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We discuss electronic energy and charge-transfer processes at surfaces in terms of curve-crossing
models. We suggest that at low kinetic energies the trajectory approximation should be replaced by
a mean-trajectory approximation (MTA), in which the nuclear motion gets feedback from and ad-
justs to the curve-crossing dynamics. We discuss two derivations of MTA by using an eikonal ap-
proximation and a path-integral method. The effects of phonon or electron-hole pair exc1tat10ns on

the charge-transfer process are also incorporated.

I. INTRODUCTION

The dynamics of atomic and molecular processes at
solid surfaces is often dominated by nonadiabatic transi-
tions between quantum states of the atomic or molecular
system or between states of the substrate. Frequently dis-
cussed examples are those involving charge exchange be-
tween the external atom or molecule and the surface. The
simplest process of this kind is the ionization (neutrahza—
tion) of an atom (ion) incident on a metal surface.!™’
More complicated examples are charge transfer during
sputtering,’ chemiluminescence,”!® electron- or photon-
stimulated desorption,'! and energy transfer via an inter-
mediate charge-transfer process.!?> Auger neutralization
of an incident ion!3 is a still more involved example. Oth-
er important processes that may be described by curve
crossing model are the surface-induced de-excitation of
electronically or vibrationally excited molecule and, in
some cases, molecular dissociation during molecule-
surface collision.

The theoretical treatment of these processes usually in-
volves the classical trajectory approximation’~%8—14 (re-
viewed in Sec. II), which is valid only when the kinetic en-
ergy of the incident atom or molecule is very large. For
incident energies of the order of the energy differences be-
tween relevant quantum levels of the incident species or of
the surface, this approximation fails. While much ion
scattering work is carried out at high kinetic energy, the
low kinetic-energy regime is very important in electron-
stimulated desorption and in the thermal desorption and
the sticking of alkali atoms. Since a fully quantum-
mechanical treatment of these processes is difficult (espe-
cially in three dimensions) and since one expects that the

motion of the incident atom is essentially classical and

quantum effects mostly control the transition between the
electronic states, one would like to seek an improved tra-
jectory approximation. While such a theory may yield a
time-dependent Hamiltonian for the electronic problem
(as does the trajectory approximation), it should obtain the
nuclear trajectory by a procedure that will recognize the
continuous occurrence of the electronic transition and use
this information to guide the evolution of the otherwise
classical trajectory.

In this paper we examine the 1mphcatlons of the mean-
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trajectory approximation for charge-transfer processes at
metal surfaces. In this approximation the “classical” de-
grees of freedom (denoted collectively by R) evolve under
the potential 3, j XiX;H;(R), where X; is the instantane-
ous amplitude of the electronic state i (characterizing the
quantum degrees of freedom) and Hj;(R) is the matrix
element of the Hamiltonian for the quantum system
(which depends parametrically on R) between the i and j
quantum states.

This approximation has been applied by several workers
in the past'>~?! to problems in molecular dynamics. Here
we are concerned with its justification from first princi-
ples as well as with its extension to situations specific to
surface science. Thus we derive the approximation by two
methods: The first is based on the use of wave packets
(the eikonal approximation) while the second is obtained
by taking the extremum of the action functional in a
path-integral expression for the quantum propagator. We
then proceed to apply this procedure to charge-exchange
processes at metal surfaces, taking as a prototype the
ionization-neutralization processes involving an alkali
atom colliding with a metal surface. We derive the equa-
tions of motion which govern the dynamics of the alkali
atom motion towards and away from the surface, the
transition between the neutral and the ionic state, and the
energy exchange with electron-hole pairs and phonons.

The mean-potential approximation is superior to the
classical trajectory approximation in that it responds (in
an average way) to the quantum process. As a result the
time evolution in the effective trajectory approximation
conserves the average energy, in contrast to classical tra-
jectory approximation which does not. At the same time
the equations of motion in the effective potential approxi-
mation are as easy to integrate as those of the classical
trajectory approximation. We hope to present in future
work numerical results for both dynamics®? and for elec-
tronic structure calculations*® of the diabatic®* curves as
well as some experimental results.?>—26

The paper is organized as follows. In Sec. II we
describe the charge-transfer process as a curve crossing.
The effective trajectory approximation is derived by using
the eikonal approximations (Sec. III) and by using a sta-
tionary phase approximation in a path-integral representa-
tion (Sec. IV). In Secs. V and VI we show how to imple-
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ment the resulting equations of motion for a charge-
transfer problem typical of surface science, which involves
continuous manifolds of crossing electronic states, and
phonon or electron-hole pair excitations. In Sec. VII we
summarize our results and discuss the advantages and the
shortcomings of the present treatment.

II. ALKALI ADSORPTION AS A
CHARGE-TRANSFER PROCESS

We present here in detail the physical arguments used
to construct a curve-crossing model for the alkali adsorp-
tion as a charge-transfer process described by the “chemi-
cal reaction”

M (Y0 +A () —(M 7o)+ AT (Y0) . 2.1
Here, M, A, and A" denote the ground-state metal, the
neutral alkali atom, and the alkali ion, respectively.
(M ™)* denotes the metal surface with an extra electron;
the asterisk indicates that the “negative ion” M ~ is excit-
ed (the transferred electron is placed above the Fermi lev-
el). In the parentheses accompanying these symbols we
indicate the orbitals involved in the charge-transfer pro-
cess. The superscripts specify the number of electrons oc-
cupying each orbital. The electron to be transferred is ini-
tially located in the atomic orbital ¥ and ends up in the
empty metal orbital 1,, whose orbital energy (with respect
to the Fermi level) is €,. There is an infinite number of fi-
nal states [i.e., an infinite number of excited, negative ions
(M ~)*], one for each v,.

To construct the energy curves corresponding to the ini-
tial and final states specified by Eq. (2.1) we use the Fermi
energy of the surface as a convenient point of reference.
Since in all the relevant experiments the sample is ground-
ed, the Fermi level is not changed when the surface gains
an electron or when it is disturbed by the approaching ion.
The potential surfaces discussed below correspond to elec-
tronic energy levels of the combined metal-atom system
and not to single electronic orbitals. The energy differ-
ence AV,(R) between the final and the initial states speci-
fied by Eq. (2.1), at a fixed atom-surface distance R and
for fixed €,, is the energy I(R) required to ionize the
atom, minus the energy ¢ —¢€, recovered by placing the
electron in the orbital 1,. The ionization potential I(R)
is given by I, +V;(R)—V,(R), where I is the ioniza-
tion potential of the isolated atom, and V;(R) and V,(R)
are the ion-metal and the atom-metal interaction energies,
respectively. If the ion binds more strongly to the surface
than the neutral we have I(R)<I,. In what follows we
assume this to be the case. Note that the work function
¢, appears, rather than a local work function.?” This is
because we define the ionization potential I(R) as the
work required to remove the electron to infinity; therefore
we need the work recovered by taking the electron from
infinity to €,.

The energy curves corresponding to the initial and the
final states of Equation (2.1) are shown in Fig. 1. We
have assumed that the energy curve corresponding to the
initial (neutral) state has a small attractive well and a rap-
idly rising repulsive part. The ionic curve can then be

b

Potential energy
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FIG. 1. Energies of the neutral and the ionic states involved
in the description of the ionization process. Various ionic
curves differ through the final energy €, of the transferred elec-
tron, with respect to the Fermi level. I is the ionization poten-
tial of the neutral in the absence of the surface. ¢, is the work
required to remove an electron from the metal to infinity.

qualitatively drawn by using the expression
AV (R)=I(R)—¢,+€,
=1, +[Vi(R)=V,(R)]—¢,+€,,

which gives the energy difference between the ionic and
the neutral curve. At large particle-surface distances the
separation between these curves is

AV loo)=Iy—¢ +€q. (2.3)

In what follows we call AV,(w) the asymptotic
mismatch of curve a. Using this expression we can
rewrite Eq. (2.2) as

AVo(R)=AVy () +[I(R)—1,]. (2.4)

(2.2)

The energy difference AV,(R) becomes zero at the dis-
tance R, given by

AV, (Ry)=0=AV () +I(Ry)—1I . (2.5)

If this equation has a solution the neutral and the ionic
curves cross [curve (I), Fig. 1] at R, and, at that distance,
the initial and the final states of Eq. (2.1) are degenerate.
The charge-transfer process resulting in the creation of
(M)*(1) is most likely to occur at R,,.

