, similar to what is predicted by the non-Markovian
theories.

(i) The results listed above are based on several approxi-
mations. Some are essential parts of the model: The assump-
tion that intramolecular relaxation is much faster in the well
region than intermolecular energy exchange, the decoupling
between the reactive coordinate and the nonreactive mode in
the barrier region and the assumption that a unimolecular
rate is well defined (which is valid if E; >k, T'). Other ap-
proximations serve to simplify the results. Thus Eq. (4.2) is
the large barrier approximation to Eq. (3.58) while Egs.
(3.42) for € and Eq. (4.15) for 7 are based on the assumption
that temperature is high enough to permit the use of classical

1 ! L, e
0] 04 08 1222 3 4

Y0

)’/u.:B

FIG. 1. The transition energy E, [solution of Eq. (3.49) ] for trans-stilbene
(full curve) calculated using parameters described in the text. The dashed
line corresponds to a molecule with the same reactive mode parameters and
with partition function of the nonreactive subsystem larger by a factor of 5
than that of the zstilbene. The dotted dashed line corresponds to a similar
molecule with partition function of the nonreactive subsystem smaller by a
factor of 5 than that of ¢-stilbene.

statistical thermodynamics in evaluating the molecular dis-
tribution. While these approximations served to illustrate
the essential points in the theory they are not valid in many
practical situations. In the much studied isomerization of
trans-stilbene for example, the barrier to isomerization is
~ 1150 cm ™! while the largest molecular frequencies are in
the 3000 cm~! range. The theory may be applied to such
situations by avoiding the simplifying classical approxima-
tion and resorting instead to numerical integrations.

It is interesting to estimate some of the parameters of the
theory. In Fig. 1 I plot, for ¢-stilbene, the transition energy
E,, which roughly separates between the well-controlled and
the barrier-controlled regimes, as a function of friction ¥
[related to the solvent viscosity 7 through = 6mpa/m,
where a and m are the radius and mass of the moving parti-
cle. In this calculation the vibrational density of states is
obtained by direct counting, using the normal modes of stil-
bene as calculated by Warshel.” The reaction coordinate is
taken, following Troe,>*® as the 88 cm ™! mode. The barrier
frequency wp is taken the same 88 cm~ . @a=A41%
(0% —4?) _Where A, the Ilargest root of
A2 —w}k +AZ(A) =0, is calculated using the simplified
memory Kernel Z(t) = (y/r.)e” '™ [whence
Z(A) =y(1 + Ar.) '] with 7 chosen equal tow '.7* The
function

D(E) =p(E)f dts Z,(1) T, (05, 0] £
0 a

can be calculated by assuming that x,(#)x,(0) = E
Ree ™~ ™' with some characteristic x and w. Putting
3,x2 =E leads to

T+ 1

D(E) = yp(E)E —————.
(B =rpE) @ + (r.x+1)*

(4.19)

In the actual calculation displayed in Fig. 1 I have used
D(E) =0.1yp(E)E.

As mentioned above, the high temperature expression
€ = (n — 1)/f cannot be used in the present case. Instead €
was computed as the energy for which p, _, (E)e ~#F at-
tains its maximum. For 7= 300 K this yields €= 1870
cm™. In Fig. 1 I also show the E, vs ¥ curves for molecules
which are substantially larger and substantially smaller than
stilbene but with the same reactive modes. In Fig. 1 the dif-
ferent sizes are expressed by the different room temperature
partition functions of the nonreactive subsystems. E, is sur-
prisingly quite insensitive to the molecular size [see also dis-
cussion following Eq. (3.49)].

Another question concerns the turnover from energy
controlled to barrier diffusion controlled rate, namely the
location of the maximum in the rate vs friction dependence.
Even though the present theory uses the generalized Lange-
vin equations as its starting point, the observation that for
large molecules 7 becomes extremely short for any apprecia-
ble solvent interaction suggests that this turnover may take
place in the gas rather than in the liquid phase. The interpre-
tation of 7 of Eq. (4.1) as the mean first passage time for the
molecule to reach the energy E; -+ € makes it possible to
increase the applicability of this result by making the plausi-
ble assumption that maintains this physical meaning also in
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situations when the present model and Eq. (4.15) ceasetobe
valid. In the gas phase Eq. (1.6) with K(E) =0 may be a
better description of the well dynamics than the generalized
Langevin equation (2.1). Usingfor K (E,E’) in Eq. (1.6) the
popular exponential model K(EE') = (v/(a+8))
Xexp[(E—E’)/a] for E<E' and K(E.E')=[v/
(@ +pB)] Xexp [(E' —E)/B]for E>E’, where a and 8
are the mean energy transfer per collision in the upward and
downward directions, respectively, and where v is the colli-
sion rate leads’"¢ to the following approximate expression
for the mean first passage time to reach an energy E:
HE) = kpT, exp(E /kgT, )’
v(a —B)

where T, is an effective temperature defined from p(E)

