Vibrational dephasing by the exchange mechanism: Some new results
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The exchange model of vibrational phase relaxation is studied. The vibrational line profile is
obtained analytically in various limiting cases such as high temperature and large friction.
Expressions for the first and second moments of the line profile are also presented.

I. INTRODUCTION

Considerable effort has recently been directed towards
the understanding of vibrational line shapes at surfaces.! For
high-frequency vibrations at metal surfaces, both energy re-
laxation (via excitation of electron hole pairs) and phase re-
laxation will in general contribute to the linewidth and line
shift. For vibrations at insulator surfaces only dephasing is
relevant because energy relaxation via multiphonon emis-
sion is unimportant for high-frequency vibrations. These
conclusions are supported by recent observations and analy-
sis of the temperature dependent widths and shifts of the
absorption lines associated with the C-O stretching vibra-
tion of CO adsorbed on Ni(111)>*and Pt(111),* and of the Si—
H stretching vibration for H adsorbed on Si(100).”

In a recent series of papers, Persson and Ryberg® and
Persson® have presented theoretical calculations of the vi-
brational line shape [with applications to CO/Ni(111)] based
on the exchange model for phase relaxation. This mode] was
proposed by Harris and co-workers’ to explain the vibra-
tional line shapes of high-frequency modes of polyatomic
impurities in condensed phases.

The physical picture used to describe vibrational de-
phasing by the exchange mechanism for an adsorbed mole-
cules was described earlier.>” Briefly, the high-frequency
mode interacts with low-frequency local modes such as frus-
trated translations or frustrated rotations of the adsorbate.
The latter are coupled to the lattice phonons. The anhar-
monic coupling between the high-frequency mode and the
low-frequency fluctuating modes is the source of the
former’s dephasing. The simplest model for this process is
described by the Hamiltonian

H=o0,a*a+ o,b* b+ dwatab*b+V, (1)

where a is the annihilation operator for the high-frequency
mode (of frequency @,) under study, b is the annihilation
operator for the low-frequency local mode, S (the exchange
coupling) is a measure of the anharmonic coupling between
the 4 and B modes, and ¥ is the Hamiltonian for the lattice
phonons plus their coupling to the low-frequency mode B.
Obviously more than one (local) low-frequency mode may be
involved but such a slightly more complicated model was not
found necessary in actual cases studied so far.

In the model (1), the interaction between the 4 and B
modes was taken to be bilinear in both mode coordinates. In
systems where the impurity molecule is located in a site of
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high symmetry, such as the CO/Ni(111) system studied in
Refs. 3 and 4, this is required by the symmetry of the prob-
lem. In less symmetrical situations terms such as a*a
(b + b *) will also appear. Shelby et al.”™® have argued that
the symmetric term appearing in Eq. (1) is more important
even in such cases, but their argument is based on the as-
sumption that the coefficients of expansion of the interaction
potential which yield these (and higher order terms) are all of
the same magnitude. Such an assumption usually does not
hold. Nevertheless, we focus our discussion in this paper on
the symmetric model (1) which is the appropriate model for
most line shape problems involving adsorbed molecules. The
case where the term 8w a™a b *b in Eq. (1) is replaced by Sw
a*a (b + b ™) is actually easier to solve analytically and its
implications are discussed at the end of the paper.

When the B mode-lattice coupling occuring in V van-
ishes, the transition 0—1 between the ground and the first
excited level of the 4 mode has (at finite temperature) super-
imposed on it more lines associated with the different popu-
lations of the B mode, i.e., the lines On—1n (n =0, 1,...),
where the first number refers to the high and the second to
the low-frequency mode populations. If, e.g., dw is positive
these lines lie on the high-frequency side of the main 00—10
line and their intensities are proportional to the thermal pop-
ulations of the corresponding B states. In a real system, even
without the effect of ¥, these lines will be inhomogeneously
broadened and, for adsorbates on metal surfaces, additional-
ly broadened by the e-A pair production mechanism. These
contributions to the total width are essentially temperature
independent. The presence of V' leads to an additional tem-
perature dependent shift and broadening associated with the
indirect coupling (via the B mode) of the 4 mode to the lattice
phonons.