The crossing occurs only if the “image effects”*® con-
tained in the term I(R,)—1I  are able to compensate the
asymptotic mismatch AV, (w). If the asymptotic
mismatch is zero, then Eq. (2.4) gives I(R,)=1I_ and the
crossing occurs at very large values of R,. As the
mismatch is increased, the crossing point moves to small-
er values of R,, provided that AV,(«)>0. Obviously if
AV,(0) <0 the curves cannot cross at any distance. Also
if AV,( ) becomes too large the image field cannot com-
pensate for it and the curves do not cross. We denote by
AV () the maximum value of AV, () that can be
compensated.

The ionic curves can thus be characterized by any of
the following parameters: the asymptotic mismatch
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AV ,( ), the crossing distance R,, the orbital energy €,,
or the index . When AV, () increases, R, gets smaller
and €, increases.

In discussing the dynamic processes possible in this sys-
tem of curves we assume that we have a procedure for
generating a classical trajectory R (¢) describing the
motion of the incident neutral. This incident particle can
undergo transitions to any of the ionic curves as long as
they cross the neutral one. A transition to an ionic state
AV,() tends to take place near the crossing point R,.
At any other point R there is an energy mismatch
AV,(R), which means that after the transition to the
curve a the nucleus must change suddenly its velocity.
Since the electron transfer cannot provide a large momen-
tum transfer such an event is unlikely unless AV ,(R) is
very small, that is, unless R is very close to R,,.

Let us assume that a transition to the ionic state a has
occurred at R, while the neutral was on its incoming tra-
jectory. This places the transferred electron in the empty
surface orbital €,. The ion hits the wall, turns around,
and approaches again the point R,, where it could be neu-
tralized by the electron initially placed in €, if that elec-
tron has not already moved into the bulk. In what follows
we assume that surface residence time 7, of the
transferred electron is much smaller than the collision
time 7, (which is the time interval in which the atom or
the ion are close enough to the surface to undergo charge
transfer). Since, strictly speaking, the electron is not
transferred into a one-electron state 1, but into a localized
wave packet centered around €,, the electron moves to-
wards the bulk with the group velocity of the packet. The
surface residence time of interest here can be defined by
7,=L /v, where L is the displacement required to cancel
the overlap between the wave packet and the hole state in
the atom, and v is the group velocity. An equivalent
statement is that 7, ' is roughly given by
(27 /%) | H12(R,) | *ple,), where Hy5(R,) is the coupling
between the ionic and the neutral states at their crossing
distance R, and p(€,) is the density of the ionic states.
The condition 7, << 7, precludes the neutralization of the
ion by a recrossing of the incident neutral curve on the
outgoing trajectory. The dynamics occurs as if the in-
cident neutral curve disappears as soon as a transition to
an ionic curve is completed.

While the ion cannot be reneutralized by the electron
which was previously transferred to the surface, neutrali-
zation can occur by tunneling of thermally excited elec-
trons. The condition ¢ —I _ >0 precludes the electrons
at or below the Fermi level from participating in the neu-
tralization of the ion; furthermore, if ¢, —1I, >>kpT,
only very few thermal electrons have enough energy to
neutralize the ion resonantly and the neutralization rate is
extremely small. The behavior of the ion in the extreme
case in which 7, <<7, and ¢, —1I  >>kpT, depends on
the value of A,=K —AV (), where K is the kinetic en-
ergy of the incident atom. If the ionization occurred by a
transition for which A, <O, the ion is trapped; if A,>0,
trapping occurs only if the ion loses (to phonons or
electron-hole pairs) an amount of energy larger than A,
Otherwise the ion escapes into the vacuum.

If ¢ ,—1I, >0 but is not much larger than k37, the ion

can be neutralized by tunneling of thermally excited elec-
trons. This process can be described by the chemical reac-
tion

MYp)+ A+ >MH (Y3 + 4 () .

Here M (¢}g) represents the metal having a thermally ex-
cited electron in the orbital 15 whose energy 74 is above
the Fermi level (75 is the energy of the transition from
the Fermi level to 1g). M +(1/J%) is the metal after electron
removal from .

The energy required for the process described by Eq.
(2.6) is

AgB(R)=¢w~—T[B——I(R) .

In Fig. 2 we plot the ionic curve &;(R) and the set of
neutral curves given by

gn,B(R)zgi(R)-f-(ﬁw—nB—I(R) .

(We assume, for simplicity that the neutral curve is in-
dependent of R.)

If 75=0 (i.e., we consider an electron at the Fermi lev-
el) then &, 400)—&(0)=¢,—I, and the neutral
curve is above the ionic one (we consider the case
¢ >1,). The neutral curve &, g and the ionic curve &;
do not cross. If ¢, —1I, =ng, the two curves coincide for
R— . If ng>¢,—1, the neutral curve crosses the ion-
ic one for all 7g smaller than ng given by ¢,
—ng—1,=min&;(R).

A newly formed ion starts interacting with the thermal-
ly excited electrons as soon as it is produced. The rate of
neutralization is the quantum-mechanical transition rate
to the neutral curve labeled 175, multiplied by the probabil-
ity that 7g is thermally occupied.

We can now summarize the overall dynamic picture for
the case 7, <<7, and ¢, —1I, >0. There is a finite proba-
bility that the incident neutral is not ionized, in which
case it will scatter back into the vacuum. The ionization
brings about some complexity. If it takes place by a tran-
sition to the ionic curve labeled «, the electron is placed in
the empty metal orbital €, from where it promptly moves
into the bulk and disappears. If the ionizing transition

(2.6)

2.7

(2.8)

neutral I - ¢, > 8

neutral I - ¢y = 18

Energy

neutral Io~fp< < ')Bmax

= max . - —e.
neutral mg = g o I €0

S

Atom surface distance

FIG. 2. Energies of the neutral and the ionic curves invoked
in discussing the neutralization of the ion. The neutral curves
all differ through the initial energy 7, of the thermally excited
electron used for neutralizing the ion. &; is the binding energy
of the ion to the surface.
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occurs to a curve a for which A,=K —AV, <0 (i.e., the
kinetic energy of the neutral is below the ionic curve a),
the ion can escape from the surface only by subsequent
neutralization, caused by tunneling of thermally excited
electrons (since the ion crosses the neutral curves shown in
Fig. 2). The chance of neutralization depends on the ki-
netic energy of the ion. A low kinetic energy ion is deep
in the ionic well and can only undergo transitions on the
neutral curves located below it, which correspond to
larger values of 7, therefore to smaller probabilities that
1p is thermally occupied by an electron. Ionizing transi-
tions that take place at small R, [i.e., large €, means large
asymptotic mismatch AV ,( )] end up deeper in the ionic
well than those occurring at large R, and have a smaller
chance of neutralization, therefore they have a larger trap-
ping probability. Furthermore, the probability of trap-
ping goes up with ¢ —1I  since this forces the ionization
to occur at smaller values of R,.

This qualitative picture can also be used to understand
coverage effects. As alkali atoms coverage is increased,
b, is lowered dramatically®® and ¢ —1I, becomes nega-
tive. The alkali atom cannot be fully ionized and adsorp-
tion must occur by usual chemisorption. The desorption
process must occur exclusively through neutral desorption
until the coverage is lowered so much (by desorption) that
¢,—I, becomes positive and both ion and neutral
desorption become possible. Such behavior is observed,
for example for K desorption from Ni(111).2¢

Interesting situations appear when the surface residence
time of the transferred electron is comparable to or larger
than the collision time. This might happen either when
the electron is transferred into an empty surface state with
a lifetime 7>7,, or when the kinetic energy of the in-
cident particle is very high, or when the conductivity of
the material is low. The surface state can be included in
the model presented here as a discrete state with a finite
width T' (I'~! is the lifetime of the electron in the state).
The presence of an electron with an infinitely long surface
residence time can be included by allowing the ion to re-
capture the lost electron on its outgoing trajectory. A fi-
nite surface residence time can be simulated by adding a
rate of disappearance of the electron from the surface re-
gion.

