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EFFECTIVE POTENTIALS FROM LANGEVIN DYNAMIC SIMULATIONS OF FRAMEWORK SOLID ELECTROLYTES

*
R.O. ROSENBERG, Y. BOUGHALEB, A. NITZAN and M.A. RATNER

Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL

60201 U.S.A.

Tonic motion in framework solid electrolytes constitutes a spectal sort of classical many-body
problem. In such electrolytes, the conductivity is due to the motion of interacting mobile
ions modulated by the presence of an esgentially immobile framework sublattice. Here, a one-
dimensional model of interacting particles, governed by Laugevin's equations of motion in a
sinusoidal potential, is used to calgulate particle distribution functions and effective poten—
tials, Tbgvefffgsive potential Vorrix), 1s then defined through the density distribution, p(x),

olx) « e eff

where B = 1/kT. The Langevin dynamics simulation is used to calculate p(x),

which in turn gives Vo¢f(x). The dc conductivity and the other distribution functions can be
used to investigate commensurability effects, planing effects, and screening effects. Compar-
isons can then be made between correct numerical many~body results and various analytical

approximations,

In solid framework electrolytes some of the
constituent ionic species exhibit conductivity
of the same order of magnitude as that of
liquid electrolytes.? Potassium hollandite is
one such conductor in which the mobile potas-
sium lons move through an lonic framework domi-
nated by octahedral sites.? In this type of
conductor, the lonic sublattice is rigid and
one can discuss theoretical models that treat
the dynamics of the mobile ions as independent
of dynamics of the sublattice. Further simpli-
fications can be employed concerning mobile
fon-ion interactions3~3 and mobile iom-sub-
lattice interactions.® Many models have been
proposed but even with such simplifications,
ionic transport in solid framework electrolytes

is a difficult many-body problem. Analytical

treatments of the problem go from simple lat-
tice gas and hopping models’ “13 to dynamical
treatments including continued fraction solu-~
tions of the Fokker-Planck equation.!6-18
Numerical solutions, which treat the many-body
dynamics exactly, include both molecularli3-22
and Langevin dynamics.23-28 This paper uses
Langevin dynamics to examine the properties of
these superlonic conductors. This model assu-
mes that the rigid sublattice interacts with
the mobile lons only through a static potential
due to the sublattice equilbrium configuration
and a dissipative mechanism that exerts both a
viscous drag and a random force to maintain
thermal equilibrium. In the high friction
limit, Dieterich29-32 has shown that the dyna-

mics of the mobile ions become even simpler and
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one can relate the DC conductivity to an effec-
tive potential which is defined in terms of the
single particle density function. In turn,
experimentallists can obtain the single particle
density function from diffuse X-ray scattering
experiments.33'35

It 1s the purpose of this paper to see 1if
such a relation can hold for a broader range of
frictions and interaction potentials: for what
mobile lon densities, temperatures, frictlons,
and particle interactions can the many particle
dynamics be represented by the single particle
dynamics in the effective potential. The plc-
ture is obviously limited and is not expected
to apply in all circumstances, however the con-
cept of effective potential greatly simplifies
the many-body problem so that a broader range
of superionic conductors may be studied and
ionic transport more fully understood. It is
therefore worthwhile to push this concept as
far as possible and to explore ite limits. We
present here such effective single-particle
potentials, derived from full Langevin simula-
tiona, for a serles of physical situations
{differing frictions, densities, potentials,
and temperatures) in a one-dimensional model.