It is clear from the above discussion (see also Refs. 6 and
7) that in general the absorption line associated with the
high-frequency mode A4 will be asymmetric, and for small
enough friction (6w 7; the friction % determines the damp-
ing of the low-frequency mode B due to emission of lattice
phonons), it will consist of several nonoverlapping peaks.
Analysis of the experimental line shape may be carried out
either (a) by considering the total absorption profile, e.g., by
evaluating its moments, or (b) by focusing on the main peak
characterized by, e.g., its center frequency (the frequency of
maximum absorption) and by its linewidth (e.g., the full
width at half-maximum, FWHM). The first approach is of-
ten difficult or impossible to carry out in practice because a
substantial part of the total intensity may be imbedded in the
noise. This is particularly serious when evaluating higher
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moments such as ((@ — (@))?) where an accurate knowl-
edge of the “wings” of the absorption spectra is necessary.
For this reason the experimental data reported in Ref. 3 were
presented as center frequency and linewidth (FWHM).

In the present article we consider both possibilities (a)
and (b). The total line shape analysis is done by calculating
the first and second moments of the absorption associated
with the high-frequency mode within the model (1). The re-
sults are obtained in terms of sum rules, and the same meth-
od is capable of yielding moments of any desired order. Main
peak analysis is done by considering the long time limit of the
dipole-dipole correlation function whose Fourier transform
is the line shape.

In the next section, we calculate the absorption line
shape associated with mode 4 in the model (1), using a cumu-
lant expansion and taking the long time limit in calculating
the dipole-dipole correlation function. This leads to a Lor-
entzian line shape with width and shift in agreement with
results obtained earlier using other methods. This calcula-
tion serves to show that the long time limit of the dipole
correlation function indeed contains the information needed
to characterize the Lorentzian center of the peak. It is also
shown that a truncated cumulant expansion corresponds to
the high friction limit (7 > dw) of the model.

In some situations a full quantum mechanical analysis is
not necessary. When o, < k5 T a classical analog of the Ha-
miltonian (1) is sufficient, provided that in addition the peaks
corresponding to the different On—1n (n =0, 1,...) transi-
tions overlap. In Secs. III and IV we calculate the line shape
associated with the classical analog of Eq. (1):

X, + wix, + axix, =0, (2)
Xy + wix, + alm,/my)Xix, + 0%, =f(t), (3)

where a ~ 8w and where the random force f(¢ ), in accordance
with the fluctuation dissipation theorem, satisfies

(flef(0) = 2nkp T /m,)5(2). 4)
Using this model, in Sec. III we calculate the long time limit
of the classical dipole—dipole correlation function using an
infinite order cumulant expansion. In Sec. IV, we obtain the
same results by taking the classical limit of the full quantum
mechanical solution of Ref. 3.

In Sec. V, we evaluate sum rules which correspond to
the moments of the absorption line shape. We show that if a
shift and a width are calculated from the first and second
moments, the results are different from those calculated
from the center peak analysis of the earlier sections, stressing
again that the Lorentzian shape is valid only in a limited
region near the main peak.

We conclude this paper with some numerical examples
and a discussion of the results obtained.

Il. THE QUANTUM CASE

Here we present a derivation of the linewidth and shift
associated with the exchange dephasing model described
above. While the present treatment is limited to large fric-
tion, 77 > Sw, it provides in this limit analytical results which
holds for all temperatures, thus extending the results of ear-
lier work. Our starting point is the Hamiltonian

H=0,07a+d,b"b+dwa*ab b+ o c
k

+> (Veel b+ Ve b ™), (5)
3

wherea,a*, b, b+, and ¢;, ¢ are annihilation and creation
operators for the high-frequency, the low-frequency, and the
thermal bath modes, respectively. Their time evolution is
determined by the following equations of motion:

a= —iw,a—ibwab b, (6)
b= —id,b—ibw r‘z,,b—i; Vi, )
ék = — iwkck —inb. (8)

Here /i, = a*ais an operator, but under the Hamiltonian (5)
it is a constant of the motion and will be regarded as a num-
ber in solving Egs. (7) and (8). Denoting