III. THE MEAN-TRAJECTORY APPROXIMATION
DERIVED BY USING
THE EIKONAL APPROXIMATION

A. Introduction

In order to specify in the simplest manner the reasons
for the present work, we first consider a model in which
only two curves are important. The dynamics of such a
system is considerably simplified by making the so-called
trajectory approximation,>+%8°=132¢ gwhich is briefly
described below. Consider a system with two kinds of de-
grees of freedom denoted x and R. In our case x denotes
collectively the coordinates of all the electrons, and R is
the surface-atom distance.

The full Hamiltonian for this system can be written as

H(x,R)=—(#/2m)V>+H,(x,R) . 3.1)

This is the sum of the kinetic energy of the nuclei and the
electronic Hamiltonian He(x,j{\ ), which contains the ki-
netic energy of the electrons and the interaction energy be-
tween electrons and nuclei. The trajectory approximation
uses the Hamiltonian

H(x,R(t))=H,(x,R(1)), (3.2)

where R (1) is the position of the atom, whose time depen-
dence is given by classical mechanics. Note that while R
appearing in Eq. (3.1) is an operator, the quantity R () is
a classical field. In what follows we also use R to denote
the nuclear position appearing as an argument in the wave
function.

The state ¢(x,ﬁ ) associated with the Hamiltonian

H (x,R) depends on both x and R. If two electronic

states ¢,(x,ﬁ) and ¢2(x,§ ) (2 for the neutral and 1 for the
ionic state) are sufficient to describe the system, then

W, R)=X1(R)d1(x,R)+X5(R)dy(x,R) , 3.3)

where X 1(§) and Xz(ﬁ ) are nuclear wave functions. In
the trajectory approximation the total wave function is
obtained by replacing R in H,(x,R) and ¥(x,R) with the
trajectory R (2) and the nuclear wave functions X;(R) with
the amplitudes c;(¢):

Y(x,t)=c () (x,R (1)) +c2()a(x, R (1) .

Inserting Eq. (3.4) in the time-dependent Schrodinger
equation, and assuming, for simplicity, that

(3.4)

[ 1 (x,R(0)6;(x,R (1)dx =8, (3.5)
leads to
ifié;=Hy(R (0)e;(1)+Hy; (R (1)e;(0)
hi=12 (i) (3.6
with
H;;(t)=H;;(R (1))
= [ dx ¢} (x,RUDH,(x,R (1)$;(x,R(1) .  (3.7)

H,, and H,, are the ionic and the neutral energy curves,
respectively, and H, is the coupling between them. The
matrix element H, given by Eq. (3.7) is nonzero because
the states ¢;, i =1,2 are diabatic. We have neglected here,
as is customary when using diabatic states,>* terms con-
taining the time derivatives of the wave functions ¢;. We
assume throughout this paper that the dependence of
H;(R), i,j=1,2, on R is known. Furthermore, we note
that the removal of the assumption (3.5) is straightfor-
ward.

In order to solve Eq. (3.6) we must propose a method
for computing the dependence of R on ¢. If the incident
kinetic energy is much higher than the variation of H;(R)
with R and the difference H,,—H,;, we can use a
straight-line trajectory and a hard wall reflection from the
surface. At low kinetic energy, such as that involved in
the processes considered here, the choice of trajectory is
rather difficult. If the particle stays neutral throughout
the collision process, then R (2) is given by
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dH (R (1))
OR (1)

If the particle is ionic throughout, then R (z) should be
given by

mR(t)=— (3.8)

0H (R (1))
OR(?)

If the incident kinetic energy is small these two trajec-
tories are rather different. Equation (3.8) gives small
changes in velocity, while Eq. (3.9) strongly accelerates
the particle as it approaches the surface.

The fact that in most practical cases the amplitudes
¢1(t) and c,(¢) are both nonzero and the motion of the nu-
cleus takes place simultaneously on both surfaces gives
rise to interesting complications. A more realistic
description of the nuclear motion requires the use of a
new kind of force F(c,c,), which depends on the ampli-
tudes c;(¢). A dependence on | ¢; | 2 i=1,2, alone would
be unsatisfactory since it eliminates quantum interference
effects. Neither Eq. (3.8) nor Eq. (3.9), nor any simple
average of the two, would be satisfactory.

This deficiency of the trajectory approximation is not
confined to the charge-transfer problem discussed here; it
is a general problem to be faced whenever a degree of free-
dom that we wish to treat classically is strongly coupled
to a quantum degree of freedom x.° A reasonable
method of producing an improved trajectory approxima-
tion is to take the classical limit in R while treating x ful-
ly quantum mechanically. There are several ways of do-
ing this and they can lead to different classical mechanics
for the variable R. We present here a “mean-trajectory”
approximation, obtained by using an eikonal approxima-
tion (Sec. III) and a path-integral method (Sec. IV). A
more elaborate method using multiple Gaussian wave
packets is planned to be presented elsewhere.?

mR(t)=— (3.9)

B. The use of the eikonal method
for generating classical trajectories
in the one-state problem

We review here the manner in which the eikonal
method generates a classical trajectory in a simple one-
dimensional, one-electronic-state problem. We use for the
wave function the form

W(R,1)=C,A (R, exp[iS (R,t) /%]
=exp{[So(R,)+iS(R,1)1/#} ,

where the amplitude A4, the eikonal S, the normalization
constant C,, and the function S, are real. We use the no-
tation R when the position of the particle is a quantum
variable, to distinguish it from the classical trajectory
R (1). Inserting qb(l/{\,t) in the time-dependent Schrodinger
equation leads to

(3.10)

RP+E
oR

3o as

A= .
lat+6t H A, (3.11)

where P is the momentum operator and 9S / R is an un-

known operator (which is diagonal in the coordinate rep-
resentation).
If we assume that

2 2
P+ —a—f— ~ _ag (3.12)
oR oR

and

39Sy  3S

ar <o’ (3.13)

Eq. (3.11) reduces to the Hamilton-Jacobi equation®

95 _pl|g, 35 (3.14)

ot 9R

Its solution Sc(j(\,t), obtained after specifying classical in-
itial conditions, is the classical Hamilton’s principal func-
tion, or the classical action.

To establish the meaning of the conditions (3.12) and
(3.13) we take matrix elements with respect to the ampli-
tude A to turn the operator equations into numerical ones.
Since we expect R to behave nearly classically, we use for
the wave function Eq. (3.10) a Gaussian form®! defined by

So(R,t)=—a,(R —R,)*+#InC, , (3.15)
and

S(R,)=P (R —R,)+7, , (3.16)
where

C,=Q2a, /mhi)/* . (3.17)

Here «,, P,, R,, and vy, are real functions of time and
C, is the normalization constant appearing in Eq. (3.10).
The meaning of these functions can be understood by
computing the following matrix elements:

J v*R,0RWR,ndR =(R) =R, , (3.18)
(P)=pP,, (3.19)
((R—R)?)=#/4a, , (3.20)
((P—P,)?)=ta, . (3.21)

We see that R, and P, are the expectation values of the
position and momentum, ¥, is a phase, and «, is propor-
tional to the quantum fluctuation of the momentum
around its expectation values and inversely proportional
to the fluctuations in the position.

Taking the matrix element of the condition (12) with
respect to A4 leads to

2 2
[aRo P+ | 4R,0dR~[ 4|5 | 4aR .
R R
(3.22)

If we use, as an approximation to S the classical action
S., and the classical equation P(¢)=4aS,/dR(t), we can
easily perform the integrals in Eq. (22), to obtain

i, << P} . (3.23)
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We have identified P(t)=3S,/0R(¢) with the expectation
value of the momentum P,, and this will be justified later.
The condition (3.12) is thus equivalent to the requirement
of Eq. (3.23) that the quantum fluctuations of the momen-
tum are much smaller than its expectation value.

