Quantum diffusion of hydrogen on metal surfaces
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A quantum mechanical theory is presented for the low temperature diffusion of atomic hydrogen
on metal surfaces, based on a band model for the hydrogen motion. The theory is applicable to the
diffusion of many interacting particles obeying quantum statistics. At low coverage the hydrogen
band motion is limited by collisions between adsorbates, giving rise to a decrease of the diffusion
constant with concentration. Other aspects of the hydrogen—hydrogen interaction are introduced
to explain the coverage dependence at higher adsorbate concentrations. Comparison with recent
low temperature diffusion measurements for H, D, and T on W(110) show that the above model
reproduces satisfactorily the main features of the experimental coverage dependence of diffusion.
The usefulness and limitations of band treatment for heavy particle diffusion are discussed in the

light of these results.

(. INTRODUCTION

Diffusion of atoms and molecules on solid surfaces is of
fundamental importance in the study of heterogeneous ca-
talysis and other chemical and physical phenomena.! De-
spite the ubiquity of diffusion at surfaces, very few direct
probes of this process exist. Direct imaging is possible with
field ion microscopy (FIM) (for metal atoms on metals)?
and more recently, with scanning tunneling electron micros-
copy (also for atoms on nonmetal surfaces).’ Most dynami-
cal studies of adsorbate mobility have been limited so far to
species which can be observed either in the FIM, or in the
field emission microscope (FEM) in which diffusion is mea-
sured by shadowing techniques or from density fluctu-
ations.* Alternative methods based on laser induced desorp-
tion are now being developed.’ Hydrogen adsorbed on metal
surfaces represents an important prototype for study of the
mobility of chemisorbed atoms. Hydrogen has a high mobil-
ity relative to other adsorbates, just as it also does when
dissolved interstitially in the bulk. The binding sites of hy-
drogen on several metal surfaces are well characterized by
electron energy loss spectroscopy (EELS)® and the elec-
tronic structure of the hydrogen-metal system has been
widely studied by ab initio and approximate calculations.”®
The small mass of hydrogen makes it most likely to show
quantum effects and the large mass ratio of the three isotopes
renders mass effects in both quantum behavior and in cou-
pling to lattice motions clearly visible.

The mobility of hydrogen, and more recently that of the
lighter positive muon species, as interstitials in bulk metals
has been studied extensively.>!® Based on these studies a
qualitative division into nonactivated, activated, and fluid-
like behavior in successively higher temperature ranges has
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been made.!! However, experimental evidence has only been
found for Arrhenius-type activated behavior, and the contri-
bution of tunneling processes, whether direct or phonon-
activated, is not clear. The recent observations by Difoggio
and Gomer!? and Wang and Gomer'? of temperature inde-
pendent diffusion for all three isotopes over the range 27—
120K on the W (110) surface thus raise important questions
about the quantum mechanical nature of the mobility in this
regime. Using the field emission microscope (FEM) fluctu-
ation method'? they measured the surface diffusion of atom-
ic hydrogen and its isotopes, as a function of both tempera-
ture and coverage. These experiments invite a theoretical
interpretation and quantitative description because of the
following features: (i) The experiments imply that tunneling
is the dominant mechanism for diffusion in the range
T < 120K, and relatively little is known about tunneling dif-
fusion. (ii) The diffusion coefficient D depends on coverage
in an interesting way, suggesting nontrivial interactions
between the diffusing species. Tunneling of mutually inter-
acting particles has also not been extensively investigated
except for electron motion in metals, where the interaction is
strongly shielded. (iii) There may be quantum symmetry
effects at high coverages. (iv) A variety of experimental
data, including isotopic studies, temperature, and coverage
variations, have all been obtained on the same system and
this makes it a very good testing ground for theory.

One of the aims of the present study is to investigate the
possibility and consequences of band motion for heavy (i.e.,
atomic) particles. We shall take the hydrogen W(110) sur-
face system at low temperatures as an example. The large
mass compared with electrons means that bandwidths will
be very much smaller than the ~eV widths seen for elec-
tronic bands in metals and semiconductors. Nevertheless,
the possibility of tunneling in the periodic surface potential
allows for the formation of energy bands, to an extent deter-
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mined by the other interactions present. In this paper we
shall discuss the dynamics of motion in energy bands for
atomic hydrogen, and investigate the effects of finite tem-
perature and concentration, as well as the factors inhibiting
band type behavior.

Theoretical treatment of the diffusion of hydrogen on
metal surfaces is complicated by the strong interactions
between many degrees of freedom, none of which are well
known in detail. Hydrogen is strongly chemisorbed and the
nature of the adsorbed species may be at least partially ion-
ic.!® Very little is known about the interaction with lattice
vibrations. In bulk it is often assumed that the hydrogen is
strongly coupled to the local lattice environment, but only a
few systems show the predicted temperature dependence.!’
In addition, at finite concentrations, interactions between
diffusing hydrogen atoms may strongly influence the mobil-
ity. As a first step in understanding the mobility of hydrogen
on a metal, we shall describe here a quantum mechanical
model for surface diffusion of chemisorbed hydrogen atoms
at low temperatures and investigate the coverage depen-
dence of diffusion on W(110).

Section II contains a summary of the problem and ex-
perimental findings relating to H/W (110). The detailed the-
ory of surface mobility of species with quantum statistics is
given in Sec. III. Application to the H/W(110) system is
made in Sec. IV, followed by a discussion of the implications
and limitations of the comparison. The emphasis through-
out will be on identifying the relevant physical features by a
simple physical model and numerical calculations will be
made to illustrate feasibility.

Section V contains a discussion of the findings relating
to band structure and mobility therein, and Sec. VI presents
conclusions.

il. LOW TEMPERATURE MOBILITY OF H, D, AND T ON
w(110)

When the chemical diffusion coefficient, D, of atomic
hydrogen isotopes chemisorbed on W(110) is measured
from decay of density fluctuations in the FEM as a function
of temperature, there is for all coverages a region from 100—
150 K (depending on coverage and isotope) down to 27 K
(the lowest temperature measured) over which the diffusion
coefficient is independent of temperature.'>'* This strongly
suggests a tunneling process. The diffusion coefficient D in
this regime shows a marked coverage dependence: this is
shown in Fig. 1, which is reproduced from Ref. 13. All three
isotopes show a nonmonotonic variation but deuterium is
unique in showing a sharp increase for 8 > 0.7 (9 refers to the
coverage, where @ = 1 is experimentally defined as the cov-
erage at saturation of the work function change with dos-
age).'? This feature has been attributed to the influence of
nuclear symmetry on an elementary jump process.'*!* The
absolute magnitudes of D for the three isotopes are very
close, and although they vary in the direction expected for
tunneling processes, the ratio for any pair is much less than
would be expected from a simple one-dimensional tunneling
picture using the bare masses of the particles.!?

There are thus three questions to be addressed: (i) the
temperature independence of D over a relatively large range
of temperature well above 0 K (and approaching 1/2 T,
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FIG. 1. Log D vs relative coverage @ for 'H, ’H, and °H as measured by the
field emission microscope fluctuation method (Ref. 13) at 27 K. Repro-
duced with permission from Ref. 13.

where T, ~200 K is the surface Debye temperature of W'°),
(ii) the coverage dependence, D(8), and marked difference
in behavior of ?H and the odd isotopes for 8> 0.7, (iii) the
absolute magnitude of D as a function of isotopic mass. Our
main focus here will be on the second aspect, but we shall
also discuss the other features.