- . Vi l?
w,,—-w,,+5a)na+Rezw gy
k = Wy

The solution of Egs. (7) and (8) is obtained in the form

(e=0)- (9)

b(t)=F(t)b(0) + Ek‘,Fk(t)ck(O) (10)
with
Fit)=e i (11)
_ V:e_iwkt _ — oy — o)t — 40y
F(t) EPT o (1—e ), (12)
Fb=27f( [Vl P )wk=mb' (13)

Note that F(¢) and F (¢) satisfy
[F(t)* + }; |Felt))* = 1. (14)

Also note that in Egs. (11} and (12) we have assumed that
I, = 27|V, |%p, is a weak function of w.

The line shape associated with the high-frequency mode
may be written as

— 2 * iot +

L (@) - e_BMRe X dte® ([alt),at(0)]), (15)
a(t) is the solution of the Heisenberg equation (6). In this
equation, b *(¢)b (¢t ) depends ona through the /2, dependence
of ,, Eq. (9). A simple solution is obtained if we approxi-
mate 7, by its thermal average (n, ). In most relevant cases,
how,>kyT and (n,)~O0.

Inserting the solution of Eq. (6),

ait) = exp[ —iw,t — iJ.t dr é‘),(f)]a(O] (16)
into Eq. (15), we get

- iJ: dr &y(7)

_ 2 « Hw — wg)t
where
&, = 8wb *(1)b (7). (18)
This evaluation of the average
I(t)= (exp(— iJ- dr &,(7)) (19)
0
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is outlined in Appendix A. In performing this average we
first calculate the thermal average over the ¢ modes using
second order cumulant expansion. The result is then a func-
tion of the b, b * operators. In the light of the discussion of
the preceding section, we are interested in the (0,|...|0, )
component of this function (0, denotes the ground state of
the low-frequency mode) which corresponds to the line
shape associated with the 0,0, component of the 0,~1,
transition.
The result of the calculation of Appendix A is

I(t)=exp[K,(t)+ IK,(t)], (20)
where

K,(t)= —ibow n,t, 21)

1K) — sl 1), (22)

L,
and where
1
n,,=epmb_1. (23)

From Eq. (17) we now get
Sw*ny(ny, + 1)/T,

L (o)~ ,
[@ = (@, + 8wn,)] + [n,(n, + 1)60*/T, ];4)
a Lorentzian with shift Aw and width I given by (
Aw = bwn, (25)
and
I’ = 2n,(n, + 1)60*/T,. (26)

These results are generalizations, valid for all tempera-
tures, of the previously obtained shift and width in the high
friction (I, > dw) limit. That the low order cumulant expan-
sion corresponds to this limit results from it being an expan-
sion in powers of functions of the form e ’dr f(r), where

f7) decays exponentially like e ~ Ty,

lii. HIGH TEMPERATURE EXPANSION (1)

In this section we derive expression for the linewidth
and shift associated with the classical analog of Eq. (1),
namely,

%, +olx, + axix, =0, (27a)
Xy + @3xy + alm,/my)Xix, + 9%, =f(t) (27b)
with (/) =0and
29k, T
(SUOSO) =eBlt); =12 (28)

b

a denotes the high-frequency mode and b the low-frequency
mode. a is related to dw of Eq. (1) by

g
a= _,sa'"b;’b“’a ) (29)
The line shape associated with the a mode is
L(w)ocf dt € (x, (¢ 1, (0)). (30)

Togetx, (¢ ) we first solve Eq. (27b) for x,, (¢ ). Since w, > @, we

replace x2 in Eq. (27b) by its average (x2) =k, T/m 2.
Defining

0 =dl +a

P (x2), (31)
my

we now have the simple Langevin equation for the motion of
the low-frequency mode

%y + 0jxy + 7%y =f (32)
which is easily solved in Fourier space to yield
% Pp— ) — (33)
w; — ® — iy
s [ an 2mc
X, (@)%, (@) = S + '), 34
@Bk =S S+ o) (4
where
For= [ dremrie
and

o) = f dt e*'x(t).
Equation (34) leads to

AL AY) =-2£ﬂ_-fj dw e~ @1

1
( wg _ 02)2 + a)2772 :
x,(t)is now regarded as a stochastic term in Eq. (27a), whose
statistical properties are given by Eqs. (34) and (35). Solving
Eq. (27a) using the WKB approximation® we get

x,(t)= xa(O)exp[ — ot — izga J: dfx,z,(r)]. (36)