We consider here a one~dimensional model of
interacting particles, governed by Langevin's
equations of motion
The Langevin equatfon of motion for a single

particle 1is

mii = “mT;i - EEI'VTOT({K}) + Ri(t) 1)

where m 18 the mass of the particle, vy 1a the
friction coefficient, Vror({x}) is the total
static potential and Ry(t) is the random force,
assumed to be gaussian white noise. The random
force and the friction coefficient are related

by the second fluctuation dissipation theorem39
<Ry{t) Rj(O)) = kaTYG(C)Gij (2)

where k {5 Boltzmann's congtant and T is the

in a sinusoidal potential.

temperature. There are four interesting para-
meters to vary: the particle concentration C,
the friction coefficient, the temperature, and
the static potential,

The total static potential for ionic motion
in a system with N moblle ions contains both

one— and two-body terms:
UN({x}) = § v (xg) + ] Volxgxy) (3)
i i>j

Vi(x) 1s the sinusoidal potential due to the
equilibrium configuration of the cage potential
of the sublattice,

v, (x) = —% [ cos ( E;" 1+ 1] (4)

where A is the barrier height, a is the
distance between wells, and the well-bottom
frequency 1s w,= [2112 A/mazquz. The mobile
ion interactions are assumed to be the sum of
pair interactions, V,(xy-x4y) such as the

coulomb potential,
Valxg=xy) =q2/ |xq-x;l (5)

where q 1s an effective charge. Other poten-
tials that we consider are a ghort range

potent13140'41
Vo) = BI( == )2 -1/9], x < 3b;
\ Vo(x) =0, x > 3b (6)

with a cutoff at x = 3b, and the Frenkel-

Kontorova interactlon6*16
Vz(xi—xj) = a{xy - Xy - b)2 Gi,jtl (7

which assumes harmonlc interactions only
between nearest neighbors. These three dif-
ferent potentials will serve to investigate how
the effective potential varies with the type of
interaction chosen for the mobile ions.

The mobile ion effective potential Vage(x)
is then defined through the single particle
distribution functiou,

o(x) z ¢z e Bleff(x) (8)
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where B = 1/kpT and z is a normalization
coustant. The Langevin dynamics simulation
provides trajectories to calculate p(x) and
thus obtain Vgofg(x). In the high friction
1imic, the DC conductivity of the system can be

expressed in terms of the effective potential

1 A BVerg(x)
o = pg Dy qulgfodxe effix

(9)
1 A2 -8y R
x - IO dx e 8 ~9ff(M)] 1

where py is the average denst} and D, is the
bare lon diffusion coefficient. Thus given the
density, p(x), one can obtain (in the Smolu-
chowskil limit) the DC conductivity ¢. This
formula is exact for noninteracting particles.
It 15 the purpose of this paper to see for what
range of frictions, densities, and interaction
potentials one can relate the many particle
dynamics to the single particle dynamics in an
effective potential, and to study the system—
atics and behavior of this effective potential.

The height and well frequency of the effec-
tive potential give a good indication of the
dynanics of the system. For commensurate den—
sities, where the preferred spacing of the ions
due to their interaction potential, V,, 1s com-
mensurate with the bare sinusoidal potential,
Vy, (V, and V, can assume their minimum ener-
gles simultaneously) we expect the effective
potential to have a higher barrier height than
the bare sinusoidal potential., In this commen-
surate case, the two parts of the potential
reinforce each other, requiring an escaping
particle to galn that much more energy bhefore
exiting a well. Since the effective potential
barrier height is increased compared to A, we
expect the effective well curvature to be
higher, and this should be reflected in the
conductivity peak for the single-particle
effective dynamics. For the incommensurate
case, in which the Interaction potential

favors an ion spacing incommensurate

with the bare lattice spacing, the effective
potential barrier may be reduced. Here the
potentials V| and V, compete, since they cannot
agsume their minima simultaneously for any con-
figuration of ions. Thus the equilbirium ionic
configuration requires ions to sit away from
their sinusoidal potential well minima in order
to decrease their total interaction energy.