Xe~E/¥T — const e ~®/*"™. A rough estimate of the colli-
sion rate corresponding to the turnover of the rate vs friction
dependence may be obtained by equating 7(E) to the TST
rate. For stilbene the latter is measured (k, in the gas
phase) tobe 2 x 10°s~! at room temperature. Taking (again
for stilbene) E = E, 1150 cm !, taking for v the gas kinetic
value v~ (10° P, ) s~ and choosing as reasonable room
temperature estimates @ = 500 cm~* and =200 cm™!
[detailed balance requires that 8 ~' —a~'= (kzT,) "]
lead t0 Py mover == 70 atm. The value measured by Fleming
and co-workers®’ in methane is about 90 atm. This calcula-
tion serves to indicate that the turnover region for large mol-
ecules should be looked for in the high pressure gas phase or
in very low viscosity liquids. For smaller molecules this pres-
sure (viscosity) is expected to be higher. A trajectory study
by Montgomery et al.%” for the isomerization rate of n-bu-
tane in a Lennard-Jones solvent with parameters corre-
sponding to CCl, places the turnover regime in the liquid.

To end this discussion it should be remembered that
apparent turnover behavior may be the result of pressure
dependence of the reaction barrier height (see Sec. I) and
therefore observation of turnover behavior cannot be taken
by itself to indicate the existence of the mechanism discussed
in this paper.

In this paper I have developed the non-Markovian the-
ory of activated rate processes to the large molecule regime.
The dependence of unimolecular rates on solvent interaction
has been shown to be very sensitive to molecular size. The
crossover from the energy controlled well dynamics to the
diffusion controlled barrier crossing has been estimated to
occur for moderately large molecules in the high pressure
gas phase.

Note added in proof: In a recent paper, Straub and Berne
[J. Chem. Phys. 85,2999 (1986) ] have presented as a para-
dox the difference between the result (4.15) obtained as the
low friction limit of the rate associated with a system of n
strongly coupled modes and between the low friction rate
obtained from a non-Markovian one mode model.'®2(®
According to these authors, the two models should be physi-
cally equivalent because it is always possible to reduce a sys-
tem of many modes to a one reactive mode with non-Marko-
vian thermal interactions. Still as is evident from Eq. (4.15),
the temperature dependence of the preexponential term is
strongly dependent on the number of modes. They offer a

(4.20)

resolution to this “paradox” by suggesting that the elimina-
tion procedure which leads to the generalized Langevin
equation for the single reaction coordinate is valid only when
the eliminated modes are overdamped.

I disagree with this suggestion. As was shown by Car-
meli and Nitzan,'®+?® the single mode rate expression is
valid if the reactive mode energy changes slowly relative tc
the timescale associated with the dynamics of the thermal
bath (the bath correlation time). Equation (4.15) is valid
for a set of n strongly coupled modes—strongly coupled in
the sense that they exchange energy rapidly so that the total
energy is the only slow variable. If in such situations, we
eliminate n — 1 modes, the energy evolution of the remain-
ing one changes on the time scale which characterizes the
other modes which now constitute the bath, and the time
separability does not hold. On the other hand, such time
separability does not require that the eliminated modes will
be overdamped—only that the coupling between the reac-
tion coordinate and these modes is weak enough. A simple
example of such a situation is the vibrational relaxation of ¢
diatomic molecule inbedded in a solid matrix, due to cou
pling to the lattice phonons. These phonon modes that were
eliminated from the full dynamical description are not over:
damped. Still (one mode) energy equation of the form
(3.21) (or its quantum analog) provides a valid descriptior
of this process.