Before attempting a theoretical analysis several impor-
tant points relating to the coverage dependence seen in the
experiment should be noted. First, it is very difficult to mea-
sure the absolute number of atoms adsorbed on a surface.'”
Figure 1 actually shows D as a function of relative coverage,
8. The relative coverage 6, for 8 < 1, is then extracted from
work function measurements assuming a linear dependence
of the latter on 6. It is usually further assumed that maxi-
mum coverage corresponds to a monolayer in which the ra-
tio H:W is 1:1."2 However an estimate based on comparison
with hydrogen adsorption on W(100) for which absolute
flux measurements have been made'’ implies that
H:W = 1.28 at saturation of the work function (8 = 1).1%
This fact, together with the known nonlinear dependence of
work function on coverage,'® imply some uncertainty in the
&scale of Fig. 1. Absolute coverage with H:W > 1 is compati-
ble with several possibilities: (i) hydrogen has several bind-
ing sites per tungsten atom, (ii) some hydrogen could be
adsorbed in subsurface positions, a situation which can be
induced by surface reconstruction at higher coverages, (iii)
the extra hydrogen could be associated with surface imper-
fections or boundary structures. Although there is experi-
mental information on the binding sites from several
sources,'>!%2% ng definitive picture of the location of these as
a function of coverage has yet emerged. EELS measure-
ments give two vibrational loss peaks at 95 and 160 meV and
a possible third at 80 meV.?®?° The 160 meV peak is usually
assumed to be a normal stretch mode and the other ones
vibrations parallel to the surface.'®>!%2° However the alter-
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native, that two of these frequencies are normal stretching
frequencies of hydrogen in two different binding sites on the
surface, is not ruled out. The evidence from work function
changes with coverage,'® photoemission,?® and electron sti-
mulated desorption measurements®! is compatible with ei-
ther two states or one state whose properties vary with cover-
age. Surface reconstruction may in addition affect the
relative stabilities of different binding sites.?? Since neither
exact binding sites nor absolute coverage is known, we shall
take the simplest model with H:W = 1:1 at 8 =1 and as-
sume the binding is at the symmetric bridge position'? at all
coverages. The 8 scale of Fig. 1 may be changed somewhat if
absolute coverage were to be measured. Nevertheless, this
will not significantly change our conclusions as to the mech-
anism causing the variation of D with 6.

The second point to be borne in mind when analyzing
D(8) is the occurrence of phase transitions. The experimen-
tal diffusion coefficients of all isotopes show pronounced
dips at temperatures of 80-90 K, depending on coverage,
which were shown by Difoggio and Gomer'2 to be related to
order—disorder transitions of the adsorbed layer. When
translated into a phase diagram,'? this information suggests
that the disordered phase existing at low coverage is replaced
by a mixture of ordered and disordered phases. Since the
observed diffusion coefficient for given @ is the same above
and below this transition (i.e., for both the two phase and the
one phase regions; perhaps because the ordered component
exists in small islands) it appears that the contribution of
ordering to coverage variations may be neglected.

Phase transitions in adsorbed atomic hydrogen on
W (110) have also been observed by low energy electron dif-
fraction (LEED) by Gonchar ef al.® They see disordered
and ordered phases. From measurements of transition tem-
peratures above 100 K they propose a phase diagram yield-
ing a sequence of four phases as 0 varies from zero to one at
temperatures below 100 K [0<68<0.3, disordered;
03<8<0.6, p(2X1); 06<8<09, p(2X2); 09«8,
p(1x1)]. However no direct measurement of transition
temperature was made below 100 K. Relating the phase
transitions observed by LEED even at higher temperatures
to the evidence of transitions in the FEM fluctuation method
is complicated by differences in surface size probed and pos-
sible dependence on surface reconstruction.'? Thus while the
evidence clearly indicates that a disordered atomic hydrogen
phase at low coverage is replaced by one or more ordered
phases at larger 6, it does not appear that the presence of
order has any significant effect on the chemical diffusion
coefficient as measured from density fluctuations.

Finally, we comment on the absolute magnitude of the
diffusion coeflicient obtained from FEM measurements, rel-
ative to estimates obtained for the surface and bulk by other
methods. The presence of order as detected by LEED mea-
surements of H and D on W(110) has been taken to imply
some mobility at 5 K, but there is no reformation of the
ordered phase within a few hours after electron stimulated
disordering.”® This would suggest diffusion is much slower
than is seen in the FEM results, if diffusion over the coher-
ence length of LEED (~ 100 &) is the controlling factor in
reformation of a LEED pattern. However the rate of change
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of LEED superstructure reflection intensity does not neces-
sarily reflect the time scale of adsorbate diffusion: it is possi-
ble that once destroyed it is hard to nucleate again the or-
dered phase because of instability of small ordered islands,
and not because of absence of diffusive motion. Measure-
ments of diffusion in bulk tungsten are also relevant. The
only measurements of diffusion of hydrogen isotopes in bulk
tungsten at low temperatures of which we are currently
aware are a lower bound estimate of (1-10) X 10~ *¥cm?s™!
at 29 K by Macrander and Seidman?* and the observation by
Panitz?’ that deuterium is immobile at 80 K. These findings
were interpreted as suggesting nonclassical behavior for 'H
and a very large isotope effect.*

Iil. THEORY

We propose here a collision limited band propagation
model for the diffusion of hydrogen on surfaces at low tem-
peratures. The basis for this model is that at low coverage 6,
the hydrogen atoms move independently in the periodic sur-
face potential. This can give rise to energy bands in which we
suggest diffusive motion comes about as a result of collisions
between hydrogen atoms. The duration of these collisions is
short relative to the natural lifetime of the band states.

There is obviously a question concerning the validity of
a band picture for atomic motion in bulk solids and on solid
surfaces, even though such bands exist for static perfect lat-
tices and have been calculated for, e.g., H on Ni surfaces”?®
and H in bee metals.”” As we show later, the experimental
results for the diffusion of the three hydrogen isotopes on
W(110) can be described within a band picture only if we
postulate renormalized masses which lead to bandwidths of

~107° meV. A strong objection to the band picture may be
raised on the ground that the coherent nature of the motion
in such narrow bands may be destroyed by the thermal mo-
tion of the lattice. Even at 0 K the zero point motion of the
lattice should affect to some extent the narrow band hydro-
gen motion.

On the other side of this picture there is some evidence
(discussed below) for extremely narrow bands in other sys-
tems.?®3° The insensitivity of the observed diffusion to tem-
perature for TS 120 K'>" suggests that most of the effect of
phonons in this temperature range is taken by the mass re-
normalization [note that the bandwidth for the bare H mass
is ~107*>meV (Sec. IV)]. It thus appears that band motion
is possible at low hydrogen coverage even though its detailed
quantitative nature may be substantially more complicated
than the simple model used in this work. It is also possible
that coherent band motion exists only within the finite dis-
tance range ( % 100 A) probed by the FEM method.

In Sec. IIT A, we describe the band structure and review
other situations where energy bands are formed by atomic
particles. Section III B presents the collisional picture of the
adsorbate dynamics. We develop a semiclassical theory of
hydrogen mobility in narrow bands which is analogous to
that of electron mobility in metals, using the relaxation time
concept to deal with scattering events. The relative contribu-
tions of impurity, phonon, and interparticle scattering to the
H/W (110) system are discussed. Quantum statistics of the
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diffusing particles are naturally included in this formalism,
which is not the case in theories of hopping mobility. The
band picture is valid up to a certain maximum coverage
which is determined by the interactions. At higher coverages
we retain an effective independent particle picture and use
more qualitative reasoning to analyze the effects of interac-
tions on D(8). Section I1I C gives a discussion of the sources
of interactions between hydrogen atoms chemisorbed on
metal surfaces and evaluates the relaxation time. Section
III D presents the extension of the band model to higher
coverages, together with a brief discussion of its limits.

