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We calculate the low-temperature quantum density matrix by integrating numerically the Bloch equation. The nitial
condition s the classical high-temperature value of the density matrix. The integration method uses short * time”™ propagators

computed by a fast Fourjer transform method.

1. Introduction

There are many probiems in physical chemistry
whose solution depends on knowing the equilibrium
properties of systems in which a few quantum degrees
of freedom interact with a large number of classical
ones. The computation of such quantities begins by
generating the positions of the classical particles (i.e.
the “classical configuration’’} and using them to cal-
culate the potential energy for the quantum degrees
of freedom. This defines the Hamiltonian for the :
quantum subsystemn and permits the computation of
its density matrix, which can be used to calculate ex-
pectation values of various quantum variables. Ob-
servable quantities are generated by averaging the
expectation values of various operators over all pos-
sible classical configurations. To obtain correct aver-
age properties we must calculate the quantum density
matrix for a very large number of classical configura-
tions, and therefore we need extremely efficient al-
gorithms for the quantum part of the calculation.
This has stimulated work [1—13] in which compu-
tational efficiency is a major concern.

In this article we present a method for the calcula-
tion of density matrix which is extremely efficient
when applied to localized systems with low dimen-
sionality.
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2. The method

The starting point is the observation that the equa-
tion [14]

dp(x,x";B)aB= ~H(x)p(x,x";8),

for the coordinate representation p(x,x"; 8) of the
density matrix is a diffusion equation in which g =
Ukﬁ T plays the role of time. Since at high tempera-
tures we have [14]

p(x',x; B) = (m/2ah28)1/2 exp[—3 BV (x")) 2)
X exp[—(m/2#2B8) (x — x")2] exp[--3 BV (x)],

we can calculate p(x ', x; f) by integrating eq. (1)
from a small initial value of § (i.e. high temperature)
to the desired § value, Eq. (2) provides the initial con-
dition for the integration.

The calculation is based on the iteration scheme

p(x",x;p+€)=G(x",x";€) p(x'.x;8), (3)

where G(x", x'; €} is a short-time propagator. Through-
out this article repeated indices, coordinates or mo-
menta are summed (or integrated) over.

To obtain an expression for G we take e small
enough to permit the approximation

(D

G(x",x";€) = (x" | exp(—eH)|x")

=~ (x"|exp(—eK) exp(—eV)[x"). (4)
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Here K and ¥V are the kinetic and the potential energy
operators, respectively, and H = K + V. The forma!l
conditions defining what is meant by a sufficiently
small € are known, but are not practically useful.
We prefer to test whether e is small enough by repeat-
ing the calculation with smaller € and showing that the
results are unchanged.

By combining the eqs. (3) and (4) and using sim-
ple basis sets manipulations we can write

p(x"x" B+ e)~ " k) exp(-ehr2k2/2m)
X kix"Yexp[—eV(x")) p(x’,x; ). (5)

To calculate p(x”, x"; 8 + €) from this equation we
must perform two integrals: one, over x ', gives the
Fourier transform f(k) of exp[—e ¥ (x")] p(x',x; §);
the other, over &, is the inverse Fourier transform of
exp(—#2k2e/2m?2) f (k). The key to making this cal-
culation very efficient is the use of a fast Fourier
transform (FFT) routine to calculate these integrals.

Algorithms that solve partial differential equations
by using FFT have been proposed previously in a dif-
ferent context. Fleck, Morris and Feit [15] solved
Maxwell's equations for the propagation of laser in
atmosphere; Feit and Fleck [16], and Kossloff and
Cerjan [17] applied it to the time-dependent
Schrodinger equation; Petschek and Metiu [18] used
it to solve the time-dependent Ginzburg—Landau
equation. While the detailed implementation by var-
ious authors has slight differences, all of them used
FFT to compute the partial derivatives with respect
to the spatial variables.

3. Numerical results

To illustrate the accuracy, the efficiency and the
stability of the method we present calculations for a
proton in a double well and in a Morse potential. In
fig. 1 we show the probability

P(x)=p(x,x;8) [ dx p(x,x;8) ©)

that the particle is located at x. The double well is the
same as the one used by Thirumalai, Bruskin and
Berne [3] and is plotted together with P(x). The ini-
tial temperature is T} = 4000 K and the final one is

Ty =200 K. The grid needed for performing the fast
Fourier transform is placed between x = 0 and x = 27
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Fig. 1. The normalized probability distribution, P(x), for a
proton in the double well potential used in ref, 13} P(x)
calculated using the present method, is given for different
number of propagation steps, #, from the initial high
temperature, 75 = 4000 K to the final temperature, Ty =
200 K, with the time step ¢ = (Bt — B)/n. The classical
(solid line} and exact [3] (solid circles) results are also
shown.

& exact

X {a.u.)

Fig. 2. The probability distribution, £(x), for the same sys-
tem as in fig. 1. P(x), calculated using the FFT method, is
given for different numbers & of grid points. We use 10
time steps, from 7 = 4000 K to 77 = 200 K. The potential
(solid line) and the exact result [3] (solid circles) are also
shown.
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Fig. 3. The probability distribution, P(x), for a proton in a
Morse potential, V(x) =D {exp[—Za(x —xg)] -2x
exp{—a (x — x¢)]}, with the parameters D = 0.01 au, xp =
0.5 au and ¢ = 0.5 au. The resuits obtained with the present
method (solid line) are compared to the exact result (solid
circles). The grid on the x-axis is located between x = —2 au
and x = 4 au and has 32 points and the number of time steps
n is 20,

au and has 64 points. The “time” step is defined by

€ = (B¢ — B;)/n, where n is an integer and 8 = 1/kg T,
a = if. Forn > § our results are identical to the exact
results of Thirumalai et al. [3].