Treating the condition (3.13) in a similar manner re-
quires the evaluation of

aS

[ 4250 4R [ 45>-44R (3.24)
ot ot ’ '
Performing the integrals leads to
S,  ~
J A——4dR=0 (3.25a)
at
and .
as 5
[ AZ-AdR=H (R (1),P(1) . (3.25b)

We have replaced dS /9t with 3S,/dt, which in turn is
equal®® to the classical Hamiltonian H,. Furthermore, we
used Eq. (3.10) for S,. Clearly condition (3.24) is always
satisfied since the classical Hamiltonian is positive.

The conditions discussed above establish under what
circumstances we can replace the eikonal S (I/Z\,t) with the
classical action S.(R(?),P(t)). So far the classical
mechanics appears as a device to compute the eikonal:
There is no guarantee that the classical trajectory has any
relationship with the motion of the particle as given by
the time-dependent Schrodinger equation. For example, if
a,=0 the Gaussian wave packet becomes a planar wave,
and the condition (3.23) is fulfilled. However, it is impos-
sible to describe the behavior of a particle in a planar
wave state by any kind of classical trdjectory.

The condition under which the trajectory generated by
the Hamilton-Jacobi equation approximates the behavior
of the quantum system can be obtained by using the wave
packet defined by Egs. (3.15), (3.16), and (3.10), and the
Ehrenfest theorem>?

f; f v*R,0RYR,0dR = — [ (R0 w(R,ndR .
aR

(3.26)

According to the equation (3.18) the left-hand side of the
above equation is dR,/dt. Since the wave function ap-
pearing on the right-hand side is localized over a spatial
range given by (27/a,)'/%, we can expand V(R) in Eq.
(3.26) in powers of R —R;, and this leads to

dR, 3V (R,)

3*V(R,)

1 -~ 2
- R —R .
dt aR, 2 aRt3 <( t) )

(3.27)

The expectation value R, of R satisfies the classical equa-
tion of motion if the second term in Eq. (3.27) is much
smaller than the first. Using Eq. (3.20) we can write this

condition as
# V(R V(R

8a, dR; <« OR,

(3.28)

If conditions (3.23) and (3.28) are satisfied, the eikonal
is given by the classical action, and the trajectories gen-
erated by classical mechanics are a reasonable description
of the mean quantum motion of the system.

In what follows we postulate that the above procedure
can be used to generate a “classical mechanics” for cases
in which the variable R to be treated classically is strongly

“coupled to a quantum companion x, and we apply this

idea to the case of a two-state system.

C. The application of the eikonal method
to the two-state problem

To apply the method outlined in Sec. III B we assume a
wave function of the form

W(x,R;1)=A (x,R;t) exp[iS (R, 1) /#]
= [X1(R,0),(x,R)+X5(R,0)¢,(x,R )]

Xexp(iS /#) . (3.29)

Here S (ﬁ,t) is an unknown real function (the eikonal) of
the nuclear coordinate R and the time t, and X i(I/{\ ,1),
i =1,2 are the nuclear wave functions when the system is
in the electronic state ¢i(x,i(\;t), i=1,2. To derive the
appropriate classical limit for the nuclear motion we elim-
inate first the electronic degrees of freedom from the
problem by introducing the wave function ¢(x,ﬁ;t) given
by Eq. (3.29) in the time-dependent Schrodinger equation,
and by operating on the resulting equation, from the left,

with [ dx ¢}(x,R), i =1,2. We obtain
as ., 9 A
— a3 +lﬁat X1(R,1)
1 as |’ - N
=|7=— |P+— | +H;(R) |[X;+H;p(RX,
2m R
(3.30a)
and
EAY a ~
— a1 Yy X»(R;t)
1 as |? ~
== {_ +—T +H22(R) X2+H21(R)X1 .
2m
(3.30b)

We have neglected the matrix elements containing
3¢, /3R or 3%, /R ? since we work with a diabatic repre-
sentation and assume that the term H, is the largest cou-
plingAbetween the electronic states. The matrix elements
H;(R) are defined by Eq. (3.7) and the orthonormality
condition (3.5) has been assumed.
The classical limit is taken by assuming that
X; 23S, 3S

P T e N X

and
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P+ A,
oR dR
and the Egs. (3.30a) and (3.30b) become
2
—'a‘§X1 _1_ a—S +H11 X1+H12X2 (3.31a)
at 2m aﬁ )
and
2
S | 185 L h, o Hax, . (3310)
ot | 2m | 3R

Multiplying Eq. (3.31a) with X and (3.31b) with X, and
adding the results leads to

aS 1 |aS
3 = 2m 3R +V(R t) (3.32)
with
-1
V(R,t)= E 2 X; H,,(R EX X; (3.33)

i=1j=1 i=1

Equation (3.32) is a Hamilton-Jacobi equation with an ef-
fective potential V(R,t) which depends on the potential
energies H;(R) of the two states, on the coupling H,(R)
between them, on the probability X7X;(3 X7X;)~! that
the particle is in the state i (i =1,2) and on the “coherent
term” X7X; which introduces the effect of quantum in-
terference between the two nuclear states. As in Sec. III B
classical mechanics appears only as a device to compute
the eikonal.
Using Eq. (3.32) we can rewrite Eqgs. (3.30) as

L OX 1 2 ~
i — P42 85, 298 piRgly,
ot 2m 3R 1 aR2
-+H (R)X|+H(R)X, (3.34a)
and
i = P24 2985, AOS |y |x,
ot 2m aR i 3R? :
+H,(RX,+Hy (R)X, (3.34b)

If the wave function is such that the momentum fluctua-
tions are small compared to the classical momentum
given by Eq. (3.32), and the functions of coordinate
S(ﬁ,t), Hij(j{\), and V(ﬁ,t) vary smoothly with R over
the spatial scale set by the quantum fluctuations in coor-
dinate, we can replace Pand R in Egs. (3.34) with their
classical values P(¢) and R (¢). Furthermore, the diagonal
matrix element common to both equations can be elim-
inated by introducing in the wave function ¥(x,R ;t) de-
fined by Eq. (3.29) the appropriate phase factor. With
these changes the (3.33) become

X (1) =H (R ()X () + Hy (R (D)X(1)
Gi=1,2 (i) (3.35)
and the effective potentia] is
}_‘, 2 Xi(OX;()H (R (1))
V(R (1),¢)="=1=1 (3.36)

> X7 (X (2)

Here the nuclear wave function depends on time only.

We can now summarize the result obtained by using the
eikonal method for the two-state problem. The quantum
amplitudes X;(¢) are given by the same equations as those
of the customary trajectory method (Sec. III A). The clas-
sical equation of motion is however deeply modified since
the potential energy given by Eq. (3.36) is neither H;; nor
H,, nor a simple classical average > X7X;H;;(R).

IV. PATH-INTEGRAL FORMULATION

As we have mentioned our strategy in generating im-
proved trajectory approximations is to formulate the
problem quantum mechanically and then to take the clas-
sical limit in the degrees of freedom whose motion is to be
described by a trajectory, while maintaining a quantum
theory for the other variables. The classical limit can be
taken by a variety of methods. When applied to all the
degrees of freedom of a one-state problem, all these
methods lead to Newton’s equation. However, the same
methods applied to a many-state problem in which some
degrees of freedom are treated quantum mechanically lead
to different trajectory equations. The acceptance of such
approximations and the choice of the best among them is
based on our prior intuitive expectations of what such a
mechanics should be, on their agreement with the experi-
ments (where reliable comparisons can be made) and on
their computational advantages. Given this situation it
seems to us worthwhile to explore under what cir-
cumstances various methods of taking the classical limit
lead to the same results. Here we show that within a
path-integral formulation the theory derived in Sec. III is
recovered if we use a coherent-state representation to
describe the electronic states and then treat all degrees of
freedom classically (by taking the stationary phase ap-
proximation).