A. Energy bands for hydrogen on metal surfaces

We shall neglect any lattice imperfections and assume,
for simplicity, a square lattice. Complete decoupling
between parallel and perpendicular vibrations of the hydro-
gen is also assumed, the latter giving rise to discrete energy
levels. At low temperatures it is only the band structure of
the ground state energy levels for parallel motion in the two
dimensional periodic potential which is of relevance. Since
this implies motion at energies well below the barrier for
lateral propagation, the tight binding description applies.
Then the two dimensional energy band is given by>’

e(k) =€"—2Bcos(k, ) —2Bcos(k, ). 3.1

Here €° is the zeroth order, ground state, local site energy
(plus a small shift independent of k which we neglect), 8
the resonance integral®! and / the lattice parameter.
Energy bands are in principle a suitable framework for
describing mass transport and migration whenever a particle
is situated in a periodic potential, but because of their narrow
width for high mass particles, are rarely seen for systems
other than electrons. This is particularly true in the tight
binding regime, where the bandwidth falls off exponentially
with the mass. However the possibility of band states has
been suggested before for hydrogen adsorbed on metal sur-
faces?532 and also when dissolved interstitially in bulk met-
als (excited states only).>” Other nonelectronic species likely
to form delocalized states are the positive muon'®*® and heli-
um isotopes. The helium isotopes are believed to form two-
dimensional bands of width S 1 meV when physisorbed on
certain surfaces.?” Evidence for such bands is seen in selec-
tive adsorption®® and in the thermodynamic properties of
physisorbed monolayers.>* Low concentrations of defects in
quantum crystals of He are also proposed to form energy
bands, of width ~ 10~% meV.?° In the latter case the dynam-
ics have been studied extensively for spin diffusion of *He in
solid “He at temperatures below 1 K.?° However there is as
yet no evidence for bands of such narrow widths at higher
temperatures. If narrow bands are predicted to occur for
atomic particles such as H or u™, then the width of the
bands at finite temperatures and effects on them of both in-
teradsorbate and particle-lattice interactions will be of
prime importance. At temperatures above, e.g., 30 K, ther-
mal lattice motion is not negligible and whether band type
motion is possible in the presence of thermal fluctuations
will depend specially on the exact details of coupling to the
lattice vibrations. In Sec. IV we show that application of our
band model to the H/W (110) system implies diffusive mo-

tion in bands much narrower than kT after a mass renormal-
ization due to hydrogen-lattice interactions is taken into ac-
count. -

B. Collision limited dynamics of band propagation

In the equilibrium state, at each coverage 6 the chemis-
orbed hydrogen atoms will be distributed over the band
states (3.1) according to the quantum distribution function

FOe(k)) = L

ele(0 —KI/KT 11’ 3.2)

where + 1 refers to fermions and — 1 to bosons. The chemi-
cal potential u is obtained by solving numerically the
expression for the density

n=nlf=g f dk
0 s (2”)2

where n, is the absolute density in atoms cm ~2 at maximum
coverage and g, the spin degeneracy. We shall now consider
how the mobility and hence diffusion coefficient may be de-
rived from the semiclassical treatment of transport in bands.
In the semiclassical theory the rate of change of the nonequi-
librium distribution function f(k,r,t) in the presence of a
time independent external force F is given in the steady state
by the Boltzmann equation

fOek)), 3.3)

B T ry < [L e
v ar(k,r,t)+F ParTe (k,r,t) o (k,r,t) o 3.4)

where (Jf /). is the rate of change of f(k,r,t) due to scat-
tering mechanisms unrelated to the applied field. The semi-
classical assumption is implicit here in the substitution of v
for ¥ and F for #k. In linear response, when only terms first
order in the applied field are retained, Eq. (3.4) becomes

= (—g{ (k,r,t))c ,

where V is the spatial gradient. In the most usual form of the
relaxation time approximation (RTA) the collision term is
replaced by

(if (k,r,t)) =‘_ [f(k,l',t) —fo(e(k))] , (3.6)

ot m(e(k))
whereupon Eq. (3.5) yields

(3.5)

fkr,t) = foe(k)) — He(k)) (;a‘gf_o (e(k))) v

-[V,u—(—GLT“QVT—F], (3.7)
In field emission microscopy the adsorbate is at constant
temperature and, on a macroscopic scale, also at constant
chemical potential. (Measurement of diffusion by FEM is
based on the diffusion equation for gradients of concentra-
tion fluctuations rather than macroscopic concentration
gradients,"* which is valid for long wavelength fluctu-
ations.>®) The particle flux J in the presence of the force F is
given by
dk

2r)? v(k) f (k)

J=nmF=g, (3.8)
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which defines the mobility tensor ¥ as the ratio of velocity v
to force F. Inserting Eq. (3.7) into Eq. (3.8) we obtain

0
=& [ 2 vaovaoreto) (- Letn). 39

The mobility is related to the chemical diffusion coefficient
D by the Stokes—Einstein relation which we generalize from
classical Boltzmann to the quantum distributions (3.2) by

-1
Dy (L22)7 610
n du

Both Egs. (3.9) and (3.10) remain valid in the limit as the
external field goes to zero and thus yield the diffusion tensor
corresponding to collision limited band propagation, where
the effects of collisions are entirely described by the single
parameter 7, the relaxation time.

The semiclassical approximation is naturally appropri-
ate for atomic particles in bands since their wavelength is
short compared with the length scale of the interactions in-
volved and of variations in the external field. Introduction of
a single relaxation time 7 precludes interband transitions,
which is easily valid for hydrogen adsorbed on W(110)
where the bandwidth is orders of magnitude narrower than
the separation between ground and first excited band (Sec.
IV). More importantly, the RTA assumes that collisions,
whatever their origin, are random, uncorrelated events,
which are short relative to the natural lifetime of the band
states. This means that the approximation is valid as long as

AT>H, (3.11)
where A = 8 Bis the bandwidth, S being the resonance inte-
gral (3.1).

There are several mechanisms which can in principle be
responsible for the relaxation time 7. Anything which causes
deviations, temporal or static, from perfect periodicity of the
surface causes scattering of the independent particle states.
The relevant mechanisms for hydrogen are: (i) impurity or
defect scattering, (ii) hydrogen—phonon scattering, and
(iii) hydrogen-hydrogen scattering. These are directly anal-
ogous to the mechanisms responsible for electrical resistance
of metals but the relative importance of these is very different
for hydrogen and for electrons. In particular, the electron—
electron interaction is generally unimportant in metals ex-
cept at very low temperatures and resistance is primarily due
to electron—phonon scattering at most temperatures. The
unimportance of electron—electron interactions is of course
due to the efficient screening of the Coulomb potential.>! For
chemisorbed hydrogen however, it appears (because of the
strong coverage dependence and lack of temperature depen-
dence) that the hydrogen—hydrogen interaction is not so ef-
fectively shielded and is more important than any dynamic
hydrogen-phonon interaction in determining the relaxation
time.

If all three mechanisms are present, acting independent-
ly, the resulting relaxation time is given by

1 1 1 1

T, T, Tu
with 7; the relaxation time from impurity scattering, 7, that
from hydrogen—phonon scattering, and 7 that from hydro-
gen-hydrogen scattering. Impurity scattering will not cause
any concentration dependence of D (unless significant sur-

(3.12)
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face reconstruction occurs). It will only cause some change
in the absolute magnitude of D(@) so although it must be
relevant if H:W 5 1 at maximum coverage,'® we shall neglect
this in our analysis of D(6).

The question of the extent and effect of hydrogen inter-
actions with lattice vibrations is more important, both in
determining the absolute magnitude of D() and its vari-
ation with 6. Muttalib and Sethna®® have suggested that a
phonon mechanism may account for the coverage depen-
dence of diffusion at low temperatures. Unfortunately de-
tails of these interactions depend crucially on both the hy-
drogen-lattice coupling and the surface phonon spectrum,
neither of which is known. Furthermore, the surface phonon
spectrum may be altered by adsorbate—surface interactions.
Coupling to lattice nuclear motions can in general have two
kinds of effects: (i) introduction of a mass renormalization
or Franck—~Condon factors, according to the relative time
scales of hydrogen and lattice motions,*’ (ii) dephasing aris-
ing from energy level fluctuations. The latter act as a source
of scattering for motion in the average periodic potential and
if sufficiently strong, can destroy the coherence necessary for
band motion. They also lead to phonon assisted tunneling,
which is an activated process.?®? However theoretical treat-
ments of the mobility of hydrogen interstitials in bulk metals
find strong temperature dependence in the case when de-
phasing is important (small polaron limit).**3° For exam-
ple, a 3D Debye model predicts T ~° dependence of band
type propagation and T *7 dependence of hopping motion
for T< Ty, (Tp = Debye temperature): for Hon W(110)
with T, = 226 K'© this means a 10°-fold decrease in band
mobility from 27 to 100 K and a 10**-fold increase in hop-
ping mobility over the same range. Although the exponents
will differ for 2D phonon spectra, the fact that no inverse
temperature dependence and no minimum in D is seen below
the Arrhenius regime suggest that this is therefore not the
appropriate situation for the H/W(110) system. For this
reason we assume that the nuclear lattice distortions effect
only a mass renormalization of the adsorbed atoms which
otherwise continue to move in the average periodic poten-
tial, and disregard the possibility of additional scattering re-
sulting from lattice motion. Then the delocalized or local-
ized nature of the adsorbate states will be determined by the
hydrogen~hydrogen interactions.