Inserting into Eq. (30) we now get

(35)

L (w)«r dt eI (t), 37)
where
It)= (exp[ - izga J:drxﬁ(r)]). (38)

This average is evaluated in the long time limit in Appendix
B. The result is

— iBet — 4T}t ]

It)=e (t—> ), (39)
where
_1 [ a 5
Aw = yym f_wdw arctan[waZ(w)], (40)
1 [~ a 5 2
=Ff_w do ln[I + [%Z(w)] ] (41)
and where
Z(w)= ¢ (42)

(“’i _wz)z +(02"72 :
The long time limit used to obtain Eq. (39) is relevant if we

are interested in the line shape near the center o ~w, + Aw.
This is indeed the case in the light of the discussion of Sec. I.
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In this approximation the line shape is a Lorentzian,
1721

[0 — (@, + Aw)]? + (1)

with Aw and T corresponding to the frequency shift and the

width (FWHM). Equations (40) and (41) are easily integrated

numerically. They can also be evaluated analytically by first

integrating by parts to get

Lw)x {43)

Ao= — 2 j“’ do—2210) (44)
dro, J- o 1+ [a/w,Z(w)]
e oZ ()2 (o) 5)
200 J— w1+ [(@/0,)Z (@)]?

and then proceeding with complex integration along a con-
tour circling the upper or lower complex @ plane. As a sim-
plified version of this procedure consider the case <, . For
this case Z (@) may be approximated by’

c/(2w3)
@ =, + (/27
From Egs. (44) and (45) with Z () given by Eq. (46) we get

Z (w)~ (46)

2 2 172
so—Z(1+[Z2]) 1] @
l 45a)nb a—)b 271/2\ 12

oo [ (2T

"7[ 1/2( n @y (48)

where
nbszT (49)
b

is the classical limit of the thermal population of the low-
frequency mode and where we have used Eq. (29) to express
a in terms of Sw.

The results (47) and (48) are limited to the (common)
situation where 7<€w,. In the opposite limit, 7> w,, the low-
frequency mode is overdamped. In this case, the contribu-
tion to the integrals (40) and (41) comes mainly from v ~0
and Z (@), Eq. (42), may be approximated by

—_c
ot + o’
Evaluating the integral (45) with z (w) given by Eq. (50) we
get

w? 45on,n @, 2)1/2]1/2 ]
I'= 1 —1
Sl (-

(p/w,—> o). (51)
We should keep in mind, however, that in this limit the line
shape is not a Lorentzian and the long time limit inherent in
Eq. (39) no longer applies. In fact, Eq. (51) vanishes as 7~/
as 77— o0, while from Eq. (26) we expect in this limit a Gaus-
sian line shape associated with the thermal distribution of
the effective frequency &2 = w? + axi.

Z(w)~ (50)

IV. HIGH TEMPERATURE EXPANSION (il)

In this section, we will present an alternative theoretical
treatment of the high temperature line shape problem. With-
in the Markoff approximation the vibrational line shape I ()

5613

is accurately given by the following result, valid for any tem-
perature®:

I(@)~ — Im D (w), (52)
Dw)= 5 Dynfa) (53)

where the matrix D,,, satisfies

(0 — 0, — méaw)D,,, + in(2mn, + m+n,\D,,.
1D, .
e, (54)

—in(m + 1)(n, + —iqgmn,D,,, _,

=8, me (1 —

where
= -1

is the Bose-Einstein factor for the low-frequency mode. For
large temperatures

nb szT/wb>l

and the main contribution to the sum 2, D, comes from
large n and m (n~m~n,). Thus we can treat n and m as
continuous variables and write

2
Dy s1=Dun D + oD, (55)
Substituting Eq. (55) in Eq. (54) gives

(@ — @, — méo — i\D,,, — inln, + m}aip,,,,,
m

2

3 — o,
am 2 nm=5(n——m)e g /nb'