In fig. 2 we show the same calculation carried out
with grids having different point densities. If we use
8 grid points the method cannot reproduce the regions
of high curvature, but it gives exact results for N = 32
and V = 64.

The probability P(x) for the Morse potential V(x)
=D{exp[-2a (x — xp)] — 2 exp[—a (x — xg)l}, with
D=00lau,xy=0S5avanda=05aufor T=50K
is shown in fig. 3. Exact results are obtained by placing
32 grid points between x = -2 au and x = 4 au. The
smallest number of steps giving exact results isn =
20. The Morse well used for this calculation has 12

Table 1
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Fig. 4. The same as fig, 3, but 2 = 4 au, The grid on the x-
axis is located between x = 0 and x = 2 au and has 32 points,
The number of time steps # is 200.

bound states and the energy difference between the
ground and the first excited state ise, — €, =96
k5 T.The results of the same calculation was performed
in fig. 4, except that we used ¢ = 4 au to make the
potential highly anharmonic, and consequently, the
number of steps has to be larger, n = 200. The number
of grid points is 32. This potential has only two
bound states in the well and €] — €5 = 8.1 kg T.

By using the fact that at low temperature (i.c. high
$) we have

In fdxp(x,x;ﬁ) ~e— P Lexp[-B(e, —€y)) . (7)
we can use the high-g points to calculate, by ieast-

squares fitting, €5 and €; — e5. The results are shown
in table 1.

4. Comments

Some of the advantages of this method arc ap-

The ground-state energy, g and the vibrational frequency, 2w = ¢ - ¢, for a proton in a Morse potential, extracted from eq. (6)
by least-squares fitting in a low-temperature interval. The potential parameters are D = 0.01 au, xg = 0.5 au and 2 = 0.5 £ 0.05. The
two g values correspond to 10% frequency shifts as compared to the frequency for a = 0.5 au. All gquantities are in atomic units

o €0 eg (exact) Aw hw (exact)
0.45 -0.00928 —0.00927 0.00136 0.00137
0.55 -0.00913 —0.00911 0.00165 0.00165
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parent without numerical tests, The heart of the cal-
culation is the evaluation of an exponential operator
at each time step. All methods for doing this are
equivalent to the diagonalization of the operator ap-
pearing at the exponent. The efficiency of the proce-
dure presented here comes from the use of FFT to
diagonalize the kinetic energy operator. Since FFT is
a discrete algorithm [19) we need to define a coor-
dinate grid {x{,x,, ...} having N points. The grid
must span the set of values of x for which the func-
tion is non-zero. It must also provide enough points
to describe well all the wiggles of the function; for
this the distance between two nearest points on the
grid must be less than the smallest length scale over
which the function changes. Obviously, smooth and
localized functions require a small value of V. Once
N is chosen the use of FFT to diagonalize exp(—eK)
requires 2V In V operations [19]. The customary
diagonalization methods need M2 operations, where
M is the number of eigenvectors required for a faith-
ful spectral representation of the operator at the ex-
ponent. Since this operation is carried cut once for
each time step the FFT method can save considerable
computer time especially if V is smaller or comparable
to M.

Increased efficiency is further achieved if the grid
is unchanged throughout the computations so that the
arrays exp{—e V (x,)] and exp(—h2k2 ¢/2m), a =
1,2,..., N, are computed only once. This is the reason
why the FFT method is faster than the MEM method
[12] proposed previously by us. The MEM has fewer
operations per time step, but it must recompute at
each time step the potential and its first and second
derivatives at the new location of the center of the
Gaussian.

We have found that the method has excellent stab-
ility with respect to both the number of points in the
grid and the number of time steps. If the number of
points on the grid is too small the method is unable
to reproduce the density matrix in those regions where
it has a large curvature; it will however reproduce cor-
rectly the general features of the function, giving a
smoothed out version of it. This global stability is not
generally present in local methods, such as finite dif-
ference calculations, where the errors are sometimes
amplified when the lattice is too sparse.

The stability with respect to the time step is also
understandable. We use small values of the time step”
¢ to ensure that the term €2 [ K, ¥ ], which is neglected
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ineq.(4), is smaller than K and V. Qualitatively Speak.-
ing we expect the commutator [K, V] to be small for
a nearly classical particle such as a proton, and we dq
not expect to need a very small ¢ to satisfy the above
requirement. If we err on the side of too large an ¢
than we are assuming a more semi-classical behavior
than the system truly has. This will give a density
matrix between the exact one and the classical value
(see fig. 1); this is not likely to generate instabilitjeg
in the propagation scheme.

Another satisfying feature of the present method
is that all the operators used to construct the tot]
propagator are exponential and thus remain unitary
even if € s too large. This is not the case in those
methods [16} which use exp(—eH) ~ 1 — eH.

We emphasize that for problems of high dimen-
sionality d the computational effort goes up as
(2N In N)9 per time step, This will put the present
method at a disadvantage with respect to the Monte
Carlo and Gaussian wave packet methods, Further-
more, problems where the density matrix has mul-
tiple length scales of very different magnitude will
require large values for N and will lower the effi-
ciency of the method.
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