In using a mass renormalization we follow Muttalib and
Sethna®® who used the additive mass renormalization at 0 K
to account for the small isotopic differences in D in the tun-
neling regime. Within a band picture it gives rise to an effec-
tive narrowing of the band (3.1). We do not analyze the
temperature dependence of the additive renormalization
factor here, assuming it to be constant over the range 27-120
K.

The relaxation time derived from hydrogen-hydrogen
scattering may be derived at two levels. Firstly, if the relative
motion of the hydrogen atoms is neglected, i.e., each hydro-
gen is considered to scatter from a static array of randomly
distributed hydrogens, the collision term is given by

___['f k _ — —_ ... k) — A(k'
(3.13)
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with W,,. the transition rate for scattering from k to k' and
A the surface area. When the energy levels are taken as ap-
proximately isotropic in k, Eqs. (3.6) and (3.13) yield the
following relaxation time for elastic scattering®':

1 dk’

W (1 -k k). (3.14)
re(k)) amva !
When W, is given by the Golden rule
W =—- Vi |’6(E — E,..) (3.15)

with the potentlal matrix element ¥, related to the scatter-
ing amplitude F(%,®) in the two dimensional Born approxi-
mation

|F(k,®)|* = #ﬁ4k| Ve 242, (3.16)
Vil = | [ o7, 0] (3.17)
cos® =k Kk (3.18)

(m being the mass of the scattered H atom and ® the lab.
frame scattering angle) we find that

1

1 ~ .
rale(h)) ”"(e)f“@(l cos @) |F(k,0)|

(3.19)

Because of the implicit assumption of isotropic energy sur-
faces, v(e) = #ik /m and k = [k| are average quantities at
energy € and 7 (€(k)) is now independent of the orientation
of k. We shall define v(¢€) and k more precisely in Sec. III C
V5 (r) is the hydrogen-hydrogen interaction. The Born ap-
proximation is used here merely on a semiquantitative foot-
ing and in view of the fact that the collisions involved are
governed by relatively weak long range interparticle interac-
tions. An exact numerical evaluation of the scattering ampli-
tude is possible but does not seem justified at the present
relatively crude level of our present treatment.

A second, more accurate description takes the relative
motion of the hydrogen atoms into account. This is obtained
using the general collision term in the Boltzmann equation

(5. | e

X [A) flk D F AR TF flky)

— k) flk,)(1 F AK)NLF f(k1))]
(3.20)

kk, k']

with @ the scattering angle in the c.m. frame and Wi, g
the transition rate for scattering from k, k,, to k,k;, where k
and k, correspond to the two atoms involved in the collision.
With the previous form of W, acug » and approximation of
isotropic energy surfaces we obtain

1

7y (€)

_g,fdeldqi,( )J(Ek _E, )fd@VlF(k NG

,.

% LUENL FLUNLF L))
(1F/%e)

[1+9—7"—ni],

(3.21)

where m, is the reduced mass of the colliding atoms, v, and
k, are the velocity and wave vector of relative motion
between k and k,, €’ and € the final particle energies after
scattering, and E, , E,, the total energy before and after

collision. The quantltles 7,7, 7] are scalars deﬁned in terms
of the angles between unit vectors k ki, k', and k],

17—_—-kl'k, 17=k1'k1, 7’1=k .kl' (3-22)
For scattering of identical particles with spins the two di-
mensional scattering amplitude F(k,®) is given by the sym-
metrized expression*’

Fo(k,@) = 3+1

= F. (k© S _F.(k®)(3.23
( )+2er1 L (k,©)(3.23)

for fermions and

2 = F. (k) (3.24)
for bosons, where F, and F, are the symmetric and antisym-
metric amplitudes respectively:
F,(k,®) = F(k,®) + F(kJ1 + ©), (3.25)
F,(k,®) =F(k,®) — F(kJI + ®). (3.26)

The mobility ¥ [Eq. (3.8)] is then evaluated with the iso-
tropic relaxation time 7(¢) as

88 _ ac0 X
,,=g_sf de( I (e))T(e)J‘ dk,_ v(ovi)

rJo de se (2m)? |V e(k)|
(3.27)

where S(€) is the contour in k space at constant energy € and
dk, the differential length element on S(¢€). Integration over
S(e) is done exactly and does not assume an isotropic energy
surface. From now on the band energy is defined with re-
spect to zero at the bottom of the band.

We now discuss the hydrogen interaction and evaluate
the scattering amplitudes (3.23)-(3.26).

C. Hydrogen-hydrogen interactions on metal surfaces

There are several possible contributions to interactions
between chemisorbed hydrogen atoms. The repulsive part of
the direct interaction gives us an approximate hard core in-
teraction radius while the long range direct component can
be assumed to have a negligible effect at low concentrations.
Indirect interaction mediated by the surface may be: (i)
between surface induced dipoles, (ii) elastic interaction
transmitted by lattice displacements, or (iii) electronic in-
teractions mediated by conduction electrons. Induced sur-
face dipoles for hydrogen are negligible, and the lack of tem-
perature dependence in the low temperature regime leads us
to regard (ii) as unimportant, as was discussed above. The
third interaction arises-essentially from the superposition of
the potential between two protons and that between one pro-
ton and the image charge of the other.***? Calculations
based on jellium models yield a screened oscillatory long
range interaction when the hydrogen atoms are effectively
ionized and within the surface electron density (the situa-
tion relevant to strong chemisorption), and a slowly decay-
ing repulsive interaction when the atoms are located outside
the surface electron density.*!**? For our purposes it is suffi-
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cient to take the longer range repulsive component into ac-
count in 74 by calculating F(k,®) by scattering from a hard
core with radius a larger than the atomic radius, ¢ was ad-
justed to yield reasonable relaxation times, a value of 1.5 A
having been found suitable.

Our relaxation time 7 in Eq. (3.19) is derived from
collisions between free particles with wave vector k deter-
mined by the energy €. At the lower band edge X is related to
€ by the effective mass m*:

#k?

€= Fymral (3.28)
where
m* = 222 (3.29)

[/ = lattice spacing Eq. (3.1)]. We use this expression to
evaluate an effective wave vector k.4 at all energies ¢ within
the band. This semiclassical approximation is strictly valid
at the band edges and slightly overestimates the scattering
amplitude at the center of the band. (Here the true effective
mass is infinite, hence k¢ also and the scattering cross sec-
tion approaches its classical value.) The scattering ampli-
tude F(k.4,®) for hard core scattering in two dimensions
may be solved for analytically*? to yield

Flkg,0) =

Z 2!'5,,,(’(4 a)

Xsin [6,, (kg @) Jcos m@, (3.30)
where p, =1, p,, =2form>0and$,, (k.4 a) isdefined by

tan 8, (kg a) = —2mFer @)
N, (kg a)
where J,,, N,, the regular and irregular Bessel functions of
order m, and a the hard core radius. In the generalized
expression for 1y, Eq. (3.21), effective & vectors are defined
in a similar way from € and ¢,, which are then combined to
give the relative k vector k,. The masses m and m, are also
defined in terms of the effective mass m*, i.e.,, m = m*, m,
=m*/2.

1Tke¢

(3.31)

D. Effect of hydrogen-hydrogen interactions on energy
level structure

In our model so far hydrogen-hydrogen interactions
have been assumed to affect only the dynamics of the ad-
sorbed hydrogens by the short lived two body collisions rep-
resented in 7 . This is valid at low coverage 6, but at higher
coverage the effect of these interactions on the energy levels
of the adsorbed hydrogens cannot be neglected. At finite
concentrations each hydrogen moves in a potential which is
a sum of the underlying periodic potential and its interac-
tions with other hydrogen atoms. If the latter is of the range
of a lattice spacing and is of the same order of magnitude as
the periodic potential, then it cannot be ignored at higher
coverages.