APPENDIX A: EVALUATION OF THE REACTIVE MODE
WELL DISTRIBUTION

Inserting Eqs. (3.26) and (3.20) into Eq. (3.19) lead:
to

e PE

P(w)(E) I ——
%R (E)Qn

(E), (A1
1(E)=f dE;p,_(Ep —E)e P ®
E

(A2

Exrd PE’
X{A;,+ A4 E' )
( YT ), D(EY)

Note that at equilibrium where 4, =0 and 4, = 1, I(E;
becomes

f dE’p,_, (E'|\E)e=P5' =Q,_(E)
o

(here the dependence of p,, _ , on thereactive mode energy 1
was written explicitly) so that

Péf’(E):_—Q"-‘(E) e PE. (A3
fiwg (E)Q,
To simplify 7(E) change variable E; — E =,
I(E)=f dep,_(e|E)ePE
0
a2 (A4
X4, +4 E'———)
( T ere T DEY

and notice that the termp,, _ , (€|E)e ~#% is strongly peakes
at some €( =€) while the remaining term in the integrand i
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constant at equilibrium and monotonously decreasing with
increasing €. Therefore,

Eyr E’
dE" _ef_)_

IB) =0, , ()4, + 4, o

(AS)

E+ &

Equations (Al) and (AS5) lead after changing variables
(E'-E’'+€E,r—~E, +€)toEq. (3.40).€isgivenapproxi-
mately by

S&deep, _ (€)eFe

€= =(n—1)/B, (A6)
f(‘;odepn—l(e)e—'ﬁe
where the second equality holds for high 7.
J
A E
OPnQ( T) e—BET; ET<E0T
PM = "

E E\r E’
pn(Er) e*‘g‘ff(,«11+A2 dE' S ); E

Q. Er D(E")

Continuity of the distribution at E; = E ;- leads to
E\r E’
Ay=A,+ A4, dE’ & — .
Eor D(E")
For E; > E, we do not have an exact expression of P, . I
propose the following approximation:

Py (E}) =fdxfdvde,,_, Py (xu;E, )

(B2)

Xa[E(xyv)"’En—l _ET]’ (B3)
where
PM (x,v;E,,_ 1)
_BEn—l
_ Py Prot [En i [EGE0) e B4)
Qn—l [E(.x,U)]
and where
E(x,
P(x0) = P [E(xp)] ﬂLZ—“‘ﬂ; Er>E,>E(xp)
T
(B5)
and
P(xp) = lim P®(xp); E;>E(xyv)>E,. (B6)

Note that in Eq. (B4) I assume that the density of states and
the partition function of the nonreactive subsystem depend
on the state of the reactive mode only through its energy
E(x,b).

In Eq. (B5) P™? (E) is given by Eq. (3.28). The mean-
ing of the right-hand side of Eq. (B6) is

27 o~ BECxw)
- b
ap

(B7)

where F is determined by the continuify condition (3.34).
This yields

P(B)(x’v)x_":w n——l[QE(x!U)] F

-, Vol,

M 'ngubjec
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APPENDIX B: EVALUATION OF .+ [EQ. {(3.50)]

The calculation of the normalization constant 4" [Eq.
(3.38) ] follows closely the similar calculation presented for
the one-dimensional case in Appendix B of paper III. In
what follows E denotes the reactive mode energy and E, is
the reactive mode energy at the joining point of the barrier
and the well distributions [solution of Eq. (3.37)]. E is the
total molecular energy and E,; = E, + €. Finally E, _,
= E — E is the energy in the nonreactive subsystem. The
computation is facilitated by introducing a source point (see
paper 1II) E,; near the bottom of the reactant well. The
molecular distribution function in the range 0 < E; < E, is
then

' (B1)
1>Er>Eor
r
P(x,p) =4, Q1 [E(x0)] 05 LB = B0,
.22, Ao

The rationale for these approximations is as follows.
First, near the barrier (where the normal modes are nearly
uncoupled) the fact that the reactive flux flows along the
reactive mode implies that the distribution in the nonreac-
tive subsystem is Boltzmann like. Second, the approxima-
tion (B7) for the reactive mode (which is the same as was
used in the one-dimensional case, paper III) is sufficient as a
crude estimate because in this range of high reactive mode
energy (for large n E, is close to Ej in all situations where
the well is not in equilibrium, see Sec. IV) and the contribu-
tion of Eq. (B7) to ./ is therefore quite small.

With the approximations (B5), (B6), and (B7) the dis-
tribution Py, (x,v;E,_,) is a function of x and v only
through E(x,v). Using the transformation fdxfdvf
[E(x,0)] = §dE [27/wg (E) If (E).Equations (B3)—(B7)
and (3.28) lead to

Py (Ep) =dePM(E;ET), (B9)

where the joint probability distribution to have total energy
E; and reactive mode energy E is

_ Pu_1(Er —E|E)€—BET

P (EE,) =
M fiwg (E)Q,
E, PE+®
x4, +4 dE'——————)
( S D(E' +§)
(E;>E,>E) (B10)
and
Ey ,—BEr _
Py (EE,) = 2l ¢ a1 (Er —E|E) 05
0,02, wg (E) Ao
(Er>E>E,). (B11)
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The desired normalization constant is now obtained
from