Next, we integrate over 7 and introduce

— inn,m—.

x=m/n,, Gx)= —inn,,f dnD,,.
0

We get .
xG" +(1+x)G' +ila+bx)G=e"%, (56)
wherea = (w — w, — in)/n,b= — n,60/1n,andG’' =9G /
Jx. The line shape is given by
Iw)~ —Im f “dndmD,, )= —Re[  dxGxo)
] Ui 0 (57)

The differential equation (56) is solved in Appendix C where
it is shown that

Te)~ _Im[(l TP Z (1+w)

1
X , 58
{a)—a),—Aw,,+iI",,/2] (58)

where
w = (1 + 4in,6w/7)'"?
and where
460)'1 2\ 172 1/2
Aw, = +(2n+1 (1 "]) —] ,
(59)
2”+1 46(0”1, 231/2\1/2
ool o o (2]
7 V2 7
(60)
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In expression (59), the + sign is determined by the sign of
Sw. The n = 0 terms in these expressions are identical to the
results of Sec. IIl. The contribution from the other terms
{n =1, 2,...) can in many cases be neglected (see Sec. VI).

V. MOMENTS OF THE LINE SHAPE
The line shape L (w) can be written as

Lio)= —l—f dt & {a(t \a*(0)).
rJ-w
Thus,
f dow e "' L (@) = {(a(t)a™(0)).
Expanding both sides in power of ¢ gives
2
fda)L(a)) —it| do L (0o —%fde(w)wz 4o

= (a(0)a*(0)) + t(a(0)a™ (0)) + ¢ *(d(0)a™ (0)) + ---.
Thus,

f dor L () = {a0)a*(0)) = 1,

fde (@o=(w) = i(e(0ja*(0)) = ([a.H la*),

and

(@’ =([[a,H).H]a").
Using Eq. (5) we calculate

la,H ] = (0w, + dwf,)a, (61)
so that

() =, + dolf,).

The frequency shift (o) — o, = Swn, agree with the result
(25) which is valid in the large friction limit. This result is
expected since, in the large friction limit, L (w)is a Lorentzian
and for a symmetric peak the center frequency (i.e., the fre-
quency at peak maximum) must coincide with the center of
mass (@) of the distribution L (w). However, this is no longer
true if the absorption peak is asymmetric (as is generally the
case) and, indeed, (@) — w, differs from Eq. (47).

Next, to obtain (w?) we must evaluate [[a¢,H ],H ]. Using
Egs. (5) and (61) we obtain

[[a.H ) .H] = (0, + 6oh,) —Ek:(Vka*b— Vb " owa.
Thus,
(@ — (@))*)

= 80’ ((A}) — (R, )%) — Ek: So(Viel b—Vieh™).

The quantity ({{@ — (@))?))"/?, which is a measure of the
peak width, differs from both Eqs. (26) and (48) and is there-
fore not related in any simple way to the full width at half-
maximum of L (w).

VI. NUMERICAL RESULTS AND DISCUSSION

According to Eq. (58) the high temperature line profile is
a sum of Lorentzians with different width I, and frequency

shift Aw, . The weight of each Lorentzian is proportional to
x" where

(Fe)

x=|——7-oI]J.

1+w

In Fig. 1, we show |x| as a function of
Sawn, /1 = dw kz T /nw,. Obviously, |x| <1 so that the se-
ries (58) converges. Furthermore, the FWHM =T" and the
frequency shift Aw of the absorption peak 7 (w} are approxi-
mately determined by the first (i.e., » = 0) term in the expan-
sion (58):

oo (e ()Y

2\ 172 172
s 1+ [ )" 1]
2v2 7

The reason for this to hold approximately is that the higher
order terms (n = 1, 2,...) in the expansion (58) have a much
larger damping and smaller weight ~ |x|". This is illustrated
in Fig. 2 which shows the line profile for 8o = 7 = 10 cm ™!
and n, = 5. The dashed curves are calculated from the high
temperature expansion (58) by summing over n = 0, 1,... (up-
per curve) and by excluding the # = O contribution (lower
curve). The latter curve forms a weak and slowly varying
“backgrounds’” which obviously has quite a small influence
on the peak width and position, as claimed above. In Fig. 2
we also show the “exact” line profile as obtained by solving
Egs. (52)—54) numerically.