A full description would require solution of the energy
level structure for interacting particles which tunnel in an
external periodic potential. In order to analyze the localized
or delocalized nature of the resulting adsorbate states, addi-

tional wave function information would be necessary. Such
analysis goes beyond the aims and scope of the present study.
Instead we treat the interactions approximately by replacing
the periodic potential ¥(r) by an effective potential V(r)
which contains a static average of the hydrogen—hydrogen
interactions in addition to the underlying periodic term.
This is illustrated in Fig. 2 for coverage 8 = 0.4 which corre-
sponds to an average of two nearest neighbors for each hy-
drogen. As a hydrogen atom tunnels from site A to site B it
interacts with its two nearest neighbors at C, and at C,
which are assumed to be stationary. Interactions with these
stationary neighbors of the initial site A are included in the
effective potential ¥(r). At any point P on the tunneling
path

V(x) = V(x) + V() + V(1) , (3.32)

where x is the tunneling coordinate (0 <x <1,), r, and r, are
the distances PC, and PC,, respectively (Fig. 2), V(x) the
periodic potential, and Vy; (r) the hydrogen-hydrogen inter-
action.

The energy band structure (3.1) is determined by the
ground state resonance integral S which we evaluate by re-
lating it to the one dimensional tunneling integral**

B=4(%)e"p[ 2 JT’(_x)_—_ﬁaT/de] (3.33)

where 7(x) is the one dlmensmnal barrier between binding
sites (3.32), w is the parallel vibration frequency of H in a
local site, and x,, x, the turning points on either side of the
barrier. Regarding V(x), little is known about the barrier
shape or size apart from an activation energy of ~200 meV
derived from high temperature diffusion measurements'>"?
which gives an estimate of the barrier height. In the diffusion
calculations presented in Sec. IV we shall therefore use the
simplest model, of a rectangular barrier. To show the effect
of Vi (r) however, we shall first consider a more realistic
barrier shape. Figure 3 shows a one dimensional barrier po-
tential ¥ (x) which was constructed by taking a one dimen-
sional path between sites on the H/W (110) surface calculat-

—— —

o
-1

FIG. 2. Diagram showing the tunneling path(- - -) of a chemisorbed hydro-
gen atom between nearest neighbor sites A and B in the presence of two
nearest neighbors C,, C, of the initial site A. The tunneling coordinate x is
measured from A to B. 7, and r; are the rectilinear distances C,P and C,P at
any point P on the tunneling path.
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FIG. 3. (a) Quasi-one-dimensional potential barrier between neighboring
adsorption sites on the H/W (110) surface. The model was calculated by
interpolating between the potential energy surface values of Nordlander er
al. (Ref. 8) and scaling this potential to give a barrier height of 240 meV.
The dashed line (- - -) indicates the ground state energy of the parallel vi-
brational motion of adsorbed H, #ix/2 = 47.5 meV. (b) Interaction poten-
tial ¥y (r) between two adsorbed hydrogen atoms on tungsten. This result
was derived as an analytic approximation for a situation intermediate
between the results of Ref. 42 for hydrogen adsorbed on sodium and on
aluminum, calculated within a jellium model. ¥, () is given here by ¥, (7)
= — Vy{cos[2ko( r—r)1/R2}, r>19 A with ¥,=150 meV A2
ko=1.7A"", and r,= 1.0 A. Hydrogen is here assumed to be inside the
electron density of the jellium, i.e., strongly chemisorbed.

Whaley, Nitzan, and Gerber: Quantum diffusion of hydrogen on surfaces

ed by Nordlander et al.® and scaling this to give a barrier of
240 meV. Taking the parallel frequency from EELS mea-
surements as 95 meV for 'H, gives an estimated activation
energy of 193 meV for "H which agrees well enough with the
experimental value.'>'® For V4 (7) we now take the oscilla-
tory electronic surface mediated interaction appropriate to
strongly chemisorbed hydrogen,*? shown in Fig. 3(b). [The
form shown here is intermediate between that estimated in
Ref. 42 for Na (r, = 3.9) and Al (», = 2.1) within the jel-
lium model: it is reasonable to assume that W lies between
these two metals. ] The tunneling integral (3.33) is now cal-
culated with the potential V(x), Eq. (3.32). The bandwidth
A resulting for 'H is given as a function of 8 and of the
average number and type of nearest neighbors in Table I. We
see that within this simple additive mean field model there is
a two order of magnitude increase in A as @ increases, due to
an effective decrease in barrier height resulting from the at-
tractive component in Vi, (r) at r < /.

Equation (3.32) contains additive interactions: how-
ever it is expected that the indirect interaction will be nonad-
ditive and saturate at some coverage, since polarization of
the metal electron distribution will not be linearly related to
addition of successive hydrogens. Since very little is known
for interactions between more than two hydrogens, in our
simplified model we shall assume the interactions to be addi-
tive at low coverage but also introduce a saturation limit at
6 = 0.3 (see Sec. IV B) which corresponds to the maximum
in the experimental D(8) (Fig. 1).

The increased bandwidth in our one particle mean field
effective periodic potential is a result of the strong chemical
forces between adsorbed hydrogen atoms and the nonmono-
tonic variation of these with distance. As 8 is further in-
creased these interactions affect the density of available
states in a more drastic way as the local fluctuations in site
energy levels prevent the coherent propagation between
sites, i.e., inducing localization. It is not our aim here to
attempt a detailed analysis of the extent and dynamical ef-
fects of localization, which would be a major undertaking.
We can only give a heuristic argument here. At high cover-
age the repulsions between hydrogen atoms prevent multiple
occupation of sites. Then a primitive estimate of the density
of delocalized states which can still contribute to tunneling

TABLE 1. Bandwidth A as a function of number and type nearest neighbors
of the initial site A. @ is the coverage (6 =1 corresponds to H:W = 1)
A = 88is calculated from the tunneling integral (3.33) with the potential
(3.32) shown in Fig. 3. The lattice renormalized mass of '"H (m = 6.5) is
used in this calculation.

No. nearest
L] neighbors Configuration A(meV)
0 0 1.2(-9)
0.25 1 C, 1.3(-7)
C, 1.3(-9)
04 2 C,C, 6.7( — 6)
C,C, 1L.0(—-7)
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mobility at a given coverage is given by multiplying the den-
sity of states from Eq. (3.1) by the mean area not covered by
repulsive forces, i.e., the density of delocalized states is given
by

(6)_J‘ dk, (1 —6)
P&l = s (2m)2|Vee(k)| ’

where integration is over an energy contour, S(€).

Before presenting the results of applying the band model
to diffusion of hydrogen isotopes on W(110) we briefly dis-
cuss its limitations. We have already noted one restriction on
Eq. (3.9), which is necessary if the RTA is to hold Eq.
(3.11). Independently of this we expect that band motion
will no longer be obeyed above a critical coverage 8, at which
the local fluctuations in localized site energy levels which
result from hydrogen interactions prevent coherent propa-
gation from site to site. Klinger** has given a criterion for 6,
for the quantum diffusion of defects in quantum crystals
when motion is limited by impurities. This criterion says that
band propagation is no longer possible when the difference
between energy fluctuations on adjacent sites due to the pres-
ence of a defect on some other site become larger than the
bandwidth. Defining the length 7* (a property of the impuri-
ty potential) by

(3.34)

=A,

r=r*

|66(r*) — Be(r* + 1|l }‘95_252 (3.35)

where Se(r) is the shift induced in a localized site energy
level induced by the presence of other hydrogen atoms at
distance 7, A is the bandwidth, and / is the lattice spacing,
then the critical coverage &, beyond which band motion is
destroyed is given by

(r*)%6, =12, (3.36)

Even when band propagation is not allowed, one can
nevertheless have coherent tunneling motion over a finite
length which is greater than or equal to the lattice spacing.
Such “‘coherent hopping” is a nonactivated process. In the
next section, after analyzing the results for hydrogen on
W(110) we show how the results at intermediate and high
coverage can also be qualitatively described by such a hop-
ping model.