We consider the Hamiltonian

H=§H",,<R>1n><n|+ S Hon(R) [n)(m |

n=1 nm=1

Z |n)n |, @.1)

n—l

where | n) are the electronic states, and R, P, and M
denote nuclear position momentum and mass, respective-
ly. This Hamiltonian corresponds to a diabatic represen-
tation in which the different electronic states are coupled
by H,,, and the coupling due to the nuclear kinetic energy
operator is disregarded. We wish to derive a path-integral
representation for the propagator
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K (RY,Rothy | t)=(Rap | e ~/PH | Ry ), (4.2)

where | RY) denotes a state of the system in which the
electronic state is Y= X, |n) and the nuclear state is
given by the eigenfunction | R) of the nuclear position
operator. To this end we use the resolutions of the identi-
ty operator in nuclear space

J dR|R)(R|=1 4.3)
and in the electronic space

[ vy =1. (4.4)
Here

L .
H e —(i/fHAL

=1

1defd1/JJ

K (R, Roto| 1)= (RL o Rm)

j=

where At =t /L, ¢; =1(;

H <RJ¢] le_‘HAt/ﬁ|Rj-1¢j~]>

¥ d(ReX,)d (ImX,)
IT : :

n=1 Tl

Jav=wv 411 [’ (4.5)

where the prime denotes integration under the restriction

2 IXn [ 2=1.
The identity (4.4) and (4.5) may be easily proven by
showing that

<n|fd¢\¢><¢im>=(1v+1)!f'(dxldyl/ﬂxx,,-iy,,)

X (X + iy )=8nm

The path integral can be constructed in the usual way

(4.6)

, tj=to+jAt, and where R and 9, represent R and 1 at time ¢. Focusing now on the matrix

element (R;; |e_H At/ f R ]_lzp,_l) we evaluate its electronic part first, keeping R and P in the Hamiltonian (4.1) as
parameters. For completeness we outline the procedure in the Appendix. The result is

Here P and R are operators in the space spanned by the
nuclear wave functions, and ;| ;) is given in terms of
the coefficients X by

(|90 =3 X ()X, (1)) (4.8)
V;(R) is
R)=T |X,(t;) |*H,p(R)
+ 3 D X0 (t)X 1 (2; ) Hp (R) (4.9)

nstm

The nuclear matrix element in (4.7) is now seen to take
a form which is normally obtained for a quantum particle
moving under the influence of a potential ¥ (R). Evaluat-
ing the R matrix element in the standard way and insert-
ing it into (4.6), then taking the L — oo limit, yields

K(RY,Rothy | )= fR’ZZZD¢DReiS(R’”'R°¢°"’ (4.10)
with
S(RY,Roto | )= f,;dz'L(R(t'),}é(z’),X(r),)’((t’),t')
(4.11)

and the “Lagrangian” L given by

P2
exp % W-f—V(R) 1_1>. 4.7)
[
L=i2)(f,)k,,+% LR 2]){ | 2H,, (R
— 2 3 XX mHpm(R) 4.12)
n#tm

The symbols Dy and DR are

d[ReX,(t;)]d [ImX,(t,
Dy= lim T v 4o SR ImX (7))
® i) =1 i
(4.13)
and
L/2

=5 M T ar () (4.14)

DR=lim |\ omimesmy | LR '

Equation (4.10) is an exact representation of the propaga-
tor in terms of a path integral over all the paths which
lead from the state Rg, o= X, (o) |n) at time ¢, to
the final state R and Y= X,(?)|n ), at time ¢. Having
found this form it is of interest to look for the optimal
path, the analog of the classical limit, as an approxima-
tion to the path integral. For this purpose define
X, =ReX,, Y,,:Im)(,, and replace in Eq. (4.12)
Xn=X,+iY, and X; =X, —iY, everywhere. To satisfy
the restriction ¥ | X, 52—1 we may add to L a term
A (X, Z4+Y72), where A is a Lagrange multiplier, but it
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turns out that this does not change the result. The op-
timal path is the solution of the Euler-Lagrange equations
of motion generated by minimizing the action given by
Egs. (4.11) and (4.12):

oL d AL _ .

dR dt 3R =’

dL d 3L 3L d dL

ax, ~diax, " 3y, oy, O @ln).
(4.15)

These yield the following equations of motion (EOM’s):

.. aV(R
Fo_ L ( ,{X,,}),

1% 3R (4.16)

).(n=—_ H,,(R

X, + 2 H, (R)Xy
#i k

ks£n

(n=1...,N) (417

with the effective potential
V(R,{(Xp}) =3 Hun(R) | X |*+ 2 3 Hym (R X
n

n m
ns£m

(4.18)

To obtain Eq. (4.17) we have recombmed the equations
obtained for X, and Y,. Equations (4.16)—(4.18) are
identical to the equations of motion derived in Sec. III.

The following comments should be made with respect
to this derivation. (a) The same results are obtained if in-
stead of replacing X, by X, +iY, we regard X,, and X}, as
independent variables and use the Euler-Lagrange equa-
tions in the form AL /38X, —(d /dt)(dL /3X,)=0. (b) In
the absence of coupling the nuclear motion (i.e., if we
were evaluating the time evolution of an N-level system)
the resulting EOM (4.17) is just the Schrodinger equation
for this system. Obviously the optimal path is overdeter-
mined by the requirements that (¢y) =1, and ¥(¢) =1 are
given, and generally we will not find a path that will satis-
fy both these requirements and Eq. (4.17). The result may
be still interpreted in the following way. The probability
amplitude to be in a final state v, starting from an ini-
tial state 1, may be written in the form
f dy{y, | ¥)K (P, | ). The optimization procedure re-
places this integral by the maximum value of the in-
tegrand which is obtained if Y= X, | n) is the solution
of Eq. (4.17). ’

The procedure described above may be used to obtain
equations of motion for more general situations involving
coupled quantum-classical systems. For example, the
Hamiltonian (4.1) can be supplemented with coupling
terms arising from the effect of the nuclear kinetic energy
operator on the electronic states, leading to

N —_—
2 H,,(R

n,m=1

2
+2—1M_§ |n)(n!

|n><m|+—_ 2 an R)|n>(m|

nm——l

(4.19)

with

H,,(R)=E,(R)8,, +Vuyu(R)

__ﬁ__ 2., 4% 32
or J TR~ 6 (nR) (420

and

Wom(R)=—ifi [ d°r ¢} rR)=o ¢m(rR) (4.21)
Here ¢,(r,R)= | n) is used to denote the explicit depen-
dence of the electronic wave function on the electronic (7)
and nuclear (R) coordinates. The procedure described

above may be used to obtain the propagator in the form

K (RY,Roto I i
(4.22)
j=1
with
S P A PP
S=[ at Y9+ ~ 2z~ 3V RV
—U(R,Y) l (4.23)
where
ZZX X an ) ’
(4.24)

UR Y= I XsXnHum(R) .

Here we have used the phase space (R,P) representation
of the. nuclear part of the path integral. The EOM’s for
the optimal path, obtained from the extremum of the ac-
tion S given by Eq. (22), are

P 3W(RR,Y)  BURY)
M 9R T 8R

P=—
; 1

P

. i —
E— R)——
Xn % En H,,(R) M

The implications of these equations will be explored else-
where.

Wom(R) |X

V. CROSSING OF A DISCRETE STATE
BY A CONTINUUM

As we discussed in Sec. II if a neutral atom approaches
the surface it can be ionized by crossing to an infinite
number of states differing from each other through the fi-
nal state of the transferred electron, the position of the
crossing point, and the amount of asymptotic energy
mismatch to be compensated. To treat this case of a neu-
tral curve crossing a continuum of ionic curves we use for
the amplitude of the total wave function Eq. (3.10) the
form
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AR =X (R)p(x,R)+ [ depleX (R, D$x,R)
(5.1)
leading to
X () =H (RO + [ dep(eH (R(IDXD) (52)
and
X () =H (R ()X () +H (R ()X, .

We neglect the matrix elements H.- (€s4€’), since the
continuum states do not interact with each other. In the
present context this means that the motion of the ion does
not induce transitions of the transferred electron from € to
€', so the electron-hole pair excitations of the metal by the
ionic motion is disregarded. The effective classical in-
teraction is

V(R (2))=H (R(1) | X(2)|?
+ [ deple) [ H (R(DXF (X (1)
+H (ROXEDX ()]
+ [ dep(eH (R (1) | X 1) |2

(5.3)

(5.4)

The “classical” trajectory can be computed by using Ham-
ilton equations with the Hamiltonian P(#)*/2m
+ V(R (1)).