In Fig. 3 we show how the peak width I" and the fre-
quency shift Aw vary with the temperature for a case where
6w =n=10cm™ ' and @, = 100 K. The full lines are the
exact results, Egs. (52)—(54), while the dashed-dotted lines
are the low temperature results of Harris et al.”:

(60b)

- da?
=2 Py 22 62
715@2+772 (62)
2
Ao=e P T . (63)
6&)2+772

We close this section by discussing some limiting results
for I and Aw. For large friction, Egs. (59b) and (60b) reduce
to

2
=2 T/o,p,
7

Ao =dalky T /0,)
101
E0.5 —
0'oo é |Io |15 zlo

Swnb/‘q

FIG. 1. The function |x| = |[(1 — w)/(1 + w)|*> where w = (1 + 4in, 6w/
,'7)1/2.
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"EXACT"

HIGH TEMP. EXPANSION
(n=0,1,...)

FIG. 2. Full lines: The exact absorption spectra obtained from Egs. (52}
{54). The dashed lines are obtained from the high temperature expansion
(58) by summing over n = 0, 1... (upper curve) and over n = 1, 2,... (lower
curve). In the calculation we have used §w = 7 = 10 cm ™" and w, = 100
cm™" and such a temperature that n, = (exp[wo/ksT] — 1)"" = 5.

which agree with earlier results. For Swn,/7>1 we get a
drastically different temperature dependence, namely

I =2|Aw| = 2900k T /0, — 1.

Although the various limiting formulas for the linewidth
and frequency shift, which we have presented above, should
provide useful estimates, for an accurate comparison of the-
ory with experiment one must use the full quantum mechan-
ical solution described at the beginning of Sec. IV.

15
— Io}
)
g
3
Q 5
0 T | | |
0 100 200 300 400 500
T (K)
30 T T T T
£ 20F o=
5 ///
= -
-
E ok grad -
0 ) i i i i
0 100 200 300 400 500
T (K}

FIG. 3. The frequency shift Aw and the linewidth (FWHM) as a function of
temperature. In the calculations 8w = 7 = 10 cm™" and w, = 100 cm ™",
The full lines are calculated using Eqs. (52}-(54). The dashed lines are ob-
tained from Eqs. {59b) and (60b). The dash-dotted lines are the low tempera-
ture expansions {62) and {63}.

Vil. SUMMARY AND CONCLUSION

The exchange model for vibrational phase relaxation
has been shown to explain a large amount of experimental
data for vibrations in solids and at surfaces and this motivat-
ed the rather detailed study presented in this paper. The
main ingredient in the exchange model is an anharmonic
coupling ¥ between the high-frequency mode 4 under study
and a low-frequency mode B. In this work ¥ ~x2x2. In sys-
tems where the “impurity” molecule is located in a site of
high symmetry, such as the CO/Ni(111) system, this is the
lowest nonvanishing anharmonic coupling. In less symmet-
ric situations terms such as ¥ ~xZ2x, will also appear. One
can show that in this case the frequency shift Aw vanishes
(i.e., the temperature independent} while the linewidth in-
creases linearly with temperature (for large temperature and
friction). These results should be contrasted with those of
Egs. (25) and (26) which exhibit Aw ~ T'and T" ~ T"? (again for
large temperature and friction). The different temperature
dependence can be used to distinguish between the different
cases (V' ~x2x} and x2x, ) and therefore also, at least in prin-
ciple, to derive information about bonding site symmetry.
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APPENDIX A

Here we evaluate the average It)
= (exp( — if§dr &,(7))), Eq. (15), where &, is given by Eqs.
(18) and (10}(13). We first perform the average over the ther-
mal bath (c) modes. The resulting average is denoted 1. (¢ ):

Lit)= exp[ — ibw L ' dr|Fir)]*b *b ]Tc(z ) (A1)
Lit)= (exp —i J; ' dr 51(r)>c, (A2)
By(r) = [F(T)Ek; F2(r)b *c; +c.c.

+ ; g F3(n)F, (Teit ey, }&o. (A3)

( ). denotes thermal averaging over the ¢ modes. To obtain

.1I(t) from I (t) we need to average over the thermal popula-

tion of the b mode

It)=(1—e ™) 3 e (n, |L(¢)|n,). (A4)
n,=0
In the spirit of the discussion in the Introduction, we consid-
er only the term n, = 0 which corresponds to the 0,-0,
component of the 0,~1, transition.
We now seek an expression for 7. (¢ ) in form of a cumu-
lant expansion

Tc(t) = eKl(‘)+iK2‘t)+'" . (A5)

The first cumulant

K= -if dr(@yn). (A6)
(1]
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is easily evaluated to give
1—e™ ™
K\~ —i&un,,(t————) , (A7)
L,
where
ny = (0T 1)

and where we have used Egs. (11) and (14). Note that even
though we focus on the n, = O term in Eq. (A4), n, appears
in Eq. (A7). This n, results from terms such as {c;f¢,).
calculated for », ~w, as imposed by the weighting function
Fy(t), Eq. (12).

The second cumulant

K, = —f dnj dryL (@ )0r(r)) — @) Brfra)) ]
(] 0

(A8)

is also obtained from a straightforward, though lengthy, cal-
culation. As an example consider one of the terms that con-
tribute to Eq. (A8), this arising from the b *¢, terms of Eq.
(A3):

[an] ar{Flr)F(rb 53 FirFyirlf, +1)

+ FHm)F ()b *b + 1)2_‘, Fy (n)Fz(rz)ﬁk} (A9)
zJ: dr,J: dr,{F (1 )F *(r,)A, + 1)b *bs*(7), 7,)
+ F(r,)*F (1), (b * b + l)siry, )}
where
s{ry,m) = 2_‘, F(r)F8(rs). (A10)

s may be evaluated from Eq. (12). The result is

— lagfr, — 'r,)(e — /2|1 — 7 —e — /2, + -r,))'
(All1)

Inserting Eq. (A11) into Eq. (A9) and performing the 7, and

T, integrations using also Eq. (11) lead to

(A9)=[(2A, + 1)b*b + 7, ]

x[z 1—e™™ 2" _(1—e”“‘)2]
2 T, T, '
(A12)

Other terms contributing to K, are evaluated in a similar
way. The final result is (replacing b *b by 0)

s(ty,72) =e

e == (=L
r, \ T,

_ -T2 7 21 1 _ Ty
+r‘n§(l = )+""( o 4 v _1ze” ¥ )]
T, r, \ T,

(A13)

The Lorentzian center of the line shape is governed by the

long-time limit of Eqs. (A7) and (A13),
K 1= — i5a)ﬁb t y

Aolts + 1),

K 2> 6‘02
L,

(Al4)

A. Nitzan and B. N. J. Persson: Vibrational dephasing

Inserting Eqs. (A14), (AS), and (A1) into Eq. (A4), then using
Egs. (17) and (19) lead to the result (24).

APPENDIX B
Here we evaluate the average

—iuafar x3r)
It)= (e L ) (B1)
where x, () is a Gaussian stochastic variable whose statisti-
cal properties are given by Egs. (34) and (35). The nth term in
the Taylor expansion of Eq. (B1) involves the average

(3 (7)) x5 (7)) (B2)

which may be represented as a sum of diagrams as follows: A
preaveraged diagram of third order is shown in Fig. Bl and
corresponds to the term

LA A AN (B3a)
i.e., a vertex with two dashed lines corresponds to x? (7) (each
vertex stands for a different time) and a full horizontal line /
just a product operation. Averaging we obtain the unlinked
and linked diagrams shown in Fig. B1 and corresponding to

(x5 (1)) (x5 (r2)) (x5 (3)s (B3b)
(x, (1% (1)) (x5 (73)), (B3c)
(x5 (7105 (7)) {1y (720 (7)) (x5 (T30, (71)) - (B3d)