IV. APPLICATION TO LOW TEMPERATURE DIFFUSION
OF HYDROGEN ON W(110)

A. Low coverage 0 <0.1

Wefirst consider the results from the independent parti-
cle model in the energy band structure calculated without
hydrogen interactions (Secs. IIT A-III C). The diffusion
calculations are carried out with a rectangular barrier of
height ¥, and width X, chosen such that the same argument
in the exponential of Eq. (3.33) is obtained with both the
rectangular barrier and the potential of Fig. 3(a). All pa-
rameters for the diffusion calculations are given in Table II,
together with the hard core radius a and the lattice param-
eter /. The latter is chosen to yield an adsorbate density
1.42 10" cm~2 12 at @ = 1.0 for a square lattice, while the
former can vary somewhat when the long range interactions
are taken into account. When the diffusion coefficient is cal-
culated at very low coverage with the parameters of TableII,

TABLE I1. Parameters for the resonance integral 5, Eq. (3.32), which
determines the energy band structure (3.1) at zero coverage. The band-
width is given by A = 88,

Frequency ("H) ® =95 meV
Barrier height Vp = 300 meV
Barrier width X, =095A
Lattice spacing 1=2654
Hard core radius a=154A

Bandwidth A (meV) for the three H isotopes with and without additive
mass renormalization Am (amu}).

Am=0 Am =55
A ("H) 1.35(—-2) L19(—9)
A (°H) 8.34(—4) 5.35(—11)
A (CH) 1.79( — 6) 4.51( - 12)

we find that simultaneous agreement with the experimental
values for all three isotopes is only possible if the mass in Eq.
(3.33) is renormalized by an additive amount, Am = 5.5
amu. A similar conclusion was reached by Muttalib and
Sethna®® and confirms the conclusion of DiFoggio and Go-
mer on the inadequacy of a tunneling model with no effects
of interaction with lattice motion.'? In principle the renor-
malized mass may depend on the coverage. The effect of this
on the tunneling will then be similar to changing the effective
barrier with adsorbate concentration. In order to provide the
simplest theory we incorporate coverage effects only on the
effective potential (see Sec. III D).

The most striking consequence of the calculation are the
very narrow bandwidths A (Table IT). It can be shown from
Egs. (3.2), (3.9), and (3.10) that when A«¢kT all quantum
statistical factors cancel except for the scattering amplitude
F(k,®) and we find, e.g.,

8
D, () =B?I*m4 (B) (__g;)

4
T ) . ;. ’
Xf dx' 1+(gy_l) sin x’ sin x ,
0 dx Jsin?x’ + sin? y’
(4.1)
where
x'=£r—kx, y’=2-7{—k (4.2)

1 17
are scaled coordinates of the reciprocal lattice. The integral
in Eq. (4.1) is taken along the contour defined by the energy
€:

£

B
Equation (4.2) together with Eq. (3.19) imply that
D~n"Y(D=D,, =D,, fromnow on).

Figure 4 shows the concentration dependence of D for
all three isotopes with ?H treated as a boson of spin 1, and 'H,
3H as fermions of spin 1/2. The inverse concentration depen-
dence at small 8 agrees with the experimental findings'? but
we find no structure at higher coverages and in particular no

= —2cosx'—2cosy +4. (4.3)
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FIG. 4. Log D vs relative coverage 8 for 'H, ?H, and *H at 27 K calculated
within the independent particle model of Sec. III C. The band structure is
independent of hydrogen interactions here. (D =D,, = D,,.)

difference between fermions and bosons at any coverage.
The result is similar when 7 is calculated according to Eq.
(3.21). Thus we conclude that the initial fall in D(8) for
0 <0.1 is consistent with a band model for motion of the
hydrogens in very narrow bands with effective hard core
collisions between particles. Extrapolation of the experimen-
tal results to 8 = 0 will thus give 7, for impurity scattering,
which when inserted in Eq. (3.12) will remove the singular-
ity in (4.1). {The origin of this singularity is the inverse
concentration dependence of 7; [Eq. (3.19) ], which in our
treatment is the only explicit component of the relaxation
time 7 [Eq. (3.12)].} However the rapid decrease in D(6)
makes extrapolation uncertain and since we are not interest-
ed in the constant effect of impurities we shall not include 7,
here.

The fact that D remains finite at @ = 1.0 is a trivial con-
sequence of the model, resulting from taking nonunity spin
degeneracy g,. When g, = 1 however, we find for fermions
D—0 as it should for filled bands, while for bosons a finite
value is obtained. Inspection of Egs. (3.2) and (3.9) shows
that this is necessarily the case for bands narrow relative to
kT since df °(e) /e cannot be zero for bosons, which means
¥ and D remain finite at all 8. This is an interesting observa-
tion in view of the experimentally observed rise in D(8) for
6> 0.7 (Fig. 1), but is of course a result of the independent
particle picture in the band structure at the dilute limit,
which is not appropriate at these high coverages.

Quantitatively these results vary slightly with small
changes in the parameters and given the various sources of
uncertainty, we regard Table II as a representative best fit
set. No temperature dependence is seen over the range 30—
120 K, as expected since A<kT.

B. Intermediate and high coverage 6 > 0.1

To investigate the diffusion for 8> 0.1 we now include
the effects of hydrogen—hydrogen interactions on the energy
level structure in the qualitative fashion outlined in Sec.
III D. The diffusion coefficient D(@) is now calculated with
a coverage dependent bandwidth A(8) (Table I) and the
modified density of states (3.34). The effect of V (r) is sim-
plified for the rectangular barrier model by taking ¥, to
decrease linearly with coverage and saturating at 8 = 0.3:

V, —A0, 6<03,
V, —034, 6>03.

with A = 250 meV, the bandwidth for 'H increases from
A=12(—9) meV at =0 to A=09(—7) meV at
6 = 0.3. The effect of interactions upon the dynamics are
still calculated within the relaxation time expression for 7.
The result of this is shown in Fig. 5 in which we now find a
minimum in D(@) at 8 ~0.1. The location of the minimum
moves to lower coverage as the isotope mass increases from
H to °H, as seen in the experimental result (Fig. 1). For
0>0.3 after the mean field potential 7(r) has saturated,
D(8) decreases again. This is now faster than n~ ! due to the
reduction in the density of states, Eq. (3.34). This also forces
D(0) to go to zero at 8 = 1, regardless of the spin degener-
acy.

In neither situation, with or without the factor of
(1 — 8) in Eq. (3.34), does the diffusion coefficient for 2H
when treated as a boson show any increase for high coverage,
i.e.,, > 0.6. This is a consequence of the narrowness of the
energy bands, which eliminates all differences between fer-
mions and bosons as mentioned above and which also sup-
presses all concentration dependence except that from the
collision rate (3.19). In order to further investigate whether

Ve (6) = I (4.4)

o™

o™

1015 | ! ! I
0 02 04 06 08 10
6

FIG. 5. Log Dvscoverage 8 for 'H, ?H, and *H at 27 K calculated taking the
effect of hydrogen interactions on the band structure into account, Sec.
I D.
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this increase is a consequence of the quantum statistics a
proper many body treatment of the dynamics at high densi-
ties is required. At the current time it is an open question
whether this apparent increase for *H is really due to quan-
tum statistics or the particular energetics for this isotope.
(An explanation based on overlap of spin wave functions
within a hopping tunneling model has recently been ad-
vanced by Tringides and Gomer.*¢)

C. Tunneling between localized states

The above discussion shows that all the coverage depen-
dence of D(6) except the increase for ?H at 8> 0.7 may be
qualitatively understood within a tunneling model based on
band type propagation. However we do not expect that the
mobility is true collision controlled band motion over the
entire range of 8, but that tunneling between localized sites,
or over some finite localization length, occurs above a cer-
tain coverage. Nevertheless, the behavior of D(8) is expect-
ed to be qualitatively the same within both a delocalized and
a localized model of adsorbate states, being determined es-
sentially by the nature of the hydrogen—hydrogen interac-
tions. To confirm this we now investigate a hopping tunnel-
ing model and consider the effects of finite hydrogen concen-
tration on this.