The resulting ion configuration can best be
seen by looking at the palr correlation func-
tion, which 1s defined in terms of the two par-
ticle and single particle probabllity

densities:
glx,x") = p2(x,x" )/ p(x)p(x") (10)

g{x,x") is the conditional probability of an
ion being at x' given that there 1s an lon at
x. Let us call the lon at position x the test
ion. For an inhomogeneous system, we conslder
only two palir correlation functions, one where
the test {ion is at the bottom of the well and
another where the test ifon is between wells at
the barrier top. These two pair correlation
functions will indicate the {importance of the
sinusoidal potential; 1f it is important the
top and bottom pair correlation functions will
be quite different, if the effect of sinuscidal
potential 1s small, they will be similar. The
palr correlation function will also Indicate
how the ions, In an equilibrium average, space
themselves among the wells. From equatfon {9),
those densities resulting in ions with
equilibrium positions near the bartier tops are
indicative of an increase in the DC conduc—
tivity.

The frequency-dependent conductivity 1is
related to the frequency-dependent diffusien
coefficient by the Nernst-Einstein relation:

alw) = Cq2 8 D{w) (an

Here the frequency dependent diffusion coef-

ficient 1s found by the Green—-Kubo relation
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involving the Fourler transform of the

velocity-velocity time correlation function:

D(w) = Re{f: elol <v(t) v(0)> dt} (12)

where <...> denotes a canonical ensemble
average. Either the tracer or bulk diffusion

coefficient can be calculated

N o
Dre(w) = Re{-% I [y elet <v. () vi(0)>de}

1=1 a3
, NN o

Dgy(w) =Rel ¢ § T | elut <yi(t) vy(0)>dt}
1=1 j=1 ¢

(14)

where N 1s the number of particles. 1In order
to determine convergence, we compare Dy,(0) to
the DC conductivity obtained from the slope of

the mean square displacement:

Ly

N
Dpy = ¥ igj lin <(xq(t) =x,(0)D/2¢  (15)

Note that in one dimension a{w) (eq. (11)) is
related to the total current in the chain and
not to the current per unit cross-sectional

aread.

RESULTS

The parameters of the system were those
used by Jacobson, et al.,3l to simulate
potassium hollandite and silver fodide. The
lattice spacing was taken to be 3.1 A, the well
height to be .1 eV and the ion mass was that of
gilver, The other parameters, friction, tem—
perature, and density, were varied for each
simulation. We define the concentration C as
the number of ions per site, OQur high friction
calculations were done with y = 1.6 w, where
¥y is the well bottom frequency. In this regime
previous numerical work3! showed that the
Langevin dynamics for a system of coulomb par-
ticles agreed falrly well wich Dieterich's
Smoluchowskl result, Bgq. (9). Low friction was
represented by y = 0,08w; . The temperature was

taker to be A/3 for the short range interaction

potential and A2 for the coulemb and Frenkel-
Kontorova systems. For each potential, commen—
surate and Incommensurate densities were used.
For the short range interaction potential, the
lion behavior 1s very liquid-like. The pre-
ferred ion spacing was taken to be the position
of the first maximum in the pair correlation
function for the system In the absence of sinu-
soidal potential. Following Bunde40 the commen~
surate and incommensurate densities and radii
are taken as C = 0.8, 1.6 and b = .5a, .25a,
respectively. For the FK potential ¢ = 0.5
and 0.67 for commensurate and incommensutrate
densities, while for coulomb interactions
these values are 0.5 and 0.75. The FK force

constant w is fixed by

212 Tl xT
a = **—};E————‘, «t=2,b= C-a
which is weak enough so that ions can almost
pass through each other. For the coulomb
system we use an effective charge of .6 times
the charge of an electron. This implies that
for a pair of ions in the system with C = 0.5,
at the equilibrium pair distance {(in the
absence of the sinusoidal potential) the poten-
tial energy per particle is about ten times the
barrier height,