Only linked diagrams contribute to the cuamulant expansion.
Using the appropriate weight factors corresponding to equi-
valent linked diagrams we get

n—Y __ 4\ [t t
1) = exp{; E—Ln—“‘—)J; dr,...J; dr, K,,(Tl...T,,)},
(B4)
where K, is the nth order linked diagram shown in Fig. B1:
K, = (xp(T1)x5(T2)) (xp (T2}, (73))
X ek (T _ 1 03 (7)) (X (T4 x5 (74)) - (B5)
Denote
(xp (T, (F))=Z (7 — 7). (B6)
Then from Eq. (35),

-

N ———

(e)

FIG. B1. Diagrams corresponding to various correlation functions involv-
ing the low frequency mode b (see Appendix B).
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S 1 (® c
Z (w)=—o dte™ Z(t)= .
@ 27 J_ w il (@} — ) + o*n?
(B7)
Using Eqgs. (BS) and (B7) we get
J dr,...I dr, K,,(T,...r,,)
(¢}
(27)"f do,.. f do,Z(©,)..2 ®,)
J.drl e w"”‘f drye @2 =@
de lenr=ewra f do[Z ()]"
(B8)

Equations (B4) and (B8) now give
Iit)= exp[ - -#Jw doln[1 + 2@42((0)]] (BY)

which may be recast in the form

I(t) =e—iAwt—1/2Ft’ (BIO)
where
Ao =—-1—1me do n[1 + 2i4Z ()]
47 —
=#f_: do arctan[24Z ()], (B11)
= LRef do In[1 + 2idZ ()]
2r —w
— %r do 1n{1 + [24Z (0)1%}. (B12)

There are Eqs. (40) and (41) (4 = a/2w,).

APPENDIX C

In this Appendix, we will solve the differential equation
(56),

xG" +(1+x)G' +ila+bx)G=e"" 1)
Let us first write

G=e*g.
Substituting this in Eq. (C1) gives

+(14+[2c+1)x)g +(c+ia+ [*+c+iblxg

=e—cx——x.
Now, choose
E4+ec+ib=0, c= —§1 +J1—4ib )=—41+w)

with Re w> 0. Thus
xg" + (1 —wx)g’ + (c + ia)g = e'/2w— 1>,

Next, substitute wx = y:

c+ za

yg" +(1 -y + —e""_ e, (C2)

Now, note that (7 = positive mteger)
8" +(1—yg' +ng=0 (C3)

has the Laguerre polynomials as solution

1 ¥ — ¥
g=L.b)=—e ;y;(e Y').

The Laguerre polynomials from a complete set of states
which satisfies

fo " dye Ly (YL () = bpm c4)
and
r dye=%L (y)=(d—14 """ (Red>0). (C5)

Let us now expand the solution g(y) to Eq. (C2) as

8= 2 &L, (C6)
n=0
We also write
1 (w — 1)/ 2w -
—e¥ = a,L,, C7
” 'Z,o (C7)

where, using Egs. (C4) and (C5),

i)
a,=——I\——-1,] .
w+ I\l 4w
Substituting Eqs. (C6) and (C7) in Eq. (C2) and using Eq. (C3)
give
a'l

&= c+ia)y/w—n"

Finally, we must calculate
Io)~LRe[  dx Gx).
7 J
We get
f dx G =j dxe"‘g:f dy-Levug
0 0 (1] w

—3 [k e, 3 Ee (L)

~14+w\l4+w

_a_4 (1—) 1
o (1l +wP\l +w/ (c+ia/w—n"
Thus
- 2n 1/1’
Tel {(1+w)2 z (1+w) (c+ia)/w—n]'

Now, note that

1 1 —i
qw (c+ia)/w—n B @ —o, +i[2n+ 1w — 1)y/2

. —i
T w—w,—Aw, +iT,/2"°
where

Aw, —iT, /2= —%’7([2;: Flw—1)

determines the frequency shift Aw, and linewidth (FWHM)
I',,. One calculates easily
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m+1
Ao, = ii’;—jz—’ﬁ[u + [40n, /1Y) — 1112,
r, =,,[2'i/'; L+ [1+ (460, /P12 — 1].
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