In Sec. III we mentioned two criteria for validity of the
band mobility, Eqs. (3.11) and (3.35). The calculation dis-
played in Fig. 5 obeys the relaxation time consistency re-
quirement (3.11) for 8 <0.2. Condition (3.35) together
with Vy (r) (Fig. 4) yields an estimate of a critical concen-
tration 6, above which coherent band type propagation
between successive sites is not possible. The large uncertain-
ty in estimating V4 (7) from jellium models for the metal*
renders a realistic estimate impossible but if we invert Eq.
(3.36) we find that if 6, = 0.1, then 7* = 8.4 A and if 6,

= 0.2, then 7* = 5.9 A, both of which are reasonable with
the model potential of Fig. 4 and condition (3.35).

The nature of the hydrogen mobility above 6, is an in-
teresting question. It is not pure band motion but nor is it a
thermally or phonon activated hopping process since it
shows no temperature dependence. The exact nature de-
pends on some coherence length, by which we mean the

Energy

\A

§ X

o ry+ 0
Distance

FIG. 6. Energy levels of neighboring adsorption sites in the presence of ex-
ternal interactions with, e.g., other adsorbed hydrogen atoms. The level
_ shift 8 in the right well relative to the left well results from these interac-
tions.

range into which the wave function of the particle is effec-
tively confined. If this is equal to the sample length over
which diffusion is experimentally measured ( ~ 100 A), then
motion may indeed appear band-like, but if the localization
length is of the order of a lattice spacing, a hopping process
must be involved. Since two is a marginal dimension for lo-
calization, the length scale of localized states can vary enor-
mously. We shall not go into this aspect here, but will consid-
er only the most extreme case where coherence of the motion
is destroyed between consecutive tunneling events.

For a hopping process, the diffusion coefficient in two
dimensions is given by

D=1I"W, (4.5)

where W is the averaged rate of transition from one site to
the next (assuming nearest neighbor hops only). If fluctu-
ations in the energy levels destroy resonance between adja-
cent sites one can nevertheless still have tunneling between
these adjacent sites, which will however occur at a rate very
much less than the resonance enhanced process. The as-
sumption of nearest neighbor hops only implies that fluctu-
ations are large enough to entirely eliminate coherent mo-
tion over two or more lattice spacings. This results in a
model where the particle moves over the surface in a series of
disconnected tunneling events to nearest neighbor sites. The
events are separated by long residence times at each site. The
energies of any two neighboring sites fluctuate due to inter-
actions with the surrounding hydrogen atoms which is ex-
pressed by an asymmetry parameter, & (Fig. 6). One way to
construct the averaged transition rate W is to assume the
fluctuations result in a distribution of asymmetries 8, and to
integrate the tunneling rate for a particle in an asymmetric
double minimum over this distribution. Then

W= f P(8)W(8)d5 , (4.6)
where P(8) is the probability of having an asymmetry & due
to the interactions, and W(&) is the tunneling rate from left
to right in the double minimum potential of Fig. 6. We shall
assume the asymmetry, 8, to be Lorentzian distributed with
width I

P(5) r

m(&*+ T2
The model assumes, in effect, that the symmetric (pure reso-
nant) situation is the most probable one. This appears rea-
sonable for low coverages. In general however, é for which
P(5) is maximum should depend on concentration. The tun-
neling rate in the symmetrical potential, W(0), is the reso-
nance enhanced rate given by**

W(0) = (2A"Y/h (4.8)

with A’ the symmetrical level splitting. We use the semiclas-
sical expression for A’, as in Sec. ITI C,*

A=t [ - @r V) = #w/2 dx] (4.9)
w Xy

Here @ is the frequency in one of the equivalent minima and
fiw/2 the energy at which tunneling occurs. When an asym-
metry § is introduced, the corresponding tunneling rate from
left to right, W(J), is given by

(4.7)
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2(A/)2
W) = wW(0)
&+ (A + 857 + (A")?
(A")*

(4.10)

[62 + (A)? + 857 + (A))2]?
Equation (4.10) is derived in Appendix A. In performing
theintegral (4.6) we note that for I'> A’ or I' ¢A’ most of the
contribution to the integrand comes from regions where the
term 8y8% + (A")? may be replaced by §° (if A'<5) or ne-
glected (if A’>8). In this approximation, for I'> A’ we get

A'(3v2T/2—24")

(A} (V2T —A") ]
= W(0
W © (2?2 — (A" ((A")? — 2132
(4.11)
and for I'> A’ this reduces to
N2
where
2
D=12%(2—13. (4.13)

These results deserve some comment. Equation (4.10)
is a perturbative result insofar that it was assumed A <&
(Appendix A). However the limit I'—0 is well defined in
both Egs. (4.10) and (4.11), and gives #(0). In contrast,
Eq. (4.12) is identical except for numerical factors, to the
result of a Golden rule perturbative analysis of tunneling
from one well defined state to a distribution of states (Ap-
pendix A). Here the limit I'—0 is not well defined, which
causes an apparent discontinuity between the rate of the per-
turbative process for which D« (A’)? and the rate of the
resonance enhanced process, for which D« A’, Egs. (4.5)
and (4.8). [ The band diffusion is of the same order of magni-
tude as the latter since the relaxation time is proportional to
B in Eq. (4.1).] If one includes the contribution from off
resonant tunneling, as in Eq. (4.10), this discontinuity is
properly eliminated. Finally note that if the “dephasing”
width I arises from phonon interactions the rate W would be
temperature dependent (I' ~ T'® at low temperatures®®).

We now have an expression for the diffusion coefficient
in the presence of fluctuations larger than the bandwidth
A = 16A" the width I being a measure of the energy range of
the fluctuations. [ B is related to A’ in Eq. (3.33) by equat-
ing the semiclassical frequency for transition between neigh-
boring wells, v = 2A’/#, with the average group velocity in
one dimension divided by the lattice spacing, i.e., 8 /#. This
gives S =2A’, which implies A = 8 8= 16A".] Although
we do not currently have a theory for the dependence of the
fluctuations on coverage, we can expect these to increase
with concentration. On the basis of our previous discussion
of hydrogen—hydrogen interactions, the symmetric tunnel-
ing rate (4.8) will also be expected to increase with coverage
because of the effective reduction in barrier height at finite
coverages (Sec. III C), until some saturation point is
reached. A simple calculation based on the parameters of
Table II then shows that the coherent hopping diffusion rate
(4.13) can show an initial increase to a maximum, which is
followed by a monotonic decrease at higher coverages. (The
correct order of magnitude diffusion coefficient for 'H is
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obtained with a width I'~ A’/10 if Am = 5.5 amu, a larger
width being compatible with a smaller mass renormalization
Am.) Thus within this simple model of hopping diffusion
based on tunneling between localized sites, we can also ac-
count for the coverage dependence at intermediate and high
coverages, though not yet for the initial decrease at low cov-
erage.

Although the above estimate is very crude and is based
on a static uniform distribution of adsorbed hydrogen atoms,
it is consistent within a model of coherent tunneling between
localized sites, provided the fluctuations destroying further
long range coherence are derived from the electron mediated
hydrogen-hydrogen interaction. Work is now in progress on
a more realistic treatment, based on a self-consistent field
description of the interacting diffusing particles. The distri-
butions of the hydrogen in such a self-consistent field treat-
ment should be quantitative, and quantities such as P(I")
obtainable from first principles.

V. HYDROGEN DIFFUSION AND THE ENERGY BAND
MODEL

We have seen that the coverage dependence of the mo-
bility of chemisorbed hydrogen isotopes on tungsten (110)
is consistent with a collision limited band propagation at low
concentrations. The variations in D(8) at coverages greater
than 0.1 could be explained in terms of the hydrogen interac-
tions mediated by the metal electron distribution, within ei-
ther a band or a hopping tunneling model of the atom mo-
tion. However the criteria for band propagation were
fulfilled only for 8 <0.1, so we rely quantitatively on the
picture of band motion only for coverages less than 0.1.

Nevertheless, the fact that the bandwidths that we esti-
mate are extremely narrow raises questions as to the consis-
tency of our model with the existing interactions within the
system. Should one not be concerned with the fact that in-
elastic scattering by phonons will effectively destroy the
bands? Although it is an extremely hard question to investi-
gate from first principles, the existence of such extremely
narrow bands ( ~107° meV) at low temperatures seems to
us possible on the basis of several experimental and theoreti-
cal arguments: Our considerations of accepting that such
narrow bands persist despite coupling to phonons are the
following.