In Fig. 1 we show the pair correlation
functions g(x,x') for the short range inter-
action and coulomb potentials for both the com-
mensurate and incommensurate cases, For both
potentials, the incommensurate pailr correlation
functions are similar while for commensurate
densitles the functions are very different,
Thus the sinusoldal potential is relatively
unimportant for the incommensurate cases with
strong repulsive interactions, and the ions act
11ke a homogeneous liquid, so that g{x,x') =
g(x-x")., In the commensurate case the periodic
potential is vevy important. The sharp peak in
the "well top” pair correlation function

appears because the test ion interaction with
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Pair correlation functions g(x,x') for the
short range interaction (A = 3kT, T = 387.33 K
and ¢ = 0.8, 1.6 and b = a/2, a/4 for commen-
surate and incommensurate densities, respec-
tively) and coulomb interaction (g = .6, kT =
581 Kand € = 0.5, 0.75 for commensurate and
incommensurate densities, respectively). Here
m=1.77 x 10722 gn, A = ,1 eV and a = 3,1 &,

the first nelghboring ion 1is so strong it dri-
vea the lon to the opposite side of the well,
pinning it near the top of the well. The
nelghboring ion's mobility is reduced and
correspondingly its probability of being found
in this position greatly increased resulting in
the large peak in the pair correlation func-
tion. Comparing the pair correlation function
of the two potentials, we see that the short
range Interaction is much more liquid-like; it
decays to unity after one site, while the
coulomb potential 1is probably still correlated
even after dozens of sites. The coulomb pair
correlations have important implications for dc
conductivity. For the commensurate density,

the fons sit at the well minima. For the

incommensurate case, of the six peaks repre-
senting the six nearest neighbor ions, four of
these lons have equilibrium positions away from
the sinusoidal well minima. These arrangements
of the fons indicate that DC conductivity for
the incommensurate density will be greater than
that for the commensurate case.

In Fig. 2 we show the effective potentials,
In the commensurate cases the barrier height
stays the same or increases, while in the
Incommensurate case the barrier height is
greatly reduced. One can see also that the
curvature of the well bottom changes drasti-
cally as the effective barrier height changes;
this should be reflected in a red shifted peak
frequency in the single particle conductivity
spectrum. When comparing the two potentials,
the effective potential 1s much more sensitive

to the density in the coulomb system than in
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Ef fective potentials, V.¢g{x), for the short
range and coulomb interactions. Same para-
meters as Figure 1.
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TABLE 1

DC conductivities for various potentials, densities, and frictioms, Systems: SR = gshort range, FK =
Frenkel-Kontorova, CO = coulomb. Demsity: C = commensurate density, I = incommensurate density;

Friction: H = High frictien, L = low friction.

System Density Friction a2
SR c H .24
L 1.20

I H 1.0

L 10.0
FK c H .30
L .89

I H 1.2

L 3.0
co c H .13
L .24

1 H 1.4

L 19.0

x1073 (mho/cm)

b
o o(0)¢ C’(O)d USmOle
27 .29 .27 .32
1.8 .99 1.8 6.5
1.1 1.1 1.1 1.2
9.2 12. 9.7 24,0
.40 .38 .41 Y
2.4 .74 2.4 10.0
1.3 1.3 1.3 1.3
13 8.8 14 26,0
.28 .19 .28 .39
1.8 .26 1.8 7.9
1.5 1.4 1.5 1.6
20.0 20.0 21.0 32.0

a. From mean square displacement Eq (153), many particle result.
b. From mean square displacement Eq. (15}, single particle In effective poten—

tial result.

c. From zero frequency conductivity, Eq. (14), many particle result.
d. From zerc frequency conductivity, Eq. (14), single particle in effective poten-

tial result.
e. Prom Smoluchowski value (Eq. (9)).

short range interaction system. This 1s
because the coulomb system has very strong lon-
ion interactions. Such strong interactions can
more effectively diminish or reinforce the bare
sinusoidal potential.