We can simplify these equations by following a stan-
dard procedure used in situations when a discrete state in-
teracts with a continuum. We start by integrating exactly

' avexp |~ [*_1ptn—etinldr |=— /0 0—e+inl exp |~ /m) [ 1f(r)—etinlar

Eq. (5.3) to express X, as a function of X;; we introduce
this equation for X in Eq. (5.2) and obtain a closed equa-
tion for X :

iﬁc'l(t)zf_twdt'G(t,t')cl(ﬁt’) (5.5)
with
G(t,t")=(—i/#) [ dE p(EYH 5()H 5(t")
Xexp{ — (i /A pu(t)—u(t')]}
xXexp[—(i/R)E(t —1')],
po=[" [Hy(n)—Hy(»ldr . (5.6)
and
X () =c,(t)exp | —(i /%) f:wH”(T)d’r] . (5.7)

Here we use the fact that the ionic curves are parallel to
each other. We pick one of them as a reference state and
denote it by Hyy(R (7))=H (1), and write the others as
Hy (R (7))+E, where E is a time-independent energy giv-
ing the difference between the parallel curves Hgg and
Hy. If we assume that the “amplitude” Hg(t')c(¢')
varies with ¢’ on a time scale much slower that the phase
pu(t)—pu(t")+E(t —t'), then we can replace Hg(t')c,(t')
with Hg(t)c;(¢) and remove it from the integral over ?'.
After that we can perform the integral over ¢’ by inserting
a factor exp(+mt), >0, to ensure that the integral con-
verges. We get

(5.8)

In deriving this we assume that f(7) [which in our case is H(7)—Hqy(7)+ E] can be replaced by f(#) and be treated as
a nearly constant quantity. After performing these calculations we obtain

i#ié () =[A(t)—iT(D)]e, (1) (5.9)
with
Re
%23 = lim llm} J dEp(E) | Hix(0) | [E +Hoo() —H (D +in] 7" . (5.10)

If the integration interval is practically infinite, the last
equation leads to

+o dEp(E) | H g |?

5.11
—® E+H00(t)—H11 ( )

A(t)=P

where P denotes the principal part, and
+
D(0)=m [~ dEp(E)|Hyp | %8(E +Hoo(t)—H (1)) .
(5.12)

If the continuum states form a narrow band [which means
that p(e) is zero outside a narrow energy range], these
equations will be modified by ‘“‘edge effects.” A very nar-

r

row ionic band influences the neutral state just like a sin-
gle ionic state.

The calculations carried out above permit us to rewrite
the effective potential given by Eq. (5.4) in terms of
| ¢1(2) |2, A(2), and T'(¢) alone. The last term in Eq. (5.4)
can be written as

[ dE p(E)YHg(1) ) cg(0) | *=[1— | e1(2) | 21Hoo(2) -
(5.13)

We obtain this by observing that Hpp(t)=Hy(R (¢))+E
and that we need only the gradient of Hgr (to compute
the force) so we can take Hpp(t)=Hy(R(1)). Also we
use the normalization condition
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[ dEp(E) |ex(t) |2+ | ei(t)|?=1. (5.14)

The middle two terms in Eq. (5.4) can be rewritten by
expressing X in terms of X; and using the approximations
presented under Eq. (5.7); the result is that the two terms
are equal to —2A(z) | ¢,(2) | %

The above calculations allow us to write the effective
potential as

)—2A(1)]
12] (5.15)

V(R (t),t)= |cy(t)|*[H (R (2)
+Hg(R())[1— |C1(t)

with

t
exl)= e (O)exp [ (i /) [ Al |

X exp (5.16)

~ [y rnar | .

The results (5.11) and (5.12) may be improved by recog-
nizing from the beginning that c,(¢) has a (yet unknown)
phase —1/% f A(r)dT and by determining this phase
self-consistently. The result is

+oo dEp(E)|H g |?

AO=P ) E o Hep(O—Hn(—A®) 517
and
(1) wf dEp(E) | H g |?
XO(E +Hy(t)—H (1) —A(1)) . (5.18)

Since A and I' are the real and imaginary parts of the
self-energy of the state 1, these equations are reminiscent
of random phase approximation (RPA) results. This is
not surprising since the corrections in Egs. (5.17) and
(5.18) are of the type appearing in the time-dependent
Hartree approximation.

Before concluding this section we briefly discuss the
case where a local surface state with a long lifetime exists
above the Fermi level. It is easy to treat this case along
lines similar to those described above where we now have
two discrete states 1 (neutral) and 2 (surface state) coupled
to the continuum of ionic states. The neutral state cou-
pling to the surface state leads to the ionization of the
neutral. The electron transferred into the surface state
can be recaptured by the ion (the coupling is H,.) leading
to neutralization. The mean potential for this case is

2 ‘
V(R (1))= 2 2 Hy(ROWXXo+ 3, [ deple) [ Hje R (OWIX AH R OWX;1+ [ dep(H (R (1) | X |2 .
i=1j=1 j=1
(5.19)
The classical equation for R (¢) is, as before,
- dV(R)
—_9r\KJ) (5.20)
MR dR ’
while the equations for the amplitudes X are
Y=+ [Hu RO+ Ho RO+ [ deplelH (R (.|,
Xo=— o [HaR O+ Hu (RO, + [ depleHaR ()X | (5.21)
Xo= —é[Hee(R(t))Xﬁ—Hd(R (DX +Ha(R(DX,] .
Proceedings along lines similar to those described below Eq. (5.4) leads to the set of equations
==L Hp R —Zp®)exp |~ L [ dren(n) eyt L3R, (5.22a)
# # — #% ’ .
b= — LHH R =y (R)exp | — £ [ dren(n) ey +L3pR)e, (5.22b)
# # — 2 % 22 > .
and
mR=— {[H'”(R)—H{)O(R)] ley |24+ [H5%(R)—Hy(R)] | ¢y |2
—Hy(R)+2Re |Z5(R) | ¢y | 2—[HH(R)—Z15(R)—Z5F(R)Jexp | — 7 f drex(r ]c"{cz ] , (5.23)
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where
en=Hyp—H,, (5.24)
Su=Du—iTy (k1=12), (5.25)
Du(R)=P [ dEp(E) Hj;f;%ﬁl)( = (526
Tu(R)=7 [ dE p(E)Hyz(R)Hg(R)
XO(Hp(R)+E —H;1(R)), (5.27)

and where the prime denotes derivative with respect to R.
[In =}, this derivative is obtained by replacing
Hp(R)Hg(R) by its R derivative with H; (R) kept
fixed.] The set of equations (5.22) and (5.23) may be now
integrated numerically if a model for the coupling matrix
elements is constructed.

VI. THE INCLUSION OF PHONON AND
ELECTRON-HOLE EXCITATION AS ENERGY-LOSS
CHANNELS

As we have discussed in Sec. II, if the kinetic energy K
of the incident neutral is higher than the asymptotic ener-
gy mismatch A,V () [i.e., A=K —AV () >0] the ion
formed by charge transfer stlcks to the surface only if it
loses (to phonons or electron-hole pairs) an amount of en-
ergy larger than A,. In what follows we outline a curve-
crossing theory which includes such energy-loss processes.
Both consist of deriving Langevin equations in which the
action of phonons or electron-hole pairs generates friction
and random forces in the mean trajectory equation.

A. The inclusion of phonons

We consider here the two-state problem discussed in

Sec. III C, and in both the wave function and the electron-
ic Hamiltonian we include the coordinates of all the lat-
tice atoms. For simplicity we denote all these coordinates
by X and consider the one-dimensional case only. The ex-
tension to three dimensions and more than two electronic
states is straightforward.