(i) Evidence for the existence of very narrow bands was
found in the somewhat similar case of spin diffusion of *He in
solid “He.?® In that case the theoretical interpretation in-
voked the existence of bands of width ~ 10~ meV. The tem-
perature of the spin diffusion experiments is however lower
(1K) than the temperature range considered in the present
work. Furthermore, diffusion of muons in the bulk of some
metals has also been argued to proceed by tunneling at low
temperatures, with matrix elements of the order of 103
meV>’ at temperatures up to 20 K, which approaches the
range studied here.

(ii) The experiments of Gomer et al.'>'® which we at-
tempt to interpret here, show no temperature dependence of
the tunneling rate. It is highly unplausible that inelastic
phonon scattering can play a role in this process without
giving rise to significant temperature dependence. It should
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be stressed that one major type of phonon effect is included
in our treatment, namely mass renormalization. This is,
however, a static effect which persists down to zero tempera-
ture and which, we assume, does not change significantly
within the experimentally relevant temperature range (27-
100 K)). We thus make here the assumption that dynamical
phonon effects (i.e., inelastic scattering) do not play a role,
as the simplest framework which is consistent with the ex-
perimental evidence of temperature independence.

(iii) Theoretical considerations also suggest that dyna-
mical phonon effects may be weak. For instance, phonon
inelastic scattering leading to intraband transitions is unlike-
ly to play any role because the phonon density of states lead-
ing to such transitions is extremely low given the narrow
bandwidth. On the other hand, interband transitions, which
could also destroy the band structure if sufficiently strong,
require at least two phonons of high frequencies which are
modes not significantly populated in our temperature range.
Thus both interband and intraband phonon dynamical cou-
pling effects are likely to be extremely weak. Finally, dephas-
ing effects by low frequency acoustic phonons is limited by
the long scale of their wavelength. Acoustic phonons, if pop-
ulated, can destroy coherent band states which extend over
several unit cells. However such coherence domains may be
larger than those probed in the H/W(110) experiment
(~1004).

Clearly the above arguments are merely suggestive in
nature. It should be stressed that even if our assumptions
regarding the coherent motion of the H atoms at low tem-
perature holds, the band treatment as used here is too sim-
plistic. It seems reasonable to expect that this coherent mo-
tion should be affected by the zero point motion of the
substrate atoms (it is well known however that zero point
motion alone cannot destroy the coherence). The hope is
that the concepts advanced here will remain largely intact in
a more rigorous theory that will probably lead to additional
renormalization of some of the parameters (which are any-
way used in the present work only to fit the experimental
observations). Such more rigorous theory and additional ex-
perimental work are clearly needed.

In this context it would be of considerable interest to
repeat the diffusion experiments at lower temperatures, e.g.,
T~1 K, to ascertain whether D(T) remains constant at its
present low temperature value or whether any increase is.
observed as T is lowered, suggesting a decrease in phonon
participation. Spectroscopic measurements can also give
more information relating to band motion. In addition to
clarifying the binding sites and assigning frequencies, spec-
troscopic linewidths can be related to widths of the adsorbed
states.?” Also it seems very desirable to carry out more quan-
titative theoretical estimates of phonon inelastic scattering
on band states of diffusing atoms in realistic systems in order
to obtain an indication if and under what conditions do the
bands survive the dynamical coupling to the phonons.

There are other situations where hydrogen may move in
energy bands, such as when present as impurities in rare gas
crystals,** or the more well known proton in ice.***’ The
easy accessibility of surface experiments to controlled con-
centration variations, however, makes further experiments

5193

with hydrogen on metals and other surfaces and with mea-
surement of the diffusion dynamics by several independent
means extremely desirable. The recently developed laser in-
duced desorption techniques show some promise for provid-
ing a new method of measuring surface diffusion.” The rela-
tion between diffusion and the rate of reformation of ordered
structures after induced disordering in LEED?® deserves
further attention, particularly since the role of formation of
islands of ordered phases and the effect of size and stability of
these on the microscopic dynamics has not been extensively
investigated.

V. CONCLUSION

We have developed a model for quantum diffusion of
hydrogen metal surfaces and applied it to the H/W(110)
system. The model of collision limited band mobility was
considered and shown to be feasible for this system, although
very narrow bandwidths appear to result from mass renor-
malization due to lattice vibrations. The band model seems
to be applicable at low coverages, 6 < 0.1, where it quantita-
tively explains the coverage dependence of the diffusion in
the low temperature regime. The results assert the usefulness
of the band model for mass transport of atomic particles on
periodic surfaces, although in special limiting conditions.
The behavior at higher coverages is qualitatively explicable
in terms of the indirect hydrogen-hydrogen interactions on
the surface, which are mediated by the metal electrons and
which reduce the effective barrier for tunneling. Both the
band and tunneling hopping models can account for the ex-
perimental observation for > 0.1 with a reasonable choice
of parameters, but the inconsistencies in the width require-
ments for band motion at these concentrations lead us to
prefer the hopping model. In no situation do the quantum
statistics of the adsorbed species play any noticeable role.
The observed increase in diffusion of ?’H at 6 > 0.7 remains
unexplained within our model. -

This study has illuminated the importance of adsor-
bate—adsorbate interactions in determining the many parti-
cle dynamics of the chemical diffusion coefficient, D(8). We
have not attempted to provide a rigorous theory of the dy-
namics of strongly interacting particles in periodic lattices,
but clearly this is a fundamental question raised by the pres-
ent investigation and in particular by the absence of a quanti-
tative theory at high concentrations. Another intriguing
question raised by this work is the possibility of using colli-
sional models to analyze diffusion of interacting particles in
the classical or thermally activated regime. These questions
invite further study.
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APPENDIX

The tunneling rate in a symmetric double well (6 = 0in
Fig. 6) can be defined in terms of the residence time 7°in a
single minimum

°=h/(24"), (Al)
where A’ is the energy splitting.** This concept of residence
time was generalized by Brickmann and Zimmerman*® to
tunneling in asymmetric double minima to yield

r=h/(8cic3A"), (A2)
where ¢,,c, are coefficients of the eigenfunction expansion

Yo=c16—2¢5,

Yp=Cr¢1+¢ ¢,
¥,,¥, are eigenfunctions of the isolated minima, ¢,, ¢, are
the ground and first excited states of the double minimum
potential. The rate of tunneling in the asymmetric system,
W(6) is then given by

W(6) =4cictW(0) . (A4)
Neglecting the contribution of excited states, the lowest two

energy levels in the asymmetric system are given by eigenval-
ues of the matrix

(5 2)
J ¢/’
where Jis the tunneling matrix element and €,, €, the (une-

qual) ground state eigenvalues of the isolated minima. De-
fining for this discussion

(A3)

(A3)

€, =0, ¢ =956 (A6)
we find

€=08+ 6"+ (A")?, (A7)
where

A'=2J (A8)

is the symmetric energy level splitting.** The normalized co-
efficients ¢, and ¢, are then given by

= 5+ 6% + (A")?
[26% +2(A")? + 2887 F (A)2] /2

— A
2= »  (Al0)
[28% +2(A")* + 2887 + (A")?]'*

c (A9)

[

and
2(A')?
(82 + (A2 + 8/67 + (A)?]
_ (Ar)4
[6% + (A")2 4 8/87 + (A)?]?
Inserting Eq. (A11) into Eq. (A4) we obtain
W(5) = W(0) [ 2(A)?
[6*+ (A2 + 887 F (A)?]
_ (AI)4
[6* + (A")? + 667 + (A)?)?
This gives W(0) as the correct limit of W(8) as 0.

4ctcl =

(All)

(A12)

It is instructive to compare this result with the Golden
rule for resonant tunneling from €, to a distribution of final
states €, defined by some width I'. The Golden rule rate is

w(r) =2?77sz(€,,)5(€,, —e, — ). (A13)

If we take the distribution of final states to be Lorentzian
with width T,

rn-!
=— Al4
P(eb) e “‘Ea)2 " 2 ( )
we obtain
2J? J
W) ="—=W(0)—. AlS5
() 7T ( )I‘ ( )

This yields the coefficient of diffusion for a hopping process
over jumps of length / as

2 "2
p=L (A

Al6
2 Al ( )
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