N =N+ N g+ N AN gy (B12)
Eor

./V,=f dE, Py (E;), (B13)
(4
E,

./V'2=J dE, Py, (Ep), (B14)
Eor
oo E,

/3=f dE; | dEP,(EE,), (B15)
E, E,
@ Eq

N = f dE, | dEP,(EE,), (B16)
1 EI

where Eq. (B1) is used to evaluate .4, and /", Eq.
(B10)—to evaluate .4 and Eq. (B11) is used to evaluate
N4

Equations (B1), (B13), and (B14) yield after some al-

Wby =2 (P By p (B Aoy A
0, Jo 0.8 0,
E, E\r PE’
X | dE;p,(E e"’ETf dE’ ,
o rPn(Er) E, D(E")
(B17)
where
E, e—BET Er ,
r=8| dE; dE'p,(E')e FE (B18)

Eor D(ET) (]

is the mean first passage time for a molecule that starts with
total energy E o1 to reach the total energy E,. Note that [us-

ing Eqgs. (3.35) and (3.36), and the relation
Va/(@+1) =Ay/wgl:
_ why ©p sz,
4=—57 == &4, (B19)
n--1 0
with
n=1+ef[\J(@+ D(E; —E)]. (B20)

Using Egs. (B10), (B11), (B15), and (B16) together

gebra, |  Wwith Egs. (B19) and (B20) we get
A, wp [ Er ¢~ %1 (Er—E|E)
Nyt Ny =T ”f dE, | dE Pn18B1
Qn r(uB—) 1 0 E, 0 @p (E)
Ep E. ﬁET —
L 72— )4, wp dET g a1 By E|E)
Qn r(lB—) 1 A E, mR (E)
E, ~ BEy V=
s ' E — EE (E'+©)
4+ f dE, [ agf—Prost IE) R (B21)
#Q, JE, 0 wg (E) E D(E' +¢€)
. . . r m
Using Eq. (B19) together with the relation s ﬁ dE" ’ J‘ dE" p, (E")eP5". D
Epy= [ apfroiEr—EIE) B22 D(E
pr(Er) = A Fog (E) » (B22)  hisis actually a good approximation to 7, because ¢’/

the first term of Eq. (B17) and the first term of Eq. (B21)
are easily shown to sum up to

Thnd e @5
Q2 Ao

For a small molecule the second term in Eq. (B21) may be
disregarded: If E, € E, then 17 = 2 and this term vanishes. If
E,~Ey [so that 5~ 1 and the coefficients of the integrals in
the first and second terms of Eq. (B21) are identical] this
term is much smaller than the first term of Eq. (B21). In
either case the second term of Eq. (B21) may be neglected
relative to the first one. This is no longer true for large mole-
cules where most of the contribution to the integral
SEdE e~#Ep, | (Er — E |E)/wg (E) comes from the re-
gion E; > E > E,. Thus in general we should keep this term.

Using these considerations in combining Egs. (B17)
and (B21) finally leads to the result {Eq. (3.40)].

APPENDIX C: EVALUATION OF  [EQS. (3.47)(3.49)]

For deep enough walls 7, [Eq. (3.41) ] isindependent of
E ;7 and the latter may be replaced by zero. An upper limit
on 7y is

D(E’) is strongly peaked near the upper limit E,.5®
Using Egs. (C1) and (3. 58b) we get

-
71+72<5f dE’ eB

dE E')e PE,
DE) b ‘Pa(E')e

(C2)

where again the equality is a good approximation for deep
wells.
Consider now 7, [Eq. (3.48)]:

Pu1 (E—E'|E")
fiog (E')

= dEe“‘BEJ dE’

E, SE+B
dE" ————. (C3)
& D(E" +¥)

Integration by parts yields
HE+®

=8 dEe—ﬁEf dE' ————
DE +9

f E.Pn-l(E' E"E" ) (©4)

fiwg (E")
Replacing E’ in the upper limit of the E ” integration by £
and using
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E
f dE" p, (E—E"|E")/#wg(E") =p,(E)
0

leads to an upper bound on 75:
eB(E‘+?)
D(E’'+§&)
o g Exrd PE’
= dEe~%%p (E E’
B Pn(E) ! DE

E,

« E;
<B| dEe %%p,(E) | dE’
E, 0

Eir eBE* o
<B| dE’ f dE e~ P%p, (E). (CS)
0 1

D(E")Je
For large SE | the equality in Eq. (C5) is a good approx-
imation to 7,. Equations (C2) and (C5) now yield

E,r 4
r<p0, [ &' s
Q

D(E")
which is Eq. (3.59)
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