By repeating the derivations presented in Sec. IIIC we
obtain equations identical to (3.35) and (3.36) in which the
matrix elements H;; depend on R (¢) and X (z). We must
now specify a procedure that gives the equation of motion
for R (¢) and X (¢) under the influence of the effective po-
tential

2 2
V(RX;t)= 3 X;()X;(t)H;(R,X) .

i=1j=1

(6.1)

We assume here that the neutral curve, which we denote
H,,, is independent of X. In other words, the energy lost
by the neutral to phonons is disregarded since in this con-
text it does not have marked effects on sticking. It can
however be easily included, if necessary.

In order to derive a Langevin equation for the present
situation we follow Adelman and Doll*® and divide the
lattice atoms into a primary zone which suffers the bulk
of the collision with ion, and a secondary zone which in-
teracts with the primary atoms only. For simplicity we

take only one primary atom and denote its coordinate by
Y (2); the other lattice atoms form the secondary zone and
their coordinates are denoted either by X w=1...,N,
when we need to specify all of them, or by X, when they
are denoted collectively. The equation of motion for the

ion is
dzR 2 * aHij(R(t),Y(t),yo)
=— i X . . 6.2
m=3 i,jz.:lX,Xj 3R (6.2)
The equation of motion for the primary zone atom is
42y N ,0H1(R,Y,X,)
Ez___l Wy
dH (R, Y,X,) X
_2ReXiN,— 20 L S KL,
Y P
(6.3)
Here K, is the force constant coupling X, to Y. The

equatlon of motion for the secondary atoms 1s that of the
harmonic lattice in the absence of the ion. X, represents
the coordinates of the secondary atoms in their equilibri-
um positions.

Following the Adelman-Doll procedure we can elim-
inate the secondary lattice atoms to obtain a Langevin
equation for the primary atom:

sz 0H 0H
M 2—— 2R
e - Ny 2
+f_ (t —t")Y(¢')dt' +F(1) . (6.4)

The friction kernel is proportional to the linear-response
function of the lattice in the absence of the primary atom.
The random force F(t¢) is Gaussian and its correlation
function is the Green’s function of the secondary lattice in
the absence of the primary atom. The Green’s function
and the linear-response function are related by the
fluctuation-dissipation theorem. The Langevin equation
can be solved efficiently by modeling the friction and gen-
erating F(¢) on the computer as shown by Sugard et al.’*

The coupling to the lattice affects not only the nuclear
motion but also the transition amplitudes c¢;(¢) since
H;;(R,Y,X,) are now function of the stochastic variable
Y. Both the crossing point and the coupling strength are
random variables. The observable quantities of the theory
must be computed by running many stochastic trajectories
and averaging the quantity of interest over them.

B. Energy loss due to electron-hole pair excitations

Recently there has been a lively interest in the manner
in which the excitation of electron-hole pairs in the
surface  influences  the  dynamics of  adsor-
bates.>*%10:12:21.35-55 Twq types of mechanisms are pos-
sible in the problem of interest here. In the first, the elec-
tron jumping from the atom into the metal interacts with
the electrons already there and it is inelastically scattered.
If the interaction partner is below the Fermi level the in-
teraction can excite an electron-hole pair. This is similar



to a shakeup process and it.could be represented by giving
each ionic state a width which corresponds to the rate of
energy loss from the transferred electron to the electrons
below the Fermi level. The transferred electron can also
interact with the electrons thermally excited above the
Fermi level and this leads to either energy loss or gain.
This can also be represented by giving the ionic state a
width. The second mechanism consists in direct energy
transfer from the moving ion to the electrons in the metal,
and it is discussed here in detail. This also has two dis-
tinct aspects. One corresponds to electron-hole pair exci-
tations caused by the sudden creation of the ion through
electron transfer and it was discussed previously in a dif-
ferent physical context by Gadzuk and Metiu*® and
Schofihammer and Gunnarson.*® The other corresponds
to electron-hole pair excitations by the ionic motion and
was considered, for example, by d’Agliano et al.,’? Su-
gard et al., and Korzeniewski et al.>*

In this section we consider the effect of the energy
transfer, the excitation of electron-hole pairs, on the
motion of the ion. In the spirit of the Langevin approach
to many-body dynamics we would like to produce an
equation which does not make explicit reference to the de-
tailed electron-hole pair dynamics. Since the motion of
the ion drives the excitation of the electrons, it must pro-
vide the excitation energy; therefore, the desired equation
must contain a friction term. Furthermore, the interac-
tion of the ion with the polarization fields caused by the
thermal fluctuations of the electron in the metal must be
taken into account through the presence of a random
force in the equation of motion of the ion. Since the met-
al screens the ion field we can assume that the screened
interaction causes a small perturbation in the motion of
the electrons in the metal. Therefore we expect the ran-
dom force and the friction kernel, appearing in the equa-
tion of motion of the ion, to be related through a
“fluctuation-dissipation” relationship.

To include in the curve-crossing problem of interest
here the effects of electron-hole pair excitation we use a

J
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formulation developed by Leung et al.,”> who showed
that within the random phase approximation (RPA) the
electron gas can be “bosonized” so that its Hamiltonian,
in the presence of an ion located at R(¢), is

Ho =3 fiogning+ 3 [V (R} + ViR (0)n,]
1 q
X |ey(8) 2. (6.5)

Here 17; and 7, are boson creation and annihilation opera-
tors and o, is their frequency (corresponding to the
electron-hole pair excitation frequency). The quantity
| ¢1(2)* appears in Eq. (6.5) because the electrons of the
metal interact with the ion only. The frequencies w, and
the screened interaction V,(R) are expressed in terms of
the generalized eigenvalues and eigenvectors of the
frequency-dependent, nonlocal, longitudinal, dielectric
constant €(r,r’;w) of the metal (with surface) given by
RPA.% The solutions w, of the equation

dete(r,r;o,)=0 (6.6)

provide the boson frequencies. The generalized eigenvec-
tors £,(r), given by

f €(r,1;0,)6,(r')dr' =0, (6.7)

are used to obtain V,(R(¢)) from the equation

Vo (R(0)=e?Z [ |r—R(1)| &, (r)dr . (6.8)

V4(R) is the screened ion-electron coupling. Here e and
Ze are electron and ion charges.

We now wish to obtain the equations of motion in
which the coordinate R (), its conjugate momentum P (¢)
and 7, and 7, are classical variables moving in a mean
potential analogous to the one obtained in the previous
sections. The procedure used in the previous sections
leads to the following classical Hamiltonian:

PZ
H (R,P,,m*;X1,X3)= ‘27“’2’5‘0477;%4“ | X1 [ 2H 1 (R)+ | Xy | 2H oy (R)+X1X,H 15 (R)4+-X X3 Hyy (R)
q

+ X123 [V (R} + ViR, ] .
q

(6.9)

Note that 77;, the complex conjugate of 7,, appears in place of the operator n;, in accord with the classical equivalent

of the boson creation operator.

From this Hamiltonian the equations of motion in the mean-trajectory approximation are obtained using Hamilton’s

equations:
. OH, p
R: =‘—‘,
oP m
0H, , | 0H ) av, | . v,
="%r ~ TRt 2 |GR Mt | TR

(6.10)

oR

OH
3R

g | [— | X2]? —2Re |XTX, , (6.11)
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0H, . i
fa= 22— o, — V(R X2,
# anq #
oH j
. i c , ! 2
7‘,;:%— anq =za)q17;+};V;(R)|X1| .

In addition, the quantum equations of motion for the am-
plitudes X; and X, are obtained in the form

ifiX,= |H (R)+ 3 [V, (R} + Vi (Rm,1 |X,
q
+H;(RX, , (6.14)
i#Xy=Hy (R)X,+H (R)X; . (6.15)

The equations (6.12) and (6.13) can be formally in-
tegrated to give

1o (D=n30+ [ /WY, (R (')

2 iwg(t'—1)

X | Xq(t") | “e dt', (6.16)

where nq( )= nq( Je ¢’ is the value of 7,4(¢) in the ab-
sence of the ion. The initial value nq(O) may be regarded
as a stochastic variable given by the (classical) thermal
distribution

—1
g exp[ —(4%iw, /kpT) | 3 | *].