Now consider the DC conductivity. In Table
1, the values of the DC conductivity are given
for all three systems: short range interaction
(SR), Frenkel-Kontorova {FK), and Coulomb {(CO).
For each system'we report values for the com—
mensurate (C) and Iincommensurate (I) densities,
and for high (H) and lew (L) frictioms. 1In
each case four values are listed. Those values
taken from the mean square displacement are
denoted by ¢ and those taken from the iIntegral

of the velocity autocorrelation function are

denoted by g {¢). The primes Iindicate the
single particle results ip the effective poten-
tial. A fifth value is given using Eq. (9).
All values are given in units of (ohm*cm)'l.
In the high friction limit, we can see that the
conductivities are close to their Smoluchowski
values, However comparison of 9, and o(0)
reflects the numerical difficulty in evaluating
the latter. Despite these difficulties, one can
see that for the low friction values, the short
range potentlal ylelds much better agreement
between the many body and single particle DC
conductivities than for the other two poten-—
tials.

In Figs.3 and 4 we show the frequency

dependent bulk conductivity for the short range
and
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Frequency depeadent conductivity for the coulomb

interaction; parameters as in Figures 1,3.

coulomb systems, respectively. On each plot
two curves are shown. The solid line {s for

the full many-body system calculated from
eqs.(11,12), the second 1s the single particle
dynamics calculated from eq.(l2) in the many
particle effective potential defined by eq.(8).
In Fig. 3 the results for the short range
potential are shown. 1In the high friction case
we' obtain very good agreement between the many
and single particle dynamics. The Interesting
results are for the low friction regime. Here
Dieterich’s formula eq.{(9) does not hold and it
is of interest to see if the single particle
dynamics still can duplicate the many particle
dynamics. In the commensurate case there is
good agreement for all frequencies. For the
incommensurate case we see that both curves
show both Drude and oscillatory behavior, but
that the oscillator peak comes at a lower fre-
quency using the effective potentials; the
effective barrier helight is reduced, thus the
well bottom curvature is lowered, lowering the
single particle frequency of motion. For the
coulemb system (Fig. 4), we again see very good
agreement for the high friction results. For
the low friction regime in the commensurate
cage the correspondence is poor. The many-
particle results show only cscillatory beha-
vior, but the single-particle dynamlcs show an
ogclllatory peak at a higher frequency and also
Drude behavior. For the incommensurate case
both curves show only Drude behavior and hence
very good agreement.

Results were also obtained for the
Frenkel-Kontorova model, They were very simi-
lar to the coulomb system except for the low
friction incommensurate case., For this system
the agreement with single-particle results was
poor; for the single-particle conductivity, a
much larger Drude peak and an osclllatory peak
were present where the many-particle conduc-

tivity had none. These results, although not
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extensive, indicate that the low friction
Langevin results in the effective potential
obtain fair agreement with the many-particle

results for both ranges of potential.

REMARKS
Although these studies show several inter-

esting physical phenomena, including commen-—
surability effects, strong ordering, liquid-
like traunsport, etc., the feature of greatest
interest is the effective single-particle
potential, which 1s defined by eq.(8), and has
been invoked previocusly to help in the
interpretation of diffraction data and in the
relationship of structure te conductivity. The
definition (8) is based on the equilibrium
distribution and one would expect its utility
te diminish in situations where nonequilibrium
dynamics plays an important role (i.e., low
friction). Nevertheless, we find that the
effective potential, as derived from Langevin
simulations for a series of potentials, den-
sities, temperatures, and frictions does pro-
vide a good qualitative, and in most cases even
a good quantitative, estimate of the true con-
ductivity, both at dc and even over the entire
frequency range. The agreement hetween the
results of the full, many-particle simulation
and the motion in the effective potential is
best for the smooth, long-range coulomb
interaction. For this interaction in the low
friction commensurate density situation the
agreement 1s poorer: weakly-damped dynamical
correlations will lower the effective fre-
quency, widen the vibrational line, and much
decrease the d¢ conductivity compared to the
effective single-particle dynamics., For short-
range potentlals, the overall agreement is
slightly worse, and becomes quite poor for
incommensurate density at low frictlon.

The very interesting theoretical question of

Just how to define Vopg(x) without the simula-

tion {or diffraction data) has been considered
several times. On the basis of our results

here, {t 1s clear that these effective poten-
tials are of real value and interest, and that
their derivation using some valld and accurate
decoupling approximation remains an objective

of real importance.
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