TerB T

P(n9,my*)=

(6.17)

Note that Planck’s constant appears in this classical dis-
tribution because it is used to construct the dimensionless
quantities 1, and 7, from the momentum and the coordi-
nate of the oscillator.

We summarize these results by outlining how they
should be used in a calculation in which all practical con-
cerns (i.e., computer cost) are disregarded. Let us assume
that we want to calculate the thermal average of a quanti-
ty A(6)=AX(1),X5(2),R(¢)). This is the expectation
value of the dynamic quantity A4 [i.e., A(X(2),X,(2),
R(1))={((t)| A |¥())] and can, in general, depend on
X1, X3, and R. To start the calculation we generate by
Monte Carlo the values of 7,(0) and nq(O) for all the bo-
sons (i.e., ¢ =1,2, ..., N) required for a realistic descrip-
tion of the electron excitations of the gas system. We
denote the set {7,(0), nq(O)} ~ by p. We can now
solve simultaneously Eq. (6. 16) for’ nq(t) and 7;(¢), Eqgs.
(6.14) and (6.15) for X(¢) and X,(¢), and Egs. (6.10) and
(6.11) for R (z). This provides the quantities R (z), X(2),
and X,(#), for any desired time. We can therefore com-
pute A,(t), corresponding to the set p initial condition.
Using important sampling Monte Carlo we can generate
more initial conditions and repeat the calculation outlined
above. The thermal average (A4 ) of Ais given by

(A4)=3 4,(X1(1),X5(1),R (7)) . (6.18)
p

(6.12)

(6.13)

While this calculation illustrates the structure of the
theory, it is rather expensive. A simpler procedure is to
write [by using Eq. (6.16)]

E[V

M(D+Vy(R)*,]

=&+ [, 7

t—7)|Xy(7) | dr (6.19)

with
E(=2Re T Vi(tmy(1)
q9

and

y(t —7)=Re(2/i#) 3, V,()V; (1) expliwg(t —7)] .
q
(6.20)

We can now treat £(¢) as a Gaussian variable at each time
¢t with the correlation function

(EME(T)) Re V, ()W (r)NKT /#iw,) expliog(t —7)] .
q

(6.21)

We can model the sum above by using a simple, but ap-
propriate, function of ¢ and 7; this can save substantial
computer time, since we need to generate one Gaussian
variable, i.e., £(¢), for each time point. In making such
models we must assure that the exact relationship between
y(t —7) and (&(2)&(7)) is preserved; otherwise fluc-
tuation-dissipation theorem is violated.

VII. DISCUSSION

The main thrust of this paper is that the theory of low-
energy collision phenomena which can be described as
two- or many-state problems, may have to discard the tra-
jectory approximation. The reason for this is rather gen-
eral and the problem is present whenever we deal with two
sets of degrees of freedom x and R and we must treat x
quantum mechanically, but intend to treat R classically.?’
If we replace R in the Hamiltonian with a trajectory R (z),
obtained by following some classical prescription, we gen-
erate a time-dependent Hamiltonian for the quantum vari-
ables x; this forces the quantum subsystem to undergo
transitions from the initial state | i) to some set of final
states |f), f=1,2.... The system conserves energy
only if the energy loss (or gain) along the trajectory R (2)
equals Ef—E;. Since the latter is different for each final
state, energy conservation requires a different trajectory
R; ;(2) for each transition i—f. Therefore the force
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F; s(R; ;(t)) appearing in the “Newton” equation for
R; (1),

MR, ;(t)=F; ;(R; £(2)) 7.1
must be such that it will guarantee that
MR, ;(1,?/24+E;=MR, ;(¢,)*/2+E; . (7.2)

Here t, and ¢, are times post and prior the collision (for
simplicity we assume that the interaction between R and
x is nonzero only during the collision; this is true for the
charge- and energy-transfer problems considered here).
Since energy conservation fixes the final state of the clas-
sical degrees of freedom we expect F; f(R; f(¢)) to be a
functional of the trajectory and the Eq. (7.1) to be an in-
tegrodifferential equation.”>>>%¢ Furthermore, due to the
nature of quantum mechanics, each transition i—f, for
the quantum subsystem has a probability W;_(R; #(2))
which is a functional of the appropriate trajectory R; /(z).
Thus a complete description of all the events possible in
such a system consists of a catalog of all the transitions
i—f that do not violate conservation laws, a set of in-
tegrodifferential Newton’s equations of the form (7.1)
which give a trajectory for each transition, and a set con-
sisting of one transition probability per transition.

These general considerations do not, however, tell us
how to derive these equations. The obvious strategy is to
formulate the problem fully quantum mechanically and
then to take the classical limit for R. We have explored
three such methods: One using the stationary phase ap-
proximation in the path-integral expression for the transi-
tion amplitude;’®>” a second, using wave packets to gen-
erate classical-like equations for the position of the center
of the packet and its group velocity;®! and a third, which
uses the eikonal method. The classical approximation for
R (1) can be carried out within each method at various
levels, generating different classical theories for R (7).
The mean-trajectory approximation (MTA) presented here
is the simplest of them.

Within a path-integral representation the MTA is ob-
tained by using a coherent state representation for the
electronic degrees of freedom and by obtaining equations
of motion for all the variables by using the stationary
phase approximation.’® Thus the electronic amplitudes
are treated as classical fields. Despite this we get for
them a time-dependent Schrodinger equation driven by an
effective, mean potential. If we were to take a classical
limit for the nuclear coordinates only, then we would have
obtained®’ one integrodifferential equation for the trajec-

tory R; (), depending on the initial and final electronic
state.

Within the wave-packet formalism, MTA is obtained
by taking one Gaussian packet for both electronic states.
A refined version®® takes two packets, one for each elec-
tronic state, and generates two “classical” equations, for
two trajectories which jointly drive the electronic degrees
of freedom.

Finally the eikonal method used here can be refined by
defining two eikonals, one for each electronic state.’®

This brief survey of various possibilities serves to pin-
point the limitations of the mean-trajectory approxima-
tion. Since it generates only one trajectory it satisfies en-
ergy conservation only in average. More specifically the
two-trajectories theory®® generated by propagating two
Gaussians, one for each electronic state, gives an ionic tra-
jectory and a neutral one. If the incident trajectory is neu-
tral then the kinetic energy of the outgoing neutral trajec-
tory is the same as the kinetic energy of the incoming one.
However, the kinetic energy of the outgoing ionic trajecto-
ry is less than the incident kinetic energy of the neutral by
an amount equal to the ionization energy. The mean-
trajectory method gives the same kinetic energy for the
ion and neutral. Furthermore, the two-trajectory method
can generate an ionic trajectory that is trapped in the ionic
well and a neutral one which leaves the surface. The
mean trajectory cannot split in this way. It is therefore
not useful in dealing with trapping. Finally, the two-
trajectory method gives ion and neutral trajectories having
turning points on the ionic and the neutral curves, respec-
tively; the mean trajectory has a turning point at a mean
position between the two turning points mentioned above.
This comparison between the two methods shows that one
should not use the MTA at very low energy when sticking
(i.e., trajectory splitting) is important, or when one intends
to analyze detailed kinetic energy measurements. Howev-
er, it is difficult to believe that the ionization probabilities
at moderate and low energies are very sensitive to the de-
tails of the nuclear motion. For such situations the
mean-trajectory method should be an adequate tool for

‘calculating the ionization yield.
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APPENDIX
The derivation of Eq. (4.7) is similar to the procedure used to obtain the coherent state representation of the path in-
tegral:
i i S H) [ 00 , L 1 H ) |0 )AL
(v Jexp | (e |10y )y 9y 1= e LTSI |y g ) exp | oy [ )8

(A1)
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where 1; =(¢;). Here we allowed for an explicit time dependence of H and have made the substitution

i | H () [ /<5 [ ;1) =y, | H | ;)

because this quantity already multiplies the small Az. Also

(W | ;1) =(1; |¢j—¢jAt>=1—<¢j "j'j>At
o (WA

Combining Egs. (A1) and (A2) and using

oy 1 [y =( (St ) | 1| (S X)) ])

with H of Eq. (4.1) yields Eqgs. (4.7)—(4.9).

(